1
|
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, Li X, Wang X, Luo Y, Du Y, Wu J, Wei K, Zhang W, Liu Z, He Z. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther 2024; 32:2992-3011. [PMID: 38582962 PMCID: PMC11403235 DOI: 10.1016/j.ymthe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhao Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hua Qiu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Weizhi He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xicheng Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yuan Du
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jialing Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China.
| |
Collapse
|
2
|
He W, Wang X, Chen M, Li C, Chen W, Pan L, Cui Y, Yu Z, Wu G, Yang Y, Xu M, Dong Z, Ma K, Wang J, He Z. Metformin reduces hepatocarcinogenesis by inducing downregulation of Cyp26a1 and CD8 + T cells. Clin Transl Med 2023; 13:e1465. [PMID: 37997519 PMCID: PMC10668005 DOI: 10.1002/ctm2.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS Fah-/- mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+ T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45β/JNK/c-Jun pathway. CONCLUSIONS Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.
Collapse
Affiliation(s)
- Weizhi He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
- Fudan University Shanghai Cancer Center, International Co‐Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Institutes of Biomedical SciencesShanghai Key Laboratory of Medical EpigeneticsShanghaiChina
| | - Xicheng Wang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Miaomiao Chen
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Chong Li
- Zhoupu Community Health Service Center of Pudong New AreaShanghaiChina
| | - Wenjian Chen
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Lili Pan
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Postgraduate Training Base of Shanghai East HospitalJinzhou Medical UniversityJinzhouLiaoningChina
| | - Zhao Yu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Yang Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Mingyang Xu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Zhaoxuan Dong
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Keming Ma
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic SurgeryShanghai East Hospital, Tongji UniversityShanghaiChina
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| |
Collapse
|
3
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
4
|
Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, Jih L, Ellies LG, Langiewicz MT, Sen S, Webster NJG. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105120. [PMID: 35615981 PMCID: PMC9313545 DOI: 10.1002/advs.202105120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Serine-arginine rich splicing factor 3 (SRSF3) plays a critical role in hepatocyte function and its loss in mice promotes chronic liver damage and leads to HCC. Hepatocyte-specific SRSF3 knockout mice (SKO mice) also overexpress insulin-like growth factor 2 (IGF2). In the present study, double deletion of Igf2 and Srsf3 (DKO mice) prevents hepatic fibrosis and inflammation, and completely prevents tumor formation, and is associated with decreased proliferation, apoptosis and DNA damage, and restored DNA repair enzyme expression. This is confirmed in vitro, where IGF2 treatment of HepG2 hepatoma cells decreases DNA repair enzyme expression and causes DNA damage. Tumors from the SKO mice also show mutational signatures consistent with homologous recombination and mismatch repair defects. Analysis of frozen human samples shows that SRSF3 protein is decreased sixfold in HCC compared to normal liver tissue but SRSF3 mRNA is increased. Looking at public TCGA data, HCC patients having high SRSF3 mRNA expression show poor survival, as do patients with alterations in known SRSF3-dependent splicing events. The results indicate that IGF2 overexpression in conjunction with reduced SRSF3 splicing activity could be a major cause of DNA damage and driver of liver cancer.
Collapse
Affiliation(s)
- Deepak Kumar
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Manasi Das
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Alexis Oberg
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Debashis Sahoo
- Division of Genome Information Sciences, Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
| | - Panyisha Wu
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Consuelo Sauceda
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lily Jih
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lesley G. Ellies
- Division of Cancer Biology Research, Department of PathologyUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| | - Magda T. Langiewicz
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Supriya Sen
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Nicholas J. G. Webster
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
5
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
6
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
7
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
8
|
Lee KL, Aitken JF, Li X, Montgomery K, Hsu HL, Williams GM, Brimble MA, Cooper GJ. Vesiculin derived from IGF-II drives increased islet cell mass in a mouse model of pre-diabetes. Islets 2022; 14:14-22. [PMID: 34632959 PMCID: PMC8632304 DOI: 10.1080/19382014.2021.1982326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet-cell function and volume are both key determinants of the maintenance of metabolic health. Insulin resistance and islet-cell dysfunction often occur in the earlier stages of type 2 diabetes (T2D) progression. The ability of the islet cells to respond to insulin resistance by increasing hormone output accompanied by increased islet-cell volume is key to maintaining blood glucose control and preventing further disease progression. Eventual β-cell loss is the main driver of full-blown T2D and insulin-dependency. Researchers are targeting T2D with approaches that include those aimed at enhancing the function of the patient's existing β-cell population, or replacing islet β-cells. Another approach is to look for agents that enhance the natural capacity of the β-cell population to expand. Here we aimed to study the effects of a new putative β-cell growth factor on a mouse model of pre-diabetes. We asked whether: 1) 4-week's treatment with vesiculin, a two-chain peptide derived by processing from IGF-II, had any measurable effect on pre-diabetic mice vs vehicle; and 2) whether the effects were the same in non-diabetic littermate controls. Although treatment with vesiculin did not alter blood glucose levels over this time period, there was a doubling of the Proliferating Cell Nuclear Antigen (PCNA) detectable in the islets of treated pre-diabetic but not control mice and this was accompanied by increased insulin- and glucagon-positive stained areas in the pancreatic islets.
Collapse
Affiliation(s)
- Kate L. Lee
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- CONTACT Kate L. Lee Faculty of Medical and Health Sciences; Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, New Zealand
| | - Jacqueline F. Aitken
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Xun Li
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kirsten Montgomery
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Huai-L. Hsu
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey M. Williams
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Margaret A. Brimble
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Garth J.S. Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Paternal Exercise Improves the Metabolic Health of Offspring via Epigenetic Modulation of the Germline. Int J Mol Sci 2021; 23:ijms23010001. [PMID: 35008427 PMCID: PMC8744992 DOI: 10.3390/ijms23010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Epigenetic regulation is considered the main molecular mechanism underlying the developmental origin of health and disease's (DOHAD) hypothesis. Previous studies that have investigated the role of paternal exercise on the metabolic health of the offspring did not control for the amount and intensity of the training or possible effects of adaptation to exercise and produced conflicting results regarding the benefits of parental exercise to the next generation. We employed a precisely regulated exercise regimen to study the transgenerational inheritance of improved metabolic health. METHODS We subjected male mice to a well-controlled exercise -training program to investigate the effects of paternal exercise on glucose tolerance and insulin sensitivity in their adult progeny. To investigate the molecular mechanisms of epigenetic inheritance, we determined chromatin markers in the skeletal muscle of the offspring and the paternal sperm. RESULTS Offspring of trained male mice exhibited improved glucose homeostasis and insulin sensitivity. Paternal exercise modulated the DNA methylation profile of PI3Kca and the imprinted H19/Igf2 locus at specific differentially methylated regions (DMRs) in the skeletal muscle of the offspring, which affected their gene expression. Remarkably, a similar DNA methylation profile at the PI3Kca, H19, and Igf2 genes was present in the progenitor sperm indicating that exercise-induced epigenetic changes that occurred during germ cell development contributed to transgenerational transmission. CONCLUSION Paternal exercise might be considered as a strategy that could promote metabolic health in the offspring as the benefits can be inherited transgenerationally.
Collapse
|
10
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
11
|
Liu Q, Chen F, Yang T, Su J, Song S, Fu ZR, Li Y, Hu YP, Wang MJ. Aged-related Function Disorder of Liver is Reversed after Exposing to Young Milieu via Conversion of Hepatocyte Ploidy. Aging Dis 2021; 12:1238-1251. [PMID: 34341705 PMCID: PMC8279529 DOI: 10.14336/ad.2020.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Previous study showed that senescent hepatocytes from aged liver could be rejuvenated after repopulated in the young recipient liver. The proliferative capacity of hepatocytes was restored with the senescence reversal. However, it is unknown whether metabolic and homeostatic function of aged liver, as well as age-dependent liver steatosis could be rejuvenated or alleviated. Here, we found that senescent hepatocytes from aged liver were rejuvenated after exposing to young blood. An autonomous proliferation of senescent hepatocytes which resulting in ploidy reversal might be the underlying mechanism of senescent reversal. After performing 2/3 partial hepatectomy (2/3PHx) in young blood exposed old liver, delayed DNA synthesis of senescent hepatocytes was rescued and the number of BrdU positive hepatocytes was restored from 4.39±2.30% to 17.85±3.21%, similarly to that in the young mice at 36 hours post 2/3PHx. Moreover, Cyclin A2 and Cyclin E1 overexpression of hepatocytes in aged liver facilitating the G1/S phase transition was contributed to enhance liver regeneration. Furthermore, lipid droplet spread widely in the elderly human liver and old mouse liver, but this aged-associated liver steatosis was alleviated as senescence reversal. Collectively, our study provides new thoughts for effectively preventing age-related liver diseases.
Collapse
Affiliation(s)
- Qinggui Liu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tao Yang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jing Su
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Shaohua Song
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zhi-Ren Fu
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yao Li
- 3State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-Ping Hu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Min-Jun Wang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
12
|
Zhang Z, Zhao Y, Zhang Y, Zhao R, He B. Paternal systemic inflammation induces offspring programming of growth and liver regeneration in association with Igf2 upregulation. Mol Cell Endocrinol 2020; 518:111001. [PMID: 32882328 DOI: 10.1016/j.mce.2020.111001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that stress can lead to variations in offspring development. However, whether paternal systemic inflammation induces phenotypic changes in the offspring remains unclear. Here, we established an in vivo mouse model of systemic inflammation and investigated the long-term consequences on the offspring. Male, but not female offspring derived from inflammatory fathers (LPS-F1) grew faster than those derived from the control fathers (CON-F1). Moreover, the LPS-F1 males had higher capacity for liver regeneration after injury, as indicated by decreased hepatic fibrosis, apoptosis, and increased hepatocyte proliferation upon carbon tetrachloride challenge. Insulin-like growth factor 2 (Igf2), a key mitogen that drives growth and liver regeneration, was significantly upregulated in the livers of male, but not female offspring from fathers with inflammation. Taken together, paternal inflammation alters the hepatic Igf2 expression and reprograms growth and liver regeneration in male but not female offspring.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Radhakrishnan VK, Ravichandran K, Eke C, Ortiz-Vicil A, Tan Q, León MD, León DDD. Methylation of a newly identified region of the INS-IGF2 gene determines IGF2 expression in breast cancer tumors and in breast cancer cells. Oncotarget 2020; 11:3904-3920. [PMID: 33216823 PMCID: PMC7646830 DOI: 10.18632/oncotarget.27655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
IGF2 is essential in breast differentiation, lactation, tumor growth, and in breast cancer (BC) development and progression. This growth factor also inhibits apoptosis and promotes metastasis and chemoresistance, contributing to more aggressive tumors. We previously demonstrated that IGF2 protein levels are higher in BC tissues from African American women than in Caucasian women. We also showed that high IGF2 protein levels are expressed in normal breast tissues of African American women while little or no IGF2 was detected in tissues from Caucasian women. Others showed that decreased DNA methylation of the IGF2 gene leads to different BC clinical features. Thus, we designed this study to determine if differentially methylated regions of the IGF2 gene correspond to IGF2 protein expression in paired (Normal/Tumor) breast tissues and in BC cell lines. Methylation analysis was performed using Sodium Bisulphite Analysis and Methylation Sensitive Restriction Enzyme digestion methods. Our results show that a unique site in the INS-IGF2 region is hypermethylated in normal breast and hypomethylated in breast cancer. We designated this region the DVDMR. Furthermore, the methylation levels in the DVDMR significantly correlated with IGF2 protein levels. This novel DMR consists of 257bp localized in the INS-IGF2 gene. We propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer. Since IGF2 promotes metastasis and chemoresistance, we propose that IGF2 levels contribute to BC aggressiveness. Validation of IGF2 as a biomarker will improve diagnosis and treatment of BC patients.
Collapse
Affiliation(s)
- Vinodh Kumar Radhakrishnan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO 80045, USA
| | - Chibuzo Eke
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Amanda Ortiz-Vicil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Qianwei Tan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daisy D De León
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
14
|
Liu J, Hu HB, Liu YM, Li FX, Zhang LP, Liao ZM. LncRNA HOTTIP promotes the proliferation and invasion of ovarian cancer cells by activating the MEK/ERK pathway. Mol Med Rep 2020; 22:3667-3676. [PMID: 33000231 PMCID: PMC7533522 DOI: 10.3892/mmr.2020.11452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) serve important roles in carcinogenesis and that this type of gene may be used as biomarkers in cancer. A high level of lncRNA HOXA distal transcript antisense RNA (HOTTIP) is associated with unfavorable prognosis for patients with ovarian cancer (OC), but the mechanism of HOTTIP involved in OC development remains to be elucidated. The present study aimed to investigate the mechanism of HOTTIP in metastasis-associated OC cell behaviors. HOTTIP levels in ovarian cells were quantified by reverse transcription-quantitative PCR, cell proliferation was analyzed by colony formation assay, and apoptosis was assessed by flow cytometry. Cell migratory and invasive abilities were evaluated by wound healing and Transwell assays, respectively. The expression levels of mitogen-activated protein kinase kinase (MEK)/ERK pathway-associated proteins were detected by western blotting. The results demonstrated that knockdown of HOTTIP in OC cells significantly reduced the phosphorylation levels of MEK and ERK, inhibited the proliferation and invasion of OC cells and promoted their apoptosis. Furthermore, the effects of HOTTIP on cell migration and invasion were partly associated with the epithelial-mesenchymal transition (EMT) process. Proliferation, invasion and EMT of OC cells were enhanced following overexpression of HOTTIP; however, these effects were reversed by the MEK/ERK pathway inhibitor U0126. In conclusion, HOTTIP was demonstrated to promote the proliferation, migration and invasion of OC cells by activating the MEK/ERK pathway. Therefore, HOTTIP may serve as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Hong-Bo Hu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yan-Ming Liu
- Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Fan-Xiang Li
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Liu-Ping Zhang
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zong-Min Liao
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
15
|
IFN-I Independent Antiviral Immune Response to Vesicular Stomatitis Virus Challenge in Mouse Brain. Vaccines (Basel) 2020; 8:vaccines8020326. [PMID: 32575459 PMCID: PMC7350232 DOI: 10.3390/vaccines8020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferon (IFN-I) plays a pivotal role during viral infection response in the central nervous system (CNS). The IFN-I can orchestrate and regulate most of the innate immune gene expression and myeloid cell dynamics following a noncytopathic virus infection. However, the role of IFN-I in the CNS against viral encephalitis is not entirely clear. Here we have implemented the combination of global differential gene expression profiling followed by bioinformatics analysis to decipher the CNS immune response in the presence and absence of the IFN-I signaling. We observed that vesicular stomatitis virus (VSV) infection induced 281 gene changes in wild-type (WT) mice primarily associated with IFN-I signaling. This was accompanied by an increase in antiviral response through leukocyte vascular patrolling and leukocyte influx along with the expression of potent antiviral factors. Surprisingly, in the absence of the IFN-I signaling (IFNAR−/− mice), a significantly higher (1357) number of genes showed differential expression compared to the WT mice. Critical candidates such as IFN-γ, CCL5, CXCL10, and IRF1, which are responsible for the recruitment of the patrolling leukocytes, are also upregulated in the absence of IFN-I signaling. The computational network analysis suggests the presence of the IFN-I independent pathway that compensates for the lack of IFN-I signaling in the brain. The analysis shows that TNF-α is connected maximally to the networked candidates, thus emerging as a key regulator of gene expression and recruitment of myeloid cells to mount antiviral action. This pathway could potentiate IFN-γ release; thereby, synergistically activating IRF1-dependent ISG expression and antiviral response.
Collapse
|
16
|
Abu Rmilah AA, Zhou W, Nyberg SL. Hormonal Contribution to Liver Regeneration. Mayo Clin Proc Innov Qual Outcomes 2020; 4:315-338. [PMID: 32542223 PMCID: PMC7283948 DOI: 10.1016/j.mayocpiqo.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
An understanding of the molecular basis of liver regeneration will open new horizons for the development of novel therapies for chronic liver failure. Such therapies would solve the drawbacks associated with liver transplant, including the shortage of donor organs, long waitlist time, high medical costs, and lifelong use of immunosuppressive agents. Regeneration after partial hepatectomy has been studied in animal models, particularly fumarylacetoacetate hydrolase-deficient (FAH -/-) mice and pigs. The process of regeneration is distinctive, complex, and well coordinated, and it depends on the interplay among several signaling pathways (eg, nuclear factor κβ, Notch, Hippo), cytokines (eg, tumor necrosis factor α, interleukin 6), and growth factors (eg, hepatocyte growth factor, epidermal growth factor, vascular endothelial growth factor), and other components. Furthermore, endocrinal hormones (eg, norepinephrine, growth hormone, insulin, thyroid hormones) also can influence the aforementioned pathways and factors. We believe that these endocrinal hormones are important hepatic mitogens that strongly induce and accelerate hepatocyte proliferation (regeneration) by directly and indirectly triggering the activity of the involved signaling pathways, cytokines, growth factors, and transcription factors. The subsequent induction of cyclins and associated cyclin-dependent kinase complexes allow hepatocytes to enter the cell cycle. In this review article, we comprehensively summarize the current knowledge regarding the roles and mechanisms of these hormones in liver regeneration. Articles used for this review were identified by searching MEDLINE and EMBASE databases from inception through June 1, 2019.
Collapse
Key Words
- CDK, cyclin-dependent kinase
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ERK, extracellular signal-regulated kinase
- FAH, fumarylacetoacetate hydrolase
- GH, growth hormone
- Ghr-/-, growth hormone receptor gene knockout
- HGF, hepatocyte growth factor
- HNF, hepatocyte nuclear factor
- HPC, hepatic progenitor cell
- IGF, insulinlike growth factor
- IL, interleukin
- IR, insulin receptor
- InsP3, inositol 1,4,5-trisphosphate
- JNK, JUN N-terminal kinase
- LDLT, living donor liver transplant
- LRP, low-density lipoprotein-related protein
- MAPK, mitogen-activated protein kinase
- NF-κβ, nuclear factor κβ
- NOS, nitric oxide synthase
- NTBC, 2-nitro-4-trifluoro-methyl-benzoyl-1,3-cyclohexanedione
- PCNA, proliferating cell nuclear antigen
- PCR, polymerase chain reaction
- PH, partial hepatectomy
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- PKB, protein kinase B
- PTU, 6-n-propyl-2-thiouracil
- ROS, reactive oxygen species
- STAT, signal transducer and activator of transcription
- T3, triiodothyronine
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- TR, thyroid receptor
- hESC, human embryonic stem cell
- hiPSC, human induced pluripotent stem cells
- mRNA, messenger RNA
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
| | - Wei Zhou
- Division of Transplantation Surgery, Mayo Clinic, Rochester, MN.,First Affiliated Hospital of China, Medical University, Department of Hepatobiliary Surgery, Shenyang, China
| | - Scott L Nyberg
- Division of Transplantation Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Tan HX, Yang SL, Li MQ, Wang HY. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion. Cell Commun Signal 2020; 18:73. [PMID: 32398034 PMCID: PMC7218578 DOI: 10.1186/s12964-020-00579-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The crosstalk between trophoblast cells and decidual NK cells plays an important role in the establishment and maintenance of normal pregnancy. Recent studies reported that autophagy can induce immune tolerance at the maternal fetal interface, while the mechanism remains unclear. METHODS Autophagy levels in the villi of normal and recurrent spontaneous abortion (RSA) patients were detected by transmission electron microscopy. After co-cultured with trophoblast cells pretreated with 3-MA or rapamycin, NK cells were collected and the expression of killer receptors was detected by flow cytometry (FCM). The invasiveness of trophoblasts was tested by Cell invasion assay. RESULTS Compared with elective pregnancy termination patients, the level of autophagy in the villi of RSA patients was significantly decreased. Inducing the autophagy level in trophoblast cells with rapamycin could significantly inhibit the cytotoxicity of NK cells in the co-culture system, and supplement of IGF-2 could rectify this effect. Meanwhile, autophagy suppression of trophoblasts reduced the level of Paternally Expressed Gene 10 (PEG10), leading to the impairment of trophoblast cell invasion. In addition, NK cells educated by autophagy-inhibited trophoblasts further decreased the proliferation and invasiveness of trophoblasts. In pregnant mice model, injection with 3-MA promoted the cytotoxicity of uterine NK cells, and increased the embryo absorption rate. CONCLUSION Autophagy suppression of trophoblasts increase the cytotoxicity of NK cells and damage the trophoblasts invasion possibly by targeting IGF-2 and PEG10, respectively, which ultimately leads to miscarriage. Video Abstarct.
Collapse
Affiliation(s)
- Hai-Xia Tan
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China
| | - Shao-Liang Yang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Pingliang Road, Shanghai, 200080, People's Republic of China.
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China.
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
18
|
Loss of SRSF2 triggers hepatic progenitor cell activation and tumor development in mice. Commun Biol 2020; 3:210. [PMID: 32372053 PMCID: PMC7200752 DOI: 10.1038/s42003-020-0893-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Splicing factor SRSF2 is frequently mutated or up-regulated in human cancers. Here, we observe that hepatocyte-specific deletion of Srsf2 trigger development of hepatocellular carcinoma (HCC) in mice, which also involves inflammation and fibrosis. Importantly, we find that, when compensatory hepatocyte proliferation is impaired, activation of hepatic progenitor cells (HPCs) play an important role in liver regeneration and tumor formation. Moreover, the cells of HCC- bearing livers display both HPC and hepatocyte markers, with gene expression profiling suggesting HPC origin and embryonic origin. Mechanically, we demonstrate that levels of oncofetal genes insulin-like growth factor 2 (Igf2) and H19 are significantly increased in the tumors, likely due to decreased DNA methylation of the Igf2/H19 locus. Consequently, signaling via the Igf2 pathway is highly activated in the tumors. Thus, our data demonstrate that loss of Srsf2 triggers HPC-mediated regeneration and activation of oncofetal genes, which altogether promote HCC development and progression in mice. Chang Zhang, Lei Shen et al show that conditional deletion of the splicing factor Srsf2 in hepatocytes leads to activation and expansion of hepatic progenitor cells and eventually to hepatocellular carcinoma (HCC) in aged mice. These findings may be relevant to HCC development in humans.
Collapse
|
19
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Liu J, Song W, Li J, Li X, Zhao R, Gong T. LINK-A lncRNA is upregulated in metastatic non-small cell lung cancer and is associated with poor prognosis. Oncol Lett 2019; 18:3049-3057. [PMID: 31404323 PMCID: PMC6676721 DOI: 10.3892/ol.2019.10613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-coding RNA for kinase activation (LINK-A) has been characterized as an oncogenic long non-coding RNA (lncRNA) in triple-negative breast cancer. However, its involvement in non-small cell lung cancer (NSCLC) remains unknown. The aim of the present study was to investigate the involvement of LINK-A in NSCLC. Expression of LINK-A lncRNA in the plasma of patients with NSCLC collected on the day of admission and the day of discharge, and in the plasma of healthy controls, was detected by reverse transcription-quantitative PCR. Diagnostic values of plasma LINK-A for metastatic NSCLC were evaluated by receiver operating characteristic curve analysis. A LINK-A lncRNA expression vector was constructed and transfected into human NSCLC cell lines, and the effects on cell migration and invasion, and Akt activation were detected by Transwell and Matrigel assays, and western blotting, respectively. Plasma levels of LINK-A were found to be significantly higher in patients with different types of metastatic NSCLC than in patients with non-metastatic NSCLC and healthy controls. Plasma levels of LINK-A were lower in patients with metastatic NSCLC on the day of discharge than on the day of admission. Patients with high plasma LINK-A had a higher mortality rate and lower progression-free survival rate within 2 years of discharge. In conclusion, LINK-A is overexpressed in metastatic NSCLC, and may promote the migration and invasion of NSCLC by activating Akt signaling.
Collapse
Affiliation(s)
- Junqiang Liu
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| | - Weian Song
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| | - Jun Li
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| | - Xuechang Li
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| | - Rongrong Zhao
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| | - Taiqian Gong
- Department of Thoracic Surgery, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
21
|
Human Amnion Epithelial Cell Therapy for Chronic Liver Disease. Stem Cells Int 2019; 2019:8106482. [PMID: 31485235 PMCID: PMC6702811 DOI: 10.1155/2019/8106482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a common consequence of chronic liver disease. Over time, liver fibrosis can develop into liver cirrhosis. Current therapies for liver fibrosis are limited, and liver transplant is the only curative therapy for patients who progress to end-stage disease. A potential approach to treat chronic liver disease with increasing interest is cell-based therapy. Among the multiple cell types which have been proposed for therapeutic uses, human amnion epithelial cells and amniotic fluid-derived mesenchymal cells are promising. These cells are highly abundant, and their use poses no ethical concern. Furthermore, they exert potent anti-inflammatory and antifibrotic effects in animal models of liver injury. This review highlights the therapeutic characteristics and discusses how human amnion epithelial cells can be utilised as a therapeutic tool for chronic liver disease.
Collapse
|
22
|
Quan X, Chen D, Li M, Chen X, Huang M. MicroRNA-150-5p and SRC kinase signaling inhibitor 1 involvement in the pathological development of gastric cancer. Exp Ther Med 2019; 18:2667-2674. [PMID: 31572515 DOI: 10.3892/etm.2019.7828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to assess the regulatory mechanism of microRNA-150-5p (miR-150-5p) in the pathogenesis of gastric cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of miR-150-5p in gastric cancer tissues and cell lines, which was revealed to be highly expressed in each. In addition, the expression of miR-150-5p was associated with advanced gastric cancer and lymph node metastasis. The current study then hypothesized that SRC kinase signaling inhibitor 1 (SRCIN1) was the target gene of miR-150-5p, a theory that was confirmed via a dual luciferase reporter gene assay. RT-qPCR and western blotting were then performed to verify the expression of SRCIN1 in gastric cancer tissues and cell lines. The results demonstrated that SRCIN1 was lowly expressed in gastric cancer tissues and cells. To assess the effect of miR-150-5p on gastric cancer cells, experiments were conducted with BGC-823 cells transfected with a miR-150-5p inhibitor or a miR-150-5p inhibitor+SRCIN1-small interfering (si)RNA respectively. A cell counting kit-8 assay and flow cytometry were also used to assess cell viability and apoptosis, respectively. Western blotting and RT-qPCR were further used to measure the expression of specific markers of epithelial mesenchymal transition (EMT), including epithelial cell markers (E-cadherin and zona occluding-1) and interstitial cell markers (vimentin, N-cadherin and β-catenin). The results revealed that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis, decreased the expression of interstitial cell markers and increased epithelial cell marker expression. However, all effects of the miR-150-5p inhibitor were reversed following SRCIN1-siRNA treatment. In summary, the current study indicated that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis and inhibited gastric cancer cell EMT by targeting SRCIN1.
Collapse
Affiliation(s)
- Xiyun Quan
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Dongliang Chen
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Ming Li
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Xun Chen
- Department of Hepatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
23
|
Chen J, Yang T, Song S, Liu Q, Sun Y, Zhao L, Fu Z, Wang MJ, Hu YP, Chen F. Senescence suppressed proliferation of host hepatocytes is precondition for liver repopulation. Biochem Biophys Res Commun 2019; 516:591-598. [PMID: 31239154 DOI: 10.1016/j.bbrc.2019.06.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023]
Abstract
In the fumarylacetoacetate hydrolase deficient (Fah-/-) mouse, massive liver repopulation can be easily obtained after transplanted hepatocytes. Understanding the mechanisms of complete liver repopulation in Fah-/- mice will be useful for future clinical application. Here, we found that the endogenous hepatocytes in liver of Fah-/- mice undertook senescence during the time of tyrosinemia symptoms. Increase of senescent hepatocytes in Fah-/- mice provided proliferative advantage to the transplanted hepatocytes. Importantly, senescent hepatocytes upregulated the expression of extracellular matrix enzyme, contributing to degradation of extracellular matrix components and weakness of cell adhesion and connection. The liver exhibiting a loose architecture provided the space for the engraftment and expansion of transplanted hepatocytes. These findings underscore the underlying mechanisms of completed liver repopulation in Fah-/- mice. Senescence followed by loose hepatic parenchyma is a preconditioning for liver repopulation, which would be a promising strategy to achieve therapeutic liver repopulation in clinical settings.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China
| | - Tao Yang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China
| | - Shaohua Song
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China
| | - Yu Sun
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China
| | - Linghao Zhao
- Estern Hepatobilliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Zhiren Fu
- Organ Transplantation Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China.
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, PR China.
| |
Collapse
|