1
|
Shao T, Gao Q, Tang W, Ma Y, Gu J, Yu Z. The Role of Immunocyte Infiltration Regulatory Network Based on hdWGCNA and Single-Cell Bioinformatics Analysis in Intervertebral Disc Degeneration. Inflammation 2024; 47:1987-1999. [PMID: 38630169 DOI: 10.1007/s10753-024-02020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 11/30/2024]
Abstract
Immune infiltration plays a crucial role in intervertebral disc degeneration (IDD). In this study, we explored the immune microenvironment of IDD through single-cell bioinformatics analysis. Three single-cell datasets were integrated into this study. Nucleus pulposus cells (NPCs) were divided into subgroups based on characteristic genes, and the role of each subgroup in the IDD process was analyzed through pseudo-time trajectory analysis. The hub genes were obtained using hdWGCNA, further identified by bulk datasets and pseudo-time sequence. The expression of the hub genes defined the NPCs related to immune infiltration, and the interaction between these NPCs and immunocytes was explored. The NPCs were divided into four subgroups: reserve NPCs, HCL-NPCs, response NPCs, and support NPCs, which, respectively, dominate the four processes of IDD: non, mild, moderate, and severe degeneration. SPP1 and ICAM1 were identified as the nucleus pulposus immune infiltration hub genes. Macrophages and myelocytes played pro-inflammatory roles in the SPP1-ICAM both-up NPC group through the SPP1-CD44 pathway and ICAM1-ITGB2 ligand-receptor pathway, respectively. At the same time, both-up NPCs sought self-help inflammation remission from neutrophils through the ANXA1-FPR1 pathway. The systematic analysis of the differentiation and immune infiltration landscapes helps to understand IDD's overall development process. Our data suggest that SPP1 and ICAM1 may be new targets for the treatment of inflammatory infiltration in IDD.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Qichang Gao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Weilong Tang
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yiming Ma
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Jiaao Gu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Zhange Yu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
2
|
Snuggs JW, Senter RK, Whitt JP, Jackson JD, Le Maitre CL. PCRX-201, a novel IL-1Ra gene therapy treatment approach for low back pain resulting from intervertebral disc degeneration. Gene Ther 2024:10.1038/s41434-024-00504-7. [PMID: 39572769 DOI: 10.1038/s41434-024-00504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Low back pain is the leading cause of global disability with intervertebral disc (IVD) degeneration a major cause. However, no current treatments target the underlying pathophysiological causes. PCRX-201 presents a novel gene therapy approach that addresses this issue. PCRX-201 codes for interleukin-1 receptor antagonist, the signalling inhibitor of the pro-inflammatory cytokine interleukin-1, which orchestrates the catabolic degeneration of the IVD. Here, the ability of PCRX-201 to transduce human nucleus pulposus cells to increase IL-1Ra production was assessed together with effects on catabolic pathways. When transduced with PCRX-201, the production and release of IL-1Ra was increased in degenerate human nucleus pulposus cells and tissue. Whereas, the production of downstream proteins, including IL-1β, IL-6, MMP3, ADAMTS4 and VEGF were decreased in both cells and tissue, indicating a reduction in IL-1-induced catabolic signalling. Here, a novel gene therapy vector, PCRX-201, was shown to transduce degenerate NP cells and tissue, increasing the production of IL-1Ra. The increased IL-1Ra resulted in decreased production of catabolic cytokines, enzymes and angiogenic factors, whilst also increasing aggrecan expression. This demonstrates PCRX-201 enables the inhibition of IL-1-driven IVD degeneration. The ability of PCRX-201 to elicit anti-catabolic responses is promising and warrants further development to determine the efficacy of this exciting, novel gene therapy.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Rebecca K Senter
- Former employee of Flexion Therapeutics, a wholly owned subsidiary of Pacira Biosciences, Tampa, Florida, USA
| | - Joshua P Whitt
- Former employee of Flexion Therapeutics, a wholly owned subsidiary of Pacira Biosciences, Tampa, Florida, USA
| | | | - Christine L Le Maitre
- Division of Clinical Medicine, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
3
|
Sun Y, Li Z, Duan J, Liu E, Yang L, Sun F, Chen L, Yang S. From structure to therapy: the critical influence of cartilaginous endplates and microvascular network on intervertebral disc degeneration. Front Bioeng Biotechnol 2024; 12:1489420. [PMID: 39530056 PMCID: PMC11550963 DOI: 10.3389/fbioe.2024.1489420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular structure in the human body. The cartilaginous endplate (CEP) is a layer of translucent cartilage located at the upper and lower edges of the vertebral bodies. On one hand, CEPs endure pressure from within the IVD and the tensile and shear forces of the annulus fibrosus, promoting uniform distribution of compressive loads on the vertebral bodies. On the other hand, microvascular diffusion channels within the CEP serve as the primary routes for nutrient supply to the IVD and the transport of metabolic waste. Degenerated CEP, characterized by increased stiffness, decreased permeability, and reduced water content, impairs substance transport and mechanical response within the IVD, ultimately leading to intervertebral disc degeneration (IDD). Insufficient nutrition of the IVD has long been considered the initiating factor of IDD, with CEP degeneration regarded as an early contributing factor. Additionally, CEP degeneration is frequently accompanied by Modic changes, which are common manifestations in the progression of IDD. Therefore, this paper comprehensively reviews the structure and physiological functions of CEP and its role in the cascade of IDD, exploring the intrinsic relationship between CEP degeneration and Modic changes from various perspectives. Furthermore, we summarize recent potential therapeutic approaches targeting CEP to delay IDD, offering new insights into the pathological mechanisms and regenerative repair strategies for IDD.
Collapse
Affiliation(s)
- Yu Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaoyong Li
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Jiahao Duan
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Enxu Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fei Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Long Chen
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shaofeng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Clayton SW, Walk RE, Mpofu L, Easson GWD, Tang SY. Sex-specific divergences in the types and timing of infiltrating immune cells during the intervertebral disc acute injury response and their associations with degeneration. Osteoarthritis Cartilage 2024:S1063-4584(24)01426-2. [PMID: 39426787 DOI: 10.1016/j.joca.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHODS Caudal IVDs from 12-week-old C57BL6/J mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured from the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including B, T, natural killer T (NKT) cells, monocytes, neutrophils, macrophages, eosinophils, and dendritic cells. RESULTS The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.
Collapse
Affiliation(s)
| | - Remy E Walk
- Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Simon Y Tang
- Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Chen ZX, Xu B, Huang ZL, Liu YJ, Li YW, Lu BJ, Lin J, Zhang XD, Shen XF. Causal relationship between systemic circulatory inflammatory regulators and intervertebral disc degeneration: A bidirectional 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39521. [PMID: 39252217 PMCID: PMC11384059 DOI: 10.1097/md.0000000000039521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of the development of intervertebral disc degeneration (IDD), inflammatory mediators play a pivotal role. Nevertheless, due to the influence of the inflammatory microenvironment, the causal relationship between specific inflammatory mediators and the development of IDD remains uncertain. The understanding of the causal relationship between inflammatory mediators and IDD is of great importance in preventing and delaying disc degeneration in the future. We utilized genetic data concerning systemic circulating inflammatory regulators obtained from a Genome-Wide Association Study (GWAS) analyzing 41 serum cytokines in a cohort of 8293 individuals from Finland. The genetic data for IDD were derived from the most recent GWAS summary statistics conducted within the FinnGen consortium, encompassing 37,636 IDD cases and 270,964 controls. Our analysis employed bidirectional 2-sample Mendelian randomization (MR) techniques, which included several MR methods such as MR Egger, weighted median, inverse variance weighted, weighted mode, and simple mode. Additionally, the MR-PRESSO method was employed to identify horizontal pleiotropy, heterogeneity was quantified using the Cochran Q statistic, and MR-Egger intercept analysis was performed to assess pleiotropy. We established causal relationships between 3 specific inflammatory factors and IDD. Elevated levels of MIP-1β (OR = 0.956, 95% CI: -0.08 to -0.006; P = .02) and IFN-G (OR = 0.915, 95% CI: -0.16 to -0.02; P = .01) expression were associated with a reduced risk of IDD. Conversely, genetic susceptibility to IDD was linked to a decrease in IL-13 levels (OR = 0.967, 95% CI: -0.063 to -0.004; P = .03). In this study, we have identified inflammatory factors that exhibit a causal relationship with the onset and progression of IDD, as supported by genetic predictions.
Collapse
Affiliation(s)
- Zi-Xuan Chen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bo Xu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Ze-Ling Huang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Jiang Liu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yu-Wei Li
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Bin-Jie Lu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Jun Lin
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xian-Da Zhang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao-Feng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Huang Z, Shen X, Chen H, Zhu Z, Lu B, Zhang L, Liu Y, Li Y, Xu B. Zhiqiao Gancao decoction regulated JAK2/STAT3/ macrophage M1 polarization to ameliorate intervertebral disc degeneration. Heliyon 2024; 10:e34715. [PMID: 39170327 PMCID: PMC11336307 DOI: 10.1016/j.heliyon.2024.e34715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Background Zhiqiao Gancao decoction (ZQGCD) was created by Professor Gong Zhengfeng, a renowned Chinese medicine expert. Clinical studies have shown its efficacy in alleviating pain and enhancing lumbar function in intervertebral disc degeneration (IDD) patients. However, the precise mechanism of ZQGCD in treating IDD remains unclear. Methods The active components of ZQGCD were identified using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). A rat model of intervertebral disc degeneration was established, and rats in each group received ZQGCD for three weeks. Assessment parameters included hyperalgesia status, observation of intervertebral disc tissue degeneration and macrophage infiltration, and analysis of JAK2/STAT3 pathway protein expression in the intervertebral disc. Primary macrophage M1 polarization was induced using LPS, with cells treated using the JAK2 inhibitor (AZD1480) and ZQGCD to evaluate macrophage polarization, cellular supernatant inflammatory factors, and JAK2/STAT3 pathway expression. Macrophage supernatant served as a conditioned medium to observe its effects on the proliferation of nucleus pulposus cells (NPCs) and the expression of collagen II and MMP3 proteins. Results A total of 81 active components were identified in ZQGCD. Following ZQGCD treatment, infiltrating macrophages in intervertebral disc tissues of model rats decreased, the content of M1 macrophages decreased, while the content of M2 macrophages increased, the expression of proinflammatory factors and pain-inducing factors in serum decreased, and the expression of substance P in intervertebral disc tissue decreased. Consequently, the intervertebral disc degeneration and hyperalgesia of rats were improved. In vitro studies revealed that LPS induced M1 macrophage polarization. By inhibiting the JAK2/STAT3 pathway, both JAK2 inhibitors and ZQGCD effectively suppressed M1 polarization, resulting in decreased levels of IL-1β, IL-6, TNF-α, and various other inflammatory factors. Consequently, this inhibition led to a delay in the degeneration of NPCs. Conclusion There is macrophage infiltration in the intervertebral disc tissue of IDD rats, and JAK2/STAT3 pathway is activated, macrophages are polarized to M1 type, resulting in inflammatory microenvironment, leading to intervertebral disc degeneration and hyperalgesia. ZQGCD exhibited a delaying effect on IDD and improved hyperalgesia by inhibiting the JAK2/STAT3/macrophage M1 polarization pathway.
Collapse
Affiliation(s)
- Zeling Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Hua Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Zaishi Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Binjie Lu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Long Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Yujiang Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215009, China
| | - Bo Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China
| |
Collapse
|
8
|
Li K, Yang W, Chen X, Yu Y, Liu Y, Ni F, Xiao Y, Qing X, Liu S, He Y, Wang B, Xu L, Shao Z, Zhao L, Peng Y, Lin H. A structured biomimetic nanoparticle as inflammatory factor sponge and autophagy-regulatory agent against intervertebral disc degeneration and discogenic pain. J Nanobiotechnology 2024; 22:486. [PMID: 39143545 PMCID: PMC11323362 DOI: 10.1186/s12951-024-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.
Collapse
Affiliation(s)
- Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiran Liu
- Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430030, China
| | - Feifei Ni
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - YuXin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Emergency, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
10
|
Burt KG, Kim MKM, Viola DC, Abraham AC, Chahine NO. Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration. SCIENCE ADVANCES 2024; 10:eadj3194. [PMID: 38848366 PMCID: PMC11160472 DOI: 10.1126/sciadv.adj3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
Persistent inflammation has been associated with severe disc degeneration (DD). This study investigated the effect of prolonged nuclear factor κB (NF-κB) activation in DD. Using an inducible mouse model, we genetically targeted cells expressing aggrecan, a primary component of the disc extra cellular matrix, for activation of the canonical NF-κB pathway. Prolonged NF-κB activation led to severe structural degeneration accompanied by increases in gene expression of inflammatory molecules (Il1b, Cox2, Il6, and Nos2), chemokines (Mcp1 and Mif), and catabolic enzymes (Mmp3, Mmp9, and Adamts4). Increased recruitment of proinflammatory (F4/80+,CD38+) and inflammatory resolving (F4/80+,CD206+) macrophages was observed within caudal discs. We found that the secretome of inflamed caudal disc cells increased macrophage migration and inflammatory activation. Lumbar discs did not exhibit phenotypic changes, suggestive of regional spinal differences in response to inflammatory genetic overactivation. Results suggest prolonged NF-κB activation can induce severe DD through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and activation of macrophage cell populations.
Collapse
Affiliation(s)
- Kevin G. Burt
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Min Kyu M. Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Dan C. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Nikkhoo M, Wang JL, Cheng CH, Parnianpour M, Khalaf K. Enzymatic denaturation versus excessive fatigue loading degeneration: Effects on the time-dependent response of the intervertebral disc. J Biomech 2024; 171:112159. [PMID: 38852480 DOI: 10.1016/j.jbiomech.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Degenerative disc disease (DDD), regardless of its phenotype and clinical grade, is widely associated with low back pain (LBP), which remains the single leading cause of disability worldwide. This work provides a quantitative methodology for comparatively investigating artificial IVD degeneration via two popular approaches: enzymatic denaturation and fatigue loading. An in-vitro animal study was used to study the time-dependent responses of forty fresh juvenile porcine thoracic IVDs in conjunction with inverse and forward finite element (FE) simulations. The IVDs were dissected from 6-month-old-juvenile pigs and equally assigned to 5 groups (intact, denatured, low-level, medium-level, high-level fatigue loading). Upon preloading, a sinusoid cyclic load (Peak-to-peak/0.1-to-0.8 MPa) was applied (0.01-10 Hz), and dynamic-mechanical-analyses (DMA) was performed. The DMA outcomes were integrated with a robust meta-model analysis to quantify the poroelastic IVD characteristics, while specimen-specific FE models were developed to study the detailed responses. The results demonstrated that enzymatic denaturation had a more significantly pronounced effect on the resistive strength and shock attenuation capabilities of the intervertebral discs. This can be attributed to the simultaneous disruption of the collagen fibers and water-proteoglycan bonds induced by trypsin digestion. Fatigue loading, on the other hand, primarily influenced the disc's resistance to deformation in a frequency-dependent pattern, where alterations were most noticeable at low loading frequencies. This study confirms the intricate interplay between the biochemical changes induced by enzymatic processes and the mechanical behavior stemming from fatigue loading, suggesting the need for a comprehensive approach to closely mimic the interrelated multifaceted processes of human disc degeneration.
Collapse
Affiliation(s)
- Mohammad Nikkhoo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Center of Medical Devices, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hsiu Cheng
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kinda Khalaf
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, and Health Engineering Innovation Center, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Zhu D, Liang H, Du Z, Liu Q, Li G, Zhang W, Wu D, Zhou X, Song Y, Yang C. Altered Metabolism and Inflammation Driven by Post-translational Modifications in Intervertebral Disc Degeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0350. [PMID: 38585329 PMCID: PMC10997488 DOI: 10.34133/research.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.
Collapse
Affiliation(s)
- Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qian Liu
- College of Life Sciences,
Wuhan University, Wuhan 430072, Hubei Province, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
13
|
Clayton SW, Walk RE, Mpofu L, Easson GW, Tang SY. Analysis of Infiltrating Immune Cells Following Intervertebral Disc Injury Reveals Recruitment of Gamma-Delta ( γδ) T cells in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582950. [PMID: 38464124 PMCID: PMC10925253 DOI: 10.1101/2024.03.01.582950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells. Cd3+Cd4-Cd8- T cells are the largest infiltrating lymphocyte population with injury, and we identified the presence of γδ T cells in this population in female mice specifically, and NKT cells in males. Injury-mediated IVD degeneration was prevalent in both sexes, but more severe in males. Sex-specific degeneration may be associated with the differential immune response since γδ T cells have potent anti-inflammatory roles and may mediate IVD repair.
Collapse
Affiliation(s)
| | - Remy E. Walk
- Washington University in St. Louis, St. Louis, MO
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO
| | | | | |
Collapse
|
14
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
15
|
Li XC, Wang W, Jiang C, Chen YL, Chen JH, Zhang ZW, Luo SJ, Chen RC, Mo PF, Zhong ML, Shi JY, Huang CM, Chen Q, Wu YH. CD206 + M2-like macrophages protect against intervertebral disc degeneration partially by targeting R-spondin-2. Osteoarthritis Cartilage 2024; 32:66-81. [PMID: 37802465 DOI: 10.1016/j.joca.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China; Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China
| | - Wei Wang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Cheng Jiang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Yong-Long Chen
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Jiong-Hui Chen
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Zhen-Wu Zhang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Shao-Jian Luo
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China
| | - Rong-Chun Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Ping-Fan Mo
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Ming-Liang Zhong
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Jiang-You Shi
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Chun-Ming Huang
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China; Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China.
| | - Qin Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China.
| | - Yao-Hong Wu
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
16
|
Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, Xie L. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study. Hum Vaccin Immunother 2023; 19:2274220. [PMID: 37941392 PMCID: PMC10760394 DOI: 10.1080/21645515.2023.2274220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots. We searched the WOSCC, Scopus and PubMed databases from 01/01/2001 to 08/03/2023. We analyzed and visualized the content using software such as Citespace, Vosviewer and the bibliometrix. This study found that the number of annual publications is increasing year on year. The journal study found that Spine had the highest number of articles and citations. The country/regions analysis showed that China had the highest number of publications, the USA had the highest number of citations and total link strength. The institutional analysis found that Shanghai Jiao Tong University and Huazhong University of Science Technology had the highest number of publications, Tokai University had the highest citations, and the University of Bern had the highest total link strength. Sakai D and Risbud MV had the highest number of publications. Sakai D had the highest total link strength, and Risbud MV had the highest number of citations. The results of the keyword analysis suggested that the current research hotspots and future directions continue to be the study of the mechanisms of immune cells in IDD, the therapeutic role of immune cells in IDD and the role of immune cells in tissue engineering for IDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Wenqiang Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
17
|
Zhang Y, Zheng L, Fang J, Ni K, Hu X, Ye L, Lai H, Yang T, Chen Z, He D. Macrophage migration inhibitory factor (MIF) promotes intervertebral disc degeneration through the NF-κB pathway, and the MIF inhibitor CPSI-1306 alleviates intervertebral disc degeneration in a mouse model. FASEB J 2023; 37:e23303. [PMID: 37983963 DOI: 10.1096/fj.202301441r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Lumbar intervertebral disc degeneration(IDD) is a prevalent inflammatory disease caused by many proinflammatory factors, such as TNF and IL-1β. Migration inhibitory factor (MIF) is an upstream inflammatory factor widely expressed in vivo that is associated with a variety of inflammatory diseases or malignant tumors and has potential therapeutic value in many diseases. We explored the role of MIF in intervertebral disc degeneration by regulating the content of exogenous MIF or the expression of MIF in cells. Upon inducing degeneration of nucleus pulposus (NP) cells with IL-1β, we found that the increase in intracellular and exogenous MIF promoted the catabolism induced by proinflammatory factors in NP cells, while silencing of the MIF gene alleviated the degeneration to some extent. In a mouse model, the intervertebral disc degeneration of MIF-KO mice was significantly less than that of wild-type mice. To explore the treatment of intervertebral disc degeneration, we selected the small-molecular MIF inhibitor CPSI-1306. CPSI-1306 had a therapeutic effect on intervertebral disc degeneration in the mouse model. In summary, we believe that MIF plays an important role in intervertebral disc degeneration and is a potential therapeutic target for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yejin Zhang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jiawei Fang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Kainan Ni
- Department of Orthopaedics, The First People's Hospital of Fuyang, Hangzhou, China
| | - Xingyu Hu
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Hehuan Lai
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Tao Yang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Dengwei He
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| |
Collapse
|
18
|
Zhang Z, Huo J, Ji X, Wei L, Zhang J. GREM1, LRPPRC and SLC39A4 as potential biomarkers of intervertebral disc degeneration: a bioinformatics analysis based on multiple microarray and single-cell sequencing data. BMC Musculoskelet Disord 2023; 24:729. [PMID: 37700277 PMCID: PMC10498557 DOI: 10.1186/s12891-023-06854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Low back pain (LBP) has drawn much widespread attention and is a major global health concern. In this field, intervertebral disc degeneration (IVDD) is frequently the focus of classic studies. However, the mechanistic foundation of IVDD is unclear and has led to conflicting outcomes. METHODS Gene expression profiles (GSE34095, GSE147383) of IVDD patients alongside control groups were analyzed to identify differentially expressed genes (DEGs) in the GEO database. GSE23130 and GSE70362 were applied to validate the yielded key genes from DEGs by means of a best subset selection regression. Four machine-learning models were established to assess their predictive ability. Single-sample gene set enrichment analysis (ssGSEA) was used to profile the correlation between overall immune infiltration levels with Thompson grades and key genes. The upstream targeting miRNAs of key genes (GSE63492) were also analyzed. A single-cell transcriptome sequencing data (GSE160756) was used to define several cell clusters of nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP) of human intervertebral discs and the distribution of key genes in different cell clusters was yielded. RESULTS By developing appropriate p-values and logFC values, a total of 6 DEGs was obtained. 3 key genes (LRPPRC, GREM1, and SLC39A4) were validated by an externally validated predictive modeling method. The ssGSEA results indicated that key genes were correlated with the infiltration abundance of multiple immune cells, such as dendritic cells and macrophages. Accordingly, these 4 key miRNAs (miR-103a-3p, miR-484, miR-665, miR-107) were identified as upstream regulators targeting key genes using the miRNet database and external GEO datasets. Finally, the spatial distribution of key genes in AF, CEP, and NP was plotted. Pseudo-time series and GSEA analysis indicated that the expression level of GREM1 and the differentiation trajectory of NP chondrocytes are generally consistent. GREM1 may mainly exacerbate the degeneration of NP cells in IVDD. CONCLUSIONS Our study gives a novel perspective for identifying reliable and effective gene therapy targets in IVDD.
Collapse
Affiliation(s)
- ZhaoLiang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - JianZhong Huo
- Taiyuan Central Hospital, Ninth Hospital of Shanxi Medical University, Southern Fendong Road 256, Taiyuan, ShanXi, 030009, China.
| | - XingHua Ji
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - LinDong Wei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfeng Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
19
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Zhang Y, Zhang J, Sun Z, Wang H, Ning R, Xu L, Zhao Y, Yang K, Xi X, Tian J. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA. Front Immunol 2023; 14:1188774. [PMID: 37325630 PMCID: PMC10266224 DOI: 10.3389/fimmu.2023.1188774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of this study was to identify autophagy-related biomarkers and gene regulatory networks in IDD and potential therapeutic targets. Methods We obtained the gene expression profiles of IDD by downloading the datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO) public database. Subsequently, differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), and gene set enrichment analysis (GSEA) were performed to explore the biological functions of DEGs. Differentially expressed autophagy-related genes (DE-ARGs) were then crossed with the autophagy gene database. The hub genes were screened using the DE-ARGs protein-protein interaction (PPI) network. The correlation between the hub genes and immune infiltration and the construction of the gene regulatory network of the hub genes were confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation of hub genes in a rat IDD model. Results We obtained 636 DEGs enriched in the autophagy pathway. Our analysis revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA, CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell infiltration analysis revealed that there was an increased proportion of CD8+ T cells and M0 macrophages in IDD, whereas CD4+ memory T cells, neutrophils, resting dendritic cells, follicular helper T cells, and monocytes were much less abundant. Subsequently, the competitive endogenous RNA (ceRNA) network was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs (miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and CAPN1, were shown to be consistent with the bioinformatic analysis results. Conclusion Our study identified MAPK8 and CAPN1 as key biomarkers of IDD. These key hub genes may be potential therapeutic targets for IDD.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Sun
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longyu Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Xi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Tian
- School of Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Quan H, Zuo X, Huan Y, Wang X, Yao Z, Wang C, Ren F, Wang H, Qin H, Hu X. A systematic morphology study on the effect of high glucose on intervertebral disc endplate degeneration in mice. Heliyon 2023; 9:e13295. [PMID: 36816302 PMCID: PMC9932476 DOI: 10.1016/j.heliyon.2023.e13295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
To explore the relationship between diabetes and intervertebral disc degeneration in mice and the associated underlying mechanism. Four-week-old male Kunming mice were used to model diabetes using a high-fat diet combined with streptozotocin injection. After 6 months, morphological and pathological changes in L4-L6 intervertebral discs were detected by magnetic resonance imaging, micro-CT and histological staining. Immunostaining of CD31, F4/80 and CD16/32 receptors was used to detect vascular invasion and inflammatory infiltration in endplates; the exact changes were then explored by the transmission electron microscopy. The nucleus pulposus of the control and the diabetic group had a clear boundary and regular shape without collapse, while endplate calcification and chondrocyte abnormality in the diabetic group were more obvious. Immunofluorescence confirmed that compared to control, expression levels of CD31 (vascular endothelial marker) and F4/80 (monocyte/macrophage marker) in the diabetic group were significantly increased (P < 0.05), with an elevated number of F4/80 (+)/CD16/32 (+) cells (P < 0.05). The morphology of endplates was observed by transmission electron microscopy, which showed monocytes/macrophage accumulation in the endplate of the diabetic group, accompanied by increased vascular density, collagen fiber distortion and chondrocyte abnormality. In a conclusion, diabetes promotes endplate degeneration with vascular invasion, monocyte/macrophage infiltration and inflammation in mice.
Collapse
Affiliation(s)
- Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Chunmei Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Fang Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032 Shaanxi China,Corresponding author.
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China,Corresponding author.
| |
Collapse
|
23
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
24
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
25
|
Yang F, Liu W, Huang Y, Yang S, Shao Z, Cai X, Xiong L. Regulated cell death: Implications for intervertebral disc degeneration and therapy. J Orthop Translat 2022; 37:163-172. [DOI: 10.1016/j.jot.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
|
26
|
He S, Zhou X, Yang G, Zhou Z, Zhang Y, Shao X, Liang T, Lv N, Chen J, Qian Z. Proteomic comparison between physiological degeneration and needle puncture model of disc generation disease. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2920-2934. [PMID: 35842490 DOI: 10.1007/s00586-022-07284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The completeness of the intervertebral disc proteome is fundamental to the integrity and functionality of the intervertebral disc. METHODS The 20 experimental rats were placed into two groups randomly, normal group (NG) and acupuncture pathological degeneration group-2 weeks (APDG-2w). The ten 24-month-old rats were grouped into physiological degeneration group (PDG). Magnetic resonance imaging, X-ray examination, histological staining (hematoxylin & eosin, safranin-O cartilage, and alcian blue staining), and immunohistochemical examination were carried out for assessing the degree of disc degradation. Intervertebral disc was collected, and protein composition was determined by LC- MS, followed by bioinformatic analysis including significance analysis, subcellular localization prediction, protein domain prediction, GO function and KEGG pathway analysis, and protein interaction network construction. LC-PRM was done for protein quantification. RESULTS Physiological degeneration and especially needle puncture decreased T2 signal intensity and intervertebral disc height. Results from hematoxylin & eosin, safranin-O, and alcian blue staining revealed that the annulus fibrosus apparently showed the wavy and collapsed fibrocartilage lamellas in APDG-2w and PDG groups. The contents of the nucleus pulposus were decreased in physiological degeneration group and APDG-2w group compared with NG. Results from immunohistochemical analysis suggested the degeneration of intervertebral disc and inflammation in APDG-2w and PDG groups. The protein composition and expression between needle puncture rat models and the physiological degeneration group showed significant difference. CONCLUSIONS Our studies produced point-reference datasets of normal rats, physiological degeneration rats, and needle puncture rat models, which is beneficial to subsequent pathological studies. There is differential expression of protein expression in degenerative discs with aging and acupuncture, which may be used as a potential discriminating index for different intervertebral degenerations.
Collapse
Affiliation(s)
- Shuangjun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinfeng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Guotao Yang
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yijian Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ting Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, 41 Hailian Street, Lianyungang, Jiangsu, China.
| | - Jianhong Chen
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China.
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
27
|
TNF overexpression and dexamethasone treatment impair chondrogenesis and bone growth in an additive manner. Sci Rep 2022; 12:18189. [PMID: 36307458 PMCID: PMC9616891 DOI: 10.1038/s41598-022-22734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.
Collapse
|
28
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
30
|
Sun M, Chu F, Zhang L, Zhao R, Liu X, Yu H, Pan B, Wu J, Yuan F. Effect of medium with moderate temperature on patient's body temperature during percutaneous endoscopic lumbar discectomy. J Orthop Surg Res 2022; 17:336. [PMID: 35765022 PMCID: PMC9237985 DOI: 10.1186/s13018-022-03226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To explore the influence of irrigating fluid at different temperatures on patients' body temperature and local inflammatory mediators during spinal endoscopy. METHODS 110 cases of intervertebral foramen surgery in our hospital from January 2019 to October 2021 were randomly divided into control group and observation group. Operations of both groups were performed by the same experienced chief physician. The observation group was irrigated with 37 °C constant temperature saline, while the control group was irrigated at room temperature. The effect was evaluated by monitoring the intraoperative temperature, postoperative VAS score and the levels of inflammatory factors, such as TNF-α, IL-1, IL-6 and IL-10 in drainage fluid. RESULTS After 30 min of operation, overall temperature of the control group dropped significantly, and 50 cases (90.9%) had hypothermia, P < 0.05. There was no significant difference in preoperative VAS score between the two groups P > 0.05. The VAS score of observation group was significantly lower than that of control group at 6 h and 1 month after operation, P < 0.05. At 0, 3 and 6 h after operation, the values of TNF-α, IL-1, IL-6 and IL-10 in the observation group were significantly lower than those in the control group (P < 0.05). CONCLUSIONS Isothermal flushing solution can reduce the incidence of hypothermia and effectively alleviate local inflammatory reaction.
Collapse
Affiliation(s)
- Maji Sun
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Fuchao Chu
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Lidong Zhang
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Rui Zhao
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Xiaona Liu
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Huilin Yu
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Bin Pan
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Jibin Wu
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Feng Yuan
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Li W, Zhang S, Zhao Y, Wang D, Shi Q, Ding Z, Wang Y, Gao B, Yan M. Revealing the Key MSCs Niches and Pathogenic Genes in Influencing CEP Homeostasis: A Conjoint Analysis of Single-Cell and WGCNA. Front Immunol 2022; 13:933721. [PMID: 35833124 PMCID: PMC9271696 DOI: 10.3389/fimmu.2022.933721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Degenerative disc disease (DDD), a major contributor to discogenic pain, which is mainly resulted from the dysfunction of nucleus pulposus (NP), annulus fibrosis (AF) and cartilage endplate (CEP) cells. Genetic and cellular components alterations in CEP may influence disc homeostasis, while few single-cell RNA sequencing (scRNA-seq) report in CEP makes it a challenge to evaluate cellular heterogeneity in CEP. Here, this study conducted a first conjoint analysis of weighted gene co-expression network analysis (WGCNA) and scRNA-seq in CEP, systematically analyzed the interested module, immune infiltration situation, and cell niches in CEP. WGCNA and protein-protein interaction (PPI) network determined a group of gene signatures responsible for degenerative CEP, including BRD4, RAF1, ANGPT1, CHD7 and NOP56; differentially immune analysis elucidated that CD4+ T cells, NK cells and dendritic cells were highly activated in degenerative CEP; then single-cell resolution transcriptomic landscape further identified several mesenchymal stem cells and other cellular components focused on human CEP, which illuminated niche atlas of different cell subpopulations: 8 populations were identified by distinct molecular signatures. Among which, NP progenitor/mesenchymal stem cells (NPMSC), also served as multipotent stem cells in CEP, exhibited regenerative and therapeutic potentials in promoting bone repair and maintaining bone homeostasis through SPP1, NRP1-related cascade reactions; regulatory and effector mesenchymal chondrocytes could be further classified into 2 different subtypes, and each subtype behaved potential opposite effects in maintaining cartilage homeostasis; next, the potential functional differences of each mesenchymal stem cell populations and the possible interactions with different cell types analysis revealed that JAG1, SPP1, MIF and PDGF etc. generated by different cells could regulate the CEP homeostasis by bone formation or angiogenesis, which could be served as novel therapeutic targets for degenerative CEP. In brief, this study mainly revealed the mesenchymal stem cells populations complexity and phenotypic characteristics in CEP. In brief, this study filled the gap in the knowledge of CEP components, further enhanced researchers’ understanding of CEP and their cell niches constitution.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yingjing Zhao
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
- Key Lab of Aerospace Medicine, Chinese Ministry of Education, Xi’an, China
- *Correspondence: Ming Yan, ; Bo Gao, ; Yongchun Wang,
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Bo Gao, ; Yongchun Wang,
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Bo Gao, ; Yongchun Wang,
| |
Collapse
|
32
|
Tang SN, Walter BA, Heimann MK, Gantt CC, Khan SN, Kokiko-Cochran ON, Askwith CC, Purmessur D. In vivo Mouse Intervertebral Disc Degeneration Models and Their Utility as Translational Models of Clinical Discogenic Back Pain: A Comparative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:894651. [PMID: 35812017 PMCID: PMC9261914 DOI: 10.3389/fpain.2022.894651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Benjamin A. Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mary K. Heimann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Connor C. Gantt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Safdar N. Khan
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Candice C. Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Devina Purmessur ;
| |
Collapse
|
33
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
34
|
Gao B, Jiang B, Xing W, Xie Z, Luo Z, Zou W. Discovery and Application of Postnatal Nucleus Pulposus Progenitors Essential for Intervertebral Disc Homeostasis and Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104888. [PMID: 35195356 PMCID: PMC9069184 DOI: 10.1002/advs.202104888] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Indexed: 05/15/2023]
Abstract
Intervertebral disc degeneration (IDD) results from the dysfunction of nucleus pulposus (NP) cells and the exhaustion of NP progenitors (ProNPs). The cellular applications of NP cells during IDD are currently limited due to the lack of in vivo studies showing whether NP cells are heterogeneous and contain ProNPs throughout postnatal stages. In this study, single-cell RNA sequencing of purified NP cells is used to map four molecularly defined populations and urotensin II receptor (UTS2R)-expressing postnatal ProNPs is identified, which are markedly exhausted during IDD, in mouse and human specimens. The lineage tracing shows that UTS2R+ ProNPs preferentially resides in the NP periphery with its niche factor tenascin-C and give rise to functional NP cells. It is also demonstrated that transplanting UTS2R+ ProNPs with tenascin-C into injured intervertebral discs attenuate the progression of IDD. The study provides a novel NP cell atlas, identified resident ProNPs with regenerative potential, and revealed promising diagnostic and therapeutic targets for IDD.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Bo Jiang
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenhui Xing
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zaiqi Xie
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhuojing Luo
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
35
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
36
|
Ye F, Lyu F, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022; 5:e1196. [PMID: 35386754 PMCID: PMC8966871 DOI: 10.1002/jsp2.1196] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Orthopaedics, Fujian Provincial HospitalProvincial Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Feng‐Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Pain Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
37
|
Li S, Huang C, Xiao J, Wu Y, Zhang Z, Zhou Y, Tian N, Wu Y, Wang X, Zhang X. The Potential Role of Cytokines in Diabetic Intervertebral Disc Degeneration. Aging Dis 2022; 13:1323-1335. [PMID: 36186138 PMCID: PMC9466964 DOI: 10.14336/ad.2022.0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain. Diabetes mellitus is a chronic inflammatory disease that may cause or aggravate IVDD; however, the mechanism by which diabetes induce IVDD is currently unclear. Compared to non-diabetic individuals, diabetic patients have higher levels of plasma cytokines, especially TNF-α, IL-1β, IL-5, IL-6, IL-7, IL-10, and IL-18. Due to the crucial role of cytokines in the process of intervertebral disc degeneration, we hypothesized that elevation of these cytokines in plasma of diabetic patients may be involved in the process of diabetes-induced IVDD. In this review, changes in plasma cytokine levels in diabetic patients were summarized and the potential role of elevated cytokines in diabetes-induced IVDD was discussed. Results showed that some cytokines such as TNF-α and IL-1β may accelerate the development of IVDD, while others such as IL-10 is supposed to prevent its development. Apoptosis, senescence, and extracellular matrix metabolism were found to be regulated by these cytokines in IVDD. Further studies are required to validate the cytokines targeted strategy for diabetic IVDD therapy.
Collapse
Affiliation(s)
- Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| |
Collapse
|
38
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
39
|
Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, Li J, Meng L, Li H. An Oxidative Stress-Related Gene Pair ( CCNB1/ PKD1), Competitive Endogenous RNAs, and Immune-Infiltration Patterns Potentially Regulate Intervertebral Disc Degeneration Development. Front Immunol 2021; 12:765382. [PMID: 34858418 PMCID: PMC8630707 DOI: 10.3389/fimmu.2021.765382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress (OS) irreversibly affects the pathogenesis of intervertebral disc degeneration (IDD). Certain non-coding RNAs act as competitive endogenous RNAs (ceRNAs) that regulate IDD progression. Analyzing the signatures of oxidative stress-related gene (OSRG) pairs and regulatory ceRNA mechanisms and immune-infiltration patterns associated with IDD may enable researchers to distinguish IDD and reveal the underlying mechanisms. In this study, OSRGs were downloaded and identified using the Gene Expression Omnibus database. Functional-enrichment analysis revealed the involvement of oxidative stress-related pathways and processes, and a ceRNA network was generated. Differentially expressed oxidative stress-related genes (De-OSRGs) were used to construct De-OSRG pairs, which were screened, and candidate De-OSRG pairs were identified. Immune cell-related gene pairs were selected via immune-infiltration analysis. A potential long non-coding RNA-microRNA-mRNA axis was determined, and clinical values were assessed. Eighteen De-OSRGs were identified that were primarily related to intricate signal-transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. A ceRNA network consisting of 653 long non-coding RNA-microRNA links and 42 mRNA-miRNA links was constructed. Three candidate De-OSRG pairs were screened out from 13 De-OSRG pairs. The abundances of resting memory CD4+ T cells, resting dendritic cells, and CD8+ T cells differed between the control and IDD groups. CD8+ T cell infiltration correlated negatively with cyclin B1 (CCNB1) expression and positively with protein kinase D1 (PKD1) expression. CCNB1-PKD1 was the only pair that was differentially expressed in IDD, was correlated with CD8+ T cells, and displayed better predictive accuracy compared to individual genes. The PKD1-miR-20b-5p-AP000797 and CCNB1-miR-212-3p-AC079834 axes may regulate IDD. Our findings indicate that the OSRG pair CCNB1-PKD1, which regulates oxidative stress during IDD development, is a robust signature for identifying IDD. This OSRG pair and increased infiltration of CD8+ T cells, which play important roles in IDD, were functionally associated. Thus, the OSRG pair CCNB1-PKD1 is promising target for treating IDD.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baohui Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liesu Meng
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
40
|
Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun 2021; 12:5213. [PMID: 34480023 PMCID: PMC8417260 DOI: 10.1038/s41467-021-25453-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Collapse
Affiliation(s)
- Emanuel J. Novais
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Victoria A. Tran
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Shira N. Johnston
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Kayla R. Darris
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Alex J. Roupas
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Garrett A. Sessions
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Irving M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Brian O. Diekman
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Makarand V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
41
|
A comparative study of mesenchymal stem cell transplantation and NTG-101 molecular therapy to treat degenerative disc disease. Sci Rep 2021; 11:14804. [PMID: 34285277 PMCID: PMC8292352 DOI: 10.1038/s41598-021-94173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular replacement therapy using mesenchymal stem cells (MSCs) and/or the delivery of growth factors are at the forefront of minimally invasive biological treatment options for Degenerative Disc Disease (DDD). In this study, we compared the therapeutic potential of a novel drug candidate, NTG-101 to MSCs, including rat cartilage derived stem cells (rCDSCs), bone marrow stem cells (rBMSCs) and human Umbilical Cord Derived Mesenchymal Stem Cells (hUCMSCs) for the treatment of DDD. We induced DDD using a validated image-guided needle puncture injury in rat-tail IVDs. Ten weeks post-injury, animals were randomized and injected with MSCs, NTG-101 or vehicle. At the end of the study, histological analysis of the IVD-Nucleus Pulposus (NPs) injected with NTG-101 or rCDSCs showed a healthy or mild degenerative phenotype in comparison to vehicle controls. Immunohistochemical analysis revealed strong expression of aggrecan, collagen 2, brachyury and Oct4 in IVD-NPs injected with NTG-101. Our results also demonstrated suppression of inflammation induced p38 and NFκB resulting in inhibition of catabolic genes, but activation of Smad-2/3, Erk-1/2 and Akt-dependent signaling inducing anabolic genes in IVD-NP on treatment with NTG-101. In conclusion, a single injection of NTG-101 into the degenerative disc demonstrated superior benefits compared to stem cell transplantation.
Collapse
|
42
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
43
|
Gogoleva VS, Atretkhany KSN, Dygay AP, Yurakova TR, Drutskaya MS, Nedospasov SA. Current Perspectives on the Role of TNF in Hematopoiesis Using Mice With Humanization of TNF/LT System. Front Immunol 2021; 12:661900. [PMID: 34054827 PMCID: PMC8155636 DOI: 10.3389/fimmu.2021.661900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
TNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases. With increased number of patients undergoing treatment with TNF inhibitors and concerns regarding possible adverse effects of systemic cytokine blockade, the interest in using humanized mouse models to study the efficacy and safety of TNF-targeting biologics in vivo is justified. This Perspective discusses the main functions of TNF and its two receptors, TNFR1 and TNFR2, in steady state, as well as in emergency hematopoiesis. It also provides a comparative overview of existing mouse lines with humanization of TNF/TNFR system. These genetically engineered mice allow us to study TNF signaling cascades in the hematopoietic compartment in the context of various experimental disease models and for evaluating the effects of various human TNF inhibitors on hematopoiesis and other physiological processes.
Collapse
Affiliation(s)
- Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia
| | - Kamar-Sulu N Atretkhany
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Arina P Dygay
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Taisiya R Yurakova
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
44
|
Sun K, Zhu J, Sun J, Sun X, Huan L, Zhang B, Lin F, Zheng B, Jiang J, Luo X, Xu X, Shi J. Neuropeptide Y prevents nucleus pulposus cells from cell apoptosis and IL‑1β‑induced extracellular matrix degradation. Cell Cycle 2021; 20:960-977. [PMID: 33966606 PMCID: PMC8172154 DOI: 10.1080/15384101.2021.1911914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by excessive inflammatory reaction, and neuropeptide Y (NPY) was reported to have anti-inflammatory effect. However, the effect of NPY on NP cells has not been investigated up to date. This study aimed to clarify the role of NPY on the process of IDD. Fourteen fresh human lumbar intervertebral discs were harvested, and degeneration-related proteins were examined. Pfirrmann grading system was used to evaluate IDD. Rat nucleus pulposus (NP) cells were used to investigate the effect of NPY on the proliferation, apoptosis, and extracellular matrix (ECM) in NP cell induced by IL-1βin vitro. The expression levels of NPY and its receptors (type 1 receptor, Y1R, and type 2 receptor, Y2R) were detected via immunohistochemical analysis, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and proliferation were explored using cell counting kit-8 assay, western blot, and immunofluorescence analysis. Cell apoptosis was investigated by Hoechst staining, JC-1 Staining, annexin V-FITC/PI double staining, and western blot. The secretion of NPY from NP cells was determined via enzyme-linked immunosorbent assay (ELISA). The expression of anabolic and catabolic gene was analyzed by qRT-PCR, western blot, immunofluorescence analysis, and ELISA. The expression of Y2R was significantly increased in both human degenerative intervertebral discs and IL-1β-induced NP cells. Although no positive results for NPY indicated by western blot both in vivo and in vitro, ELISA results demonstrated that the secretion of NPY from NP cells was increased by low-concentration IL-1β, but was decreased when the concentration of IL-1β was 30 ng/ml and above. In addition, NPY could promote NP cells proliferation and protect NP cells against IL‑1β‑induced apoptosis via suppressing mitochondrial-mediated apoptosis pathway. What's more, NPY can suppress the expression of catabolic gene and ameliorate IL-1β- induced matrix degeneration in NP cells. In conclusion, NPY could promote NP cell proliferation and alleviate IL‑1β‑induced cell apoptosis via mitochondrial pathway. In addition, NPY can suppress the expression of ECM‑catabolic proteinases and ameliorate IL-1β- induced ECM degeneration in vitro.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Le Huan
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bin Zhang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Feng Lin
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bing Zheng
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Luo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
45
|
Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 2021; 17:158-175. [PMID: 33526926 DOI: 10.1038/s41584-020-00568-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain, a prevalent and chronic condition that has a striking effect on quality of life. Currently, no approved pharmacological interventions or therapies are available that prevent the progressive destruction of the IVD; however, regenerative strategies are emerging that aim to modify the disease. Progress has been made in defining promising new treatments for disc disease, but considerable challenges remain along the entire translational spectrum, from understanding disease mechanism to useful interpretation of clinical trials, which make it difficult to achieve a unified understanding. These challenges include: an incomplete appreciation of the mechanisms of disc degeneration; a lack of standardized approaches in preclinical testing; in the context of cell therapy, a distinct lack of cohesion regarding the cell types being tested, the tissue source, expansion conditions and dose; the absence of guidelines regarding disease classification and patient stratification for clinical trial inclusion; and an incomplete understanding of the mechanisms underpinning therapeutic responses to cell delivery. This Review discusses current approaches to disc regeneration, with a particular focus on cell-based therapeutic strategies, including ongoing challenges, and attempts to provide a framework to interpret current data and guide future investigational studies.
Collapse
Affiliation(s)
- Abbie L A Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Emily A Growney
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
46
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Shao Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthritis Cartilage 2021; 29:17-27. [PMID: 33007412 DOI: 10.1016/j.joca.2020.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which can be developed in multiple clinical diseases. It is widely recognized that intervertebral disc (IVD) degeneration (IVDD) is one of the leading causes of LBP. However, the pathogenesis of IVD-related LBP is still controversial, and the treatment means are also insufficient to date. In recent decades, the role of structure and function changes of sensory nervous system in the induction and the maintenance of LBP is drawing more and more attention. With the progress of IVDD, IVD cell exhaustion and extracellular matrix degradation result in IVD structural damage, while neovascularization, innervation and inflammatory activation further deteriorate the microenvironment of IVD. New nerve ingrowth into degenerated IVD amplifies the impacts of IVD-derived nociceptive molecules on sensory endings. Moreover, IVDD is usually accompanied with disc herniation, which could injure and inflame affected nerves. Under mechanical and pro-inflammatory stimulation, the pain-transmitting pathway exhibits a sensitized function state and ultimately leads to LBP. Hence, relevant pathogenic factors, such as neurotrophins, ion channels, inflammatory factors, etc., are supposed to serve as promising therapeutic targets for LBP. The purpose of this review is to comprehensively summarize the current evidence on 1) the pathological changes of sensory nervous system during IVDD and their association with LBP, and 2) potential therapeutic strategies for LBP targeting relevant pathogenic factors.
Collapse
Affiliation(s)
- S Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - B Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - W Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - P Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - X Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - S Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
48
|
Hoy RC, D'Erminio DN, Krishnamoorthy D, Natelson DM, Laudier DM, Illien‐Jünger S, Iatridis JC. Advanced glycation end products cause RAGE-dependent annulus fibrosus collagen disruption and loss identified using in situ second harmonic generation imaging in mice intervertebral disk in vivo and in organ culture models. JOR Spine 2020; 3:e1126. [PMID: 33392460 PMCID: PMC7770195 DOI: 10.1002/jsp2.1126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Aging and diabetes are associated with increased low-back pain and intervertebral disk (IVD) degeneration yet causal mechanisms remain uncertain. Advanced glycation end products (AGEs), which accumulate in IVDs from aging and are implicated in diabetes-related disorders, alter collagen and induce proinflammatory conditions. A need exists for methods that assess IVD collagen quality and degradation in order to better characterize specific structural changes in IVDs due to AGE accumulation and to identify roles for the receptor for AGEs (RAGE). We used multiphoton microscopy with second harmonic generation (SHG), collagen-hybridizing peptide (CHP), and image analysis methods to characterize effects of AGEs and RAGE on collagen quality and quantity in IVD annulus fibrosus (AF). First, we used SHG imaging on thin sections with an in vivo dietary mouse model and determined that high-AGE (H-AGE) diets increased AF fibril disruption and collagen degradation resulting in decreased total collagen content, suggesting an early degenerative cascade. Next, we used in situ SHG imaging with an ex vivo IVD organ culture model of AGE challenge on wild type and RAGE-knockout (RAGE-KO) mice and determined that early degenerative changes to collagen quality and degradation were RAGE dependent. We conclude that AGE accumulation leads to RAGE-dependent collagen disruption in the AF and can initiate molecular and tissue level collagen disruption. Furthermore, SHG and CHP analyzes were sensitive to collagenous alterations at multiple hierarchical levels due to AGE and may be useful in identifying additional contributors to collagen damage in IVD degeneration processes.
Collapse
Affiliation(s)
- Robert C. Hoy
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| | - Danielle N. D'Erminio
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| | - Divya Krishnamoorthy
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| | - Devorah M. Natelson
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| | - Damien M. Laudier
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| | | | - James C. Iatridis
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNYUnited StatesUSA
| |
Collapse
|
49
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
50
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|