1
|
Qin R, Fan X, Huang Y, Chen S, Ding R, Yao Y, Wu R, Duan Y, Li X, Khan HU, Hu J, Wang H. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance. Transl Oncol 2024; 50:102156. [PMID: 39405607 DOI: 10.1016/j.tranon.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Colorectal cancer (CRC), with the incidence and mortality rising on a yearly basis, greatly threatens people's health. It is considered an important hallmark of tumorigenesis that aberrant glucose metabolism in cancer cells, particularly the Warburg effect. In CRC, the Warburg effect predominantly influences cancer development and progression via its involvement in the glycolytic pathway regarding cell metabolism. The critical mechanisms underlying this process include key glycolytic enzymes, transport proteins, regulatory molecules, and signaling pathways. Furthermore, targeting the reprogrammed glucose metabolism in cancer cells can be potentially used for CRC treatment. However, the mechanisms driving CRC onset and progression, especially in relation to glucose metabolism reprogramming, are not fully understood and represent an emerging field of research. The review aims at providing new insights into the role that glucose metabolism reprogramming plays in the progression of CRC progression together with its resistance to treatment. Ultimately, these insights strive to diminish the risks of CRC metastasis and recurrence.
Collapse
Affiliation(s)
- Rong Qin
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xirui Fan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yun Huang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Sijing Chen
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Ding
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Ying Yao
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Wu
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yiyao Duan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xiang Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hameed Ullah Khan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Jun Hu
- The First People's Hospital of Kunming, Yunnan 650034, China.
| | - Hui Wang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China.
| |
Collapse
|
2
|
Tan X, Zhao X. B7-H3 in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2540-2551. [PMID: 38595093 DOI: 10.1097/cm9.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT B7-H3 (CD276), an immune checkpoint protein of the B7 family, exhibits significant upregulation in solid tumors and hematologic malignancies, exerting a crucial role in their pathophysiology. The distinct differential expression of B7-H3 between tumors and normal tissues and its multifaceted involvement in tumor pathogenesis position it as a promising therapeutic target for tumors. In the context of acute myeloid leukemia (AML), B7-H3 is prominently overexpressed and closely associated with unfavorable prognoses, yet it has remained understudied. Despite various ongoing clinical trials demonstrating the potential efficacy of immunotherapies targeting B7-H3, the precise underlying mechanisms responsible for B7-H3-mediated proliferation and immune evasion in AML remain enigmatic. In view of this, we comprehensively outline the current research progress concerning B7-H3 in AML, encompassing in-depth discussions on its structural attributes, receptor interactions, expression profiles, and biological significance in normal tissues and AML. Moreover, we delve into the protumor effects of B7-H3 in AML, examine the intricate mechanisms that underlie its function, and discuss the emerging application of B7-H3-targeted therapy in AML treatment. By juxtaposing B7-H3 with other molecules within the B7 family, this review emphasizes the distinctive advantages of B7-H3, not only as a valuable prognostic biomarker but also as a highly promising immunotherapeutic target in AML.
Collapse
Affiliation(s)
- Xiao Tan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | | |
Collapse
|
3
|
Zhao R, Yi Y, Liu H, Xu J, Chen S, Wu D, Wang L, Li F. RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. Cancer Metab 2024; 12:32. [PMID: 39462429 PMCID: PMC11515152 DOI: 10.1186/s40170-024-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The influence of the small Rho GTPase Rif (RHOF) on tumor growth, glycolysis, endothelial-mesenchymal transition (EMT), and the potential mechanism of RHOF in pancreatic cancer (PC) were explored. METHODS RHOF expression in PC tissues and cells was assessed by qRT-PCR and western blotting. The viability, proliferation, apoptosis, migration, and invasion of PC cells were assessed using CCK-8, colony formation, EdU, flow cytometry, scratch, and Transwell assays. The expression of EMT- and glycolysis-related proteins was determined using western blotting. The potential mechanisms of action of RHOF in PC were identified using bioinformatic analysis. The effects of RHOF were assessed in vivo using a xenograft mouse model. RESULTS PC cell proliferation, migration, and invasion are accelerated by RHOF overexpression, which inhibited apoptosis. RHOF overexpression promoted EMT and glycolysis as evidenced by a decrease in E-cadherin expression and an increase in N-cadherin, Vimentin, HK2, PKM2, and LDHA expression. Bioinformatic analysis indicated that RHOF activated EMT, glycolysis, and Myc targets and that c-Myc could bind to the PKM2 promoter. RHOF overexpression promotes the lactylation and nuclear translocation of Snail1. Silencing Snail1 reversed the promoting effects of RHOF and lactate on cell migration, invasion, and EMT. Moreover, in vivo tumor growth and EMT were inhibited by RHOF silencing. CONCLUSION RHOF plays an oncogenic role in PC. c-Myc is upregulated by RHOF and promotes PKM2 transcription. PKM2 further induces glycolysis, and the lactate produced by glycolysis causes the lactylation of Snail1, ultimately promoting EMT.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yanmin Yi
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Han Liu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shuhai Chen
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Dong Wu
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Feng Li
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Zhou Y, Peng X, Fang C, Peng X, Tang J, Wang Z, Long Y, Chen J, Peng Y, Zhang Z, Zhou Y, Tang J, Liao J, Xiao D, Tao Y, Shi Y, Liu S. Histones Methyltransferase NSD3 Inhibits Lung Adenocarcinoma Glycolysis Through Interacting with PPP1CB to Decrease STAT3 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400381. [PMID: 39119928 PMCID: PMC11481231 DOI: 10.1002/advs.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Histones methyltransferase NSD3 targeting H3K36 is frequently disordered and mutant in various cancers, while the function of NSD3 during cancer initiation and progression remains unclear. In this study, it is proved that downregulated level of NSD3 is linked to clinical features and poor survival in lung adenocarcinoma. In vivo, NSD3 inhibited the proliferation, immigration, and invasion ability of lung adenocarcinoma. Meanwhile, NSD3 suppressed glycolysis by inhibiting HK2 translation, transcription, glucose uptake, and lactate production in lung adenocarcinoma. Mechanistically, as an intermediary, NSD3 binds to PPP1CB and p-STAT3 in protein levels, thus forming a trimer to dephosphorylate the level of p-STAT3 by PPP1CB, leading to the suppression of HK2 transcription. Interestingly, the phosphorylation function of PPP1CB is related to the concentration of carbon dioxide and pH value in the culture environment. Together, this study revealed the critical non-epigenetic role of NSD3 in the regulation of STAT3-dependent glycolysis, providing a piece of compelling evidence for targeting the NSD3/PPP1CB/p-STAT3 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yanling Zhou
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
- Department of HematologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Xintong Peng
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Cheng Fang
- Department of Cardiac SurgeryXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Xin Peng
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Jianing Tang
- Department of Liver SurgeryXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Zuli Wang
- Center for Tissue Engineering and Stem Cell ResearchGuizhou Medical UniversityGuiyangGuizhou561113China
| | - Yao Long
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Jielin Chen
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Yuanhao Peng
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Zewen Zhang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Yanmin Zhou
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Jun Tang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Jingzhong Liao
- Department of Laboratory MedicineXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Desheng Xiao
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| |
Collapse
|
5
|
Zhang Y, Shen W, Chen Z, He J, Feng L, Wang L, Chen S. Resistant starch reduces glycolysis by HK2 and suppresses high-fructose corn syrup-induced colon tumorigenesis. J Gastroenterol 2024; 59:905-920. [PMID: 39141107 DOI: 10.1007/s00535-024-02138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The intake of high-fructose corn syrup (HFCS) may increase the risk of colorectal cancer (CRC). This study aimed to explore the potential effects and mechanisms of resistant starch (RS) in HFCS-induced colon tumorigenesis. METHODS The azoxymethane/dextran sodium sulfate (AOM/DSS) and ApcMin/+ mice models were used to investigate the roles of HFCS and RS in CRC in vivo. An immunohistochemistry (IHC) staining analysis was used to detect the expression of proliferation-related proteins in tissues. 16S rRNA sequencing for microbial community, gas chromatography for short-chain fatty acids (SCFAs), and mass spectrometry analysis for glycolysis products in the intestines were performed. Furthermore, lactic acid assay kit was used to detect the glycolysis levels in vitro. RESULTS RS suppressed HFCS-induced colon tumorigenesis through reshaping the microbial community. Mechanistically, the alteration of the microbial community after RS supplement increased the levels of intestinal SCFAs, especially butyrate, leading to the suppression of glycolysis and CRC cell proliferation by downregulating HK2. CONCLUSIONS Our study identified RS as a candidate of protective factors in CRC and may provide a potential target for HFCS-related CRC treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyi Shen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhehang Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Feng
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
7
|
Wang K, Shen K, Wang J, Yang K, Zhu J, Chen Y, Liu X, He Y, Zhu X, Zhan Q, Shi T, Li R. BUB1 potentiates gastric cancer proliferation and metastasis by activating TRAF6/NF-κB/FGF18 through m6A modification. Life Sci 2024; 353:122916. [PMID: 39025206 DOI: 10.1016/j.lfs.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
AIMS Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. High expression of the mitotic kinase BUB1 has been shown to be associated with the development of many cancers, but the role of BUB1 in GC is still unclear. The current study aimed to investigate the role of BUB1 in GC. MATERIALS AND METHODS BUB1 inhibitor, siRNA or BUB1 overexpression plasmid-mediated functional studies were performed in vitro and in vivo to explore the oncogenic role of BUB1 in GC. The expression of BUB1 and FGF18 in GC tumor samples was determined by IHC staining. RNA-seq, Western blot, MeRIP-qPCR and Co-IP assays were used to investigate the molecular mechanisms by which BUB1 regulates GC progression. KEY FINDINGS Knockdown of BUB1 significantly inhibited the proliferation and metastasis of GC cells in vitro and in vivo. Moreover, overexpression of BUB1 significantly promoted the proliferation, migration and invasion of GC cells. High expression of BUB1 and FGF18 in GC tissues predicted poor prognosis in GC patients. Mechanistically, BUB1 interacted with METTL3 and induced m6A modification of TRAF6 mRNA, further activating the NF-κB/FGF18 axis in GC cells. SIGNIFICANCE Our results confirmed that BUB1 acts as a positive regulator of GC cell proliferation and metastasis by activating the TRAF6/NF-κB/FGF18 pathway through METTL3-mediated m6A methylation. Targeting the BUB1/METTL3/TRAF6/NF-κB/FGF18 axis might be a novel diagnostic and therapeutic strategy in GC.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, China
| | - Xin Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qin Zhan
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Rui Li
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Curcean S, Hendea RM, Buiga R, Tipcu A, Curcean A, Vlad C, Fekete Z, Muntean AS, Martin D, Irimie A. B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Diagnostics (Basel) 2024; 14:2023. [PMID: 39335702 PMCID: PMC11431099 DOI: 10.3390/diagnostics14182023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Rectal cancer accounts for approximately one-third of colorectal cancers, with over 340,000 deaths globally in 2022. Despite advancements in treatment, the five-year overall survival for locally advanced rectal cancer (LARC) remains at 74%, with significant morbidity. B7H3 (CD276), an immune checkpoint protein, plays a role in tumor progression and resistance to therapy, and correlates with poor prognosis in various cancers, including colorectal cancer. This study aims to evaluate the expression of B7H3 in LARC and its impact on overall complete response (oCR) rates to neoadjuvant therapy. METHODS A retrospective study was conducted on 60 patients with LARC who received neoadjuvant chemoradiation (nCRT) followed by total mesorectal excision (TME). B7H3 expression was assessed using immunohistochemistry on surgical specimens. Expression levels were categorized as high or low based on a composite score, and their association with oCR rates was analyzed. RESULTS High B7H3 expression was observed in 60% of patients, with 73.5% showing expression in more than 50% of tumor cells. Patients who achieved oCR had significantly lower B7H3 expression compared to those with residual disease (p < 0.001). No nuclear expression of B7H3 was detected. No significant correlation was found between B7H3 expression and other clinicopathological variables, except for a higher likelihood of non-restorative surgery in patients with elevated B7H3 levels (p = 0.049). Mucinous adenocarcinoma had high expression of B7H3. CONCLUSIONS Elevated B7H3 expression is associated with reduced oCR rates in LARC, highlighting its potential role as a prognostic biomarker. Further studies with larger cohorts are warranted to validate these findings and explore B7H3-targeted therapies as a treatment strategy for LARC.
Collapse
Affiliation(s)
- Sebastian Curcean
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Raluca Maria Hendea
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Alexandru Tipcu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andra Curcean
- Department of Imaging, Affidea Center, 400487 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Oncological Surgery and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Oncological Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Zsolt Fekete
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Alina-Simona Muntean
- Department of Radiation Oncology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Daniela Martin
- Department of Radiation Oncology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Oncological Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
10
|
Wang Y, Lu Y, Xu C. Tensin 4 facilitates aerobic glycolysis, migration and invasion of colorectal cancer cells through the β‑catenin/c‑Myc signaling pathway. Oncol Lett 2024; 28:356. [PMID: 38881712 PMCID: PMC11176887 DOI: 10.3892/ol.2024.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Tensin 4 (TNS4) is overexpressed in multiple cancers, including colorectal cancer (CRC), and is associated with a poor prognosis of patients with CRC. However, the role and underlying mechanisms of TNS4 in CRC have yet to be elucidated. The expression of TNS4 in CRC tissues were analyzed by immunohistochemistry. Cell migration and invasion were assessed in vitro using Transwell assay. Western blot and reverse transcription (RT)-quantitative (q)PCR were used to investigate the molecular mechanisms by which TNS4 regulates aerobic glycolysis, migration and invasion of CRC cells. The present study demonstrated that TNS4 was highly expressed in the cancer tissues of patients with CRC and significantly associated with the tumor-node-metastasis stages. TNS4 silencing led to a significant decrease in glucose consumption and lactate production in CRC cells, and knockdown of TNS4 suppressed the migration and invasion of CRC cells via aerobic glycolysis through the β-catenin/c-Myc pathway. Notably, treatment with DASA-58, an activator of glycolysis, or SKL2001, an activator of β-catenin/c-Myc signaling, significantly reversed the effect of TNS4 knockdown on aerobic glycolysis, migration and invasion of CRC cells. Collectively, these results suggest that TNS4 may act as a novel regulator of aerobic glycolysis, migration and invasion of CRC cells by modulating β-catenin/c-Myc signaling, providing a new potential biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
11
|
Park R, Yu J, Shahzad M, Lee S, Ji JD. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res 2024; 72:526-537. [PMID: 38265550 DOI: 10.1007/s12026-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.
Collapse
Affiliation(s)
- Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - James Yu
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Moazzam Shahzad
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Sunggon Lee
- Department of Internal Medicine, Korea University, Seoul, South Korea
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
12
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
13
|
Zhou K, Wang D, Du X, Feng X, Zhu X, Wang C. UBE2C enhances temozolomide resistance by regulating the expression of p53 to induce aerobic glycolysis in glioma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:916-926. [PMID: 38634120 PMCID: PMC11214954 DOI: 10.3724/abbs.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 04/19/2024] Open
Abstract
UBE2C is overexpressed in gliomas, and its overexpression has been reported to be correlated with the drug resistance of gliomas to some extent. In this study, we explore the role of UBE2C in regulating temozolomide (TMZ) resistance in glioma and investigate the underlying mechanisms involved. Twenty normal brain tissues and 100 glioma tissues from 50 TMZ-resistant patients and 50 TMZ-sensitive patients are included in this study. TMZ-resistant cell lines are constructed to explore the role of UBE2C in regulating glioma cell viability and TMZ resistance. Our results show that both the mRNA and protein levels of UBE2C are significantly elevated in the brain tissues of glioma patients, especially in those of TMZ-resistant patients. Consistently, UBE2C expression is markedly upregulated in TMZ-resistant cell lines. Overexpression of UBE2C rescues glioma cells from TMZ-mediated apoptosis and enhances cell viability. In contrast, downregulation of UBE2C expression further enhances TMZ function, increases cell apoptosis and decreases cell viability. Mechanistically, UBE2C overexpression decreases p53 expression and enhances aerobic glycolysis level by increasing ATP level, lactate production, and glucose uptake. Downregulation of p53 level abolishes the role of UBE2C downregulation in inhibiting TMZ resistance and aerobic glycolysis in glioma cells. Moreover, an animal assay confirms that downregulation of UBE2C expression further suppresses tumor growth in the context of TMZ treatment. Collectively, this study reveals that downregulation of UBE2C expression enhances the sensitivity of glioma cells to TMZ by regulating the expression of p53 to inhibit aerobic glycolysis.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Neurosurgerythe Jinyang Hospital Affiliated to Guizhou Medical UniversityGuiyang550084China
| | - Dexin Wang
- Department of Neurosurgerythe Jinyang Hospital Affiliated to Guizhou Medical UniversityGuiyang550084China
| | - Xiaolin Du
- Department of Neurosurgerythe Jinyang Hospital Affiliated to Guizhou Medical UniversityGuiyang550084China
| | - Xia Feng
- Department of Sleep Medicinethe Second People’s Hospital of Guizhou ProvinceGuiyang550084China
| | - Xiaoxi Zhu
- Key Laboratory of Cell Engineering of Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
| | - Cheng Wang
- Department of Neurosurgerythe Jinyang Hospital Affiliated to Guizhou Medical UniversityGuiyang550084China
| |
Collapse
|
14
|
Wu S, Hu C, Hui K, Jiang X. Non-immune functions of B7-H3: bridging tumor cells and the tumor vasculature. Front Oncol 2024; 14:1408051. [PMID: 38952550 PMCID: PMC11215132 DOI: 10.3389/fonc.2024.1408051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
B7-H3 (CD276), an immune checkpoint molecule, is overexpressed in various types of cancer and their tumor vasculature, demonstrating significant associations with adverse clinical outcomes. In addition to its well-known immune functions, B7-H3 exhibits dual co-stimulatory/co-inhibitory roles in normal physiology and the tumor microenvironment. The non-immune functions of B7-H3 in tumor cells and the tumor vasculature, including promoting tumor cell anti-apoptosis, proliferation, invasion, migration, drug resistance, radioresistance, as well as affecting cellular metabolism and angiogenesis, have increasingly gained attention from researchers. Particularly, the co-expression of B7-H3 in both tumor cells and tumor endothelial cells highlights the higher potential and clinical utility of therapeutic strategies targeting B7-H3. This review aims to summarize the recent advances in understanding the non-immune functions of B7-H3 in tumors and provide insights into therapeutic approaches targeting B7-H3, focusing on its co-expression in tumor cells and endothelial cells. The aim is to establish a theoretical foundation and practical reference for the development and optimization of B7-H3-targeted therapies.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
15
|
Tao Y, Yi X, Gu Y, Yang R, Li Z, Guo X, Zhao D, Zhang Y. Neurotoxicity of dibutyl phthalate in zebrafish larvae: Decreased energy acquisition by neurons. Food Chem Toxicol 2024; 188:114666. [PMID: 38621509 DOI: 10.1016/j.fct.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
This work was designed to investigate the neurotoxic effects of the typical plasticizer dibutyl phthalate (DBP) using zebrafish larvae as a model. The results of exhibited that zebrafish larvae exposed to DBP at concentrations of 5 μg/L and 10 μg/L exhibited brain malformations (24 h) and behavioral abnormalities (72 h). After 72 h of exposure to DBP, microglia in the brain were over-activated, reactive oxygen species (ROS) formation was increased, and apoptosis was observed. Meanwhile, it was found that neurons exhibited impaired mitochondrial structure, absent mitochondrial membrane potential and up-regulated autophagy. Further comprehensive biochemical analyses and RNA-Seq, validated by RT-qPCR, glutamate metabolism and PPAR signaling pathway were significantly enriched in the DBP stress group, this may be the main reason for the disruption of glycolysis/gluconeogenesis processes and the reduction of energy substrates for the astrocyte-neuron lactate shuttle (ANLS). In addition, the DBP-exposed group showed aberrant activation of endoplasmic reticulum (ER) stress signaling pathway, which may be related to ROS as well as neuronal apoptosis and autophagy. In conclusion, DBP-induced neurotoxicity may be the combined result of insufficient neuronal energy acquisition, damage to mitochondrial structure, apoptosis and autophagy. These results provide a theoretical basis for understanding the neurotoxic effects of DBP.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rongyi Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyong Guo
- Fuyu County Agricultural Technology Extension Center, Qiqihar, 161299, China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
17
|
Li L, Nian S, Liu Q, Zhang B, Jimu W, Li C, Huang Z, Hu Q, Huang Y, Yuan Q. Fully human anti-B7-H3 recombinant antibodies inhibited tumor growth by increasing T cell infiltration. Int Immunopharmacol 2024; 132:111926. [PMID: 38552297 DOI: 10.1016/j.intimp.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.
Collapse
Affiliation(s)
- Lin Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Siji Nian
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Qin Liu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Bo Zhang
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Wulemo Jimu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Chengwen Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Zhanwen Huang
- Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China
| | - Qiaosen Hu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Yuanshuai Huang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China; Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China.
| |
Collapse
|
18
|
Shen J, Ma Z, Yang J, Qu T, Xia Y, Xu Y, Zhou M, Liu W. CircPHGDH downregulation decreases papillary thyroid cancer progression through miR-122-5p/PKM2 axis. BMC Cancer 2024; 24:511. [PMID: 38654205 PMCID: PMC11036668 DOI: 10.1186/s12885-024-12199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Although papillary thyroid carcinoma (PTC) has a favorable prognosis, it could affect patient life quality and become a serious threat because of invasion and metastasis. Many investigations have suggested that circular RNAs (circRNAs) are involved in different cancer regulations. Nevertheless, circRNAs role in invasive PTC remains unclear. METHODS In the present investigation, next-generation sequencing was applied to explore abnormal circRNA expression. The expression of circRNA phosphoglycerate dehydrogenase (circPHGDH) in PTC cell lines and tissues were examined. Then, we investigated regulatory mechanism and circPHGDH downstream targets using bioinformatics analysis and luciferase reporting analysis. Then transwell migration, Cell Counting Kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used for cells migration and proliferation analysis. In vivo metastasis and tumorigenesis assays were also employed to evaluate the circPHGDH role in PTC. RESULTS The data showcased that circPHGDH expression increased in both PTC cell lines and tissues, which suggested that circPHGDH functions in PTC progression. circPHGDH downregulation suppressed PTC invasion and proliferation in both in vivo and in vitro experiments. Bioinformatics and luciferase reporter results confirmed that both microRNA (miR)-122-5p and pyruvate kinase M2 subtype (PKM2) were downstream targets of circPHGDH. PKM2 overexpression or miR-122-5p suppression reversed PTC cell invasion and proliferation post silencing circPHGDH by restoring aerobic glycolysis. CONCLUSION Taken together, our research found that circPHGDH downregulation reduced PTC progression via miR-122-5p/PKM2 axis regulation mediated by aerobic glycolysis.
Collapse
Affiliation(s)
- Jiying Shen
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Zhirong Ma
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Jin Yang
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Tianzhen Qu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Yu Xia
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Yingjie Xu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Ming Zhou
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Weiwei Liu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China.
| |
Collapse
|
19
|
Li J, Zhou B, Wang S, Ouyang J, Jiang X, Wang C, Zhou T, Zheng KW, Wang J, Wang J. Development of a Human B7-H3-Specific Antibody with Activity against Colorectal Cancer Cells through a Synthetic Nanobody Library. Bioengineering (Basel) 2024; 11:381. [PMID: 38671802 PMCID: PMC11047927 DOI: 10.3390/bioengineering11040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Nanobodies have emerged as promising tools in biomedicine due to their single-chain structure and inherent stability. They generally have convex paratopes, which potentially prefer different epitope sites in an antigen compared to traditional antibodies. In this study, a synthetic phage display nanobody library was constructed and used to identify nanobodies targeting a tumor-associated antigen, the human B7-H3 protein. Combining next-generation sequencing and single-clone validation, two nanobodies were identified to specifically bind B7-H3 with medium nanomolar affinities. Further characterization revealed that these two clones targeted a different epitope compared to known B7-H3-specific antibodies, which have been explored in clinical trials. Furthermore, one of the clones, dubbed as A6, exhibited potent antibody-dependent cell-mediated cytotoxicity (ADCC) against a colorectal cancer cell line with an EC50 of 0.67 nM, upon conversion to an Fc-enhanced IgG format. These findings underscore a cost-effective strategy that bypasses the lengthy immunization process, offering potential rapid access to nanobodies targeting unexplored antigenic sites.
Collapse
Affiliation(s)
- Jingxian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Bingjie Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Shiting Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiayi Ouyang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Xinyi Jiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd., Shenzhen 518107, China;
| | - Teng Zhou
- School of Cyberspace Security, Hainan University, Haikou 570228, China;
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| |
Collapse
|
20
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Varghese E, Samuel SM, Brockmueller A, Shakibaei M, Kubatka P, Büsselberg D. B7-H3 at the crossroads between tumor plasticity and colorectal cancer progression: a potential target for therapeutic intervention. Cancer Metastasis Rev 2024; 43:115-133. [PMID: 37768439 PMCID: PMC11016009 DOI: 10.1007/s10555-023-10137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
22
|
Gao Q, Huang C, Liu T, Yang F, Chen Z, Sun L, Zhao Y, Wang M, Luo L, Zhou C, Zhu W. Gastric cancer mesenchymal stem cells promote tumor glycolysis and chemoresistance by regulating B7H3 in gastric cancer cells. J Cell Biochem 2024; 125:e30521. [PMID: 38226525 DOI: 10.1002/jcb.30521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Despite surgical treatment combined with multidrug therapy having made some progress, chemotherapy resistance is the main cause of recurrence and death of gastric cancer (GC). Gastric cancer mesenchymal stem cells (GCMSCs) have been reported to be correlated with the limited efficacy of chemotherapy in GC, but the mechanism of GCMSCs regulating GC resistance needs to be further studied. The gene set enrichment analysis (GSEA) was performed to explore the glycolysis-related pathways heterogeneity across different cell subpopulations. Glucose uptake and lactate production assays were used to evaluate the importance of B7H3 expression in GCMSCs-treated GC cells. The therapeutic efficacy of oxaliplatin (OXA) and paclitaxel (PTX) was determined using CCK-8 and colony formation assays. Signaling pathways altered by GCMSCs-CM were revealed by immunoblotting. The expression of TNF-α in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by western blot analysis and qPCR. Our results showed that the OXA and PTX resistance of GC cells were significantly enhanced in the GCMSCs-CM treated GC cells. Acquired OXA and PTX resistance was characterized by increased cell viability for OXA and PTX, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of cleaved caspase-3 and Bax expression, and increased levels of Bcl-2, HK2, MDR1, and B7H3 expression. Blocking TNF-α in GCMSCs-CM, B7H3 knockdown or the use of 2-DG, a key enzyme inhibitor of glycolysis in GC cells suppressed the OXA and PTX resistance of GC cells that had been treated with GCMSCs-CM. This study shows that GCMSCs-CM derived TNF-α could upregulate the expression of B7H3 of GC cells to promote tumor chemoresistance. Our results provide a new basis for the treatment of GC.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fumeng Yang
- Department of Laboratory Medicine, Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqi Luo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Zhang N, Zhang H, Yang X, Xue Q, Wang Q, Chang R, Zhu L, Chen Z, Liu X. USP14 exhibits high expression levels in hepatocellular carcinoma and plays a crucial role in promoting the growth of liver cancer cells through the HK2/AKT/P62 axis. BMC Cancer 2024; 24:237. [PMID: 38383348 PMCID: PMC10880281 DOI: 10.1186/s12885-024-12009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor with strong invasiveness and poor prognosis. Previous studies have demonstrated the significant role of USP14 in various solid tumors. However, the role of USP14 in the regulation of HCC development and progression remains unclear. METHODS We discovered through GEO and TCGA databases that USP14 may play an important role in liver cancer. Using bioinformatics analysis based on the Cancer Genome Atlas (TCGA) database, we screened and identified USP14 as highly expressed in liver cancer. We detected the growth and metastasis of HCC cells promoted by USP14 through clone formation, cell counting kit 8 assay, Transwell assay, and flow cytometry. In addition, we detected the impact of USP14 on the downstream protein kinase B (AKT) and epithelial-mesenchymal transition (EMT) pathways using western blotting. The interaction mechanism between USP14 and HK2 was determined using immunofluorescence and coimmunoprecipitation (CO-IP) experiments. RESULTS We found that sh-USP14 significantly inhibits the proliferation, invasion, and invasion of liver cancer cells, promoting apoptosis. Further exploration revealed that sh-USP14 significantly inhibited the expression of HK2. Sh-USP14 can significantly inhibit the expression of AKT and EMT signals. Further verification through immunofluorescence and CO-IP experiments revealed that USP14 co-expressed with HK2. Further research has found that USP14 regulates the glycolytic function of liver cancer cells by the deubiquitination of HK2. USP14 regulates the autophagy function of liver cancer cells by regulating the interaction between SQSTM1/P62 and HK2. CONCLUSIONS Our results indicate that USP14 plays a crucial role in the carcinogenesis of liver cancer. We also revealed the protein connections between USP14, HK2, and P62 and elucidated the potential mechanisms driving cancer development. The USP14/HK2/P62 axis may be a new therapeutic biomarker for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Nannan Zhang
- Medical College of Nantong University, Nantong, Jiangsu, 226000, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Hui Zhang
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Xiaobing Yang
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, Jiangsu, 223200, China
| | - Qiang Xue
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Renan Chang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - Xiancheng Liu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| |
Collapse
|
24
|
Hou Z, Wu C, Tang J, Liu S, Li L. CLSPN actives Wnt/β-catenin signaling to facilitate glycolysis and cell proliferation in oral squamous cell carcinoma. Exp Cell Res 2024; 435:113935. [PMID: 38237848 DOI: 10.1016/j.yexcr.2024.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a common malignancy with a poor prognosis. This study aimed to determine the influence and underlying mechanisms of CLSPN on OSCC. METHODS CLSPN expression was tested using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Flow cytometry, cell counting kit, and colony formation assays were performed to determine OSCC cell apoptosis, viability, and proliferation, respectively. In OSCC cells, the extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose uptake, and lactate production were determined using the corresponding kits. Changes in the protein levels of HK2, PKM2, LDHA, Wnt3a, and β-catenin were assessed using western blotting. RESULTS CLSPN expression was increased in OSCC tissues. Overexpression of CLSPN in HSC-2 cells promoted cell proliferation, increased the levels of ECAR, glucose uptake, and lactate production, and increased the protein levels of HK2, PKM2, LDHA, Wnt3a, and β-catenin, but inhibited OCR levels and apoptosis. The knockdown of CLSPN in CAL27 cells resulted in the opposite results. Moreover, the effects of CLSPN overexpression on glycolysis and OSCC cell proliferation were reversed by Wnt3a knockdown. In vivo, knockdown of CLSPN restrained tumor growth, glycolysis, and the activation of Wnt/β-catenin signaling. CONCLUSION CLSPN promoted glycolysis and OSCC cell proliferation, and reduced apoptosis, which was achieved by the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zeyu Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
25
|
Chen LC, Yang PC, Chen CY, Chiang SF, Chen TW, Chen WTL, Ke TW, Liang JA, Shiau A, Chao KSC, Huang KCY. Dual Inhibition of B7-H3 and EGFR Overcomes Acquired Chemoresistance in Colon Adenocarcinoma. J Cancer 2024; 15:1750-1761. [PMID: 38370387 PMCID: PMC10869969 DOI: 10.7150/jca.91089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Despite advances in therapeutic strategies for colorectal cancer (CRC), CRC has a high disease incidence with significant morbidity and mortality worldwide. Notably, immunotherapy has shown limited efficacy in treating metastatic CRC, underscoring the need for alternative immunotherapeutic targets for the management of metastatic colorectal cancer (mCRC). In the present study, we evaluated the levels of the immune checkpoint proteins PD-L1, PD-L2 and B7-H3 in a large cohort retrospective study. We found that tumor B7-H3 (52.7%) was highly expressed in primary tumors compared to that in PD-L1 (33.6%) or PD-L2 (34.0%). Elevated B7-H3 expression was associated with advanced stage and the risk of distant metastasis and correlated with poor disease-free survival (DFS), suggesting that tumor B7-H3 was an independent prognostic factor associated with worse DFS in colon adenocarcinoma patients (COAD), especially high-risk COAD patients who received adjuvant chemotherapy. Furthermore, we found that B7-H3 significantly promoted cell proliferation and tumor growth in CRC. B7-H3 may stabilize EGFR to activate its downstream pathway for cancer cell proliferation and resistance to oxaliplatin (OXP). Dual targeting of B7-H3 and EGFR markedly rescued the susceptibility to chemotherapy in colorectal cancer cells in vitro and in vivo. Overall, these results showed that B7-H3 exhibited a high prevalence in COAD patients and was significantly associated with worse prognosis in COAD patients. Dual targeting of B7-H3 and EGFR signaling might be a potential therapeutic strategy for high-risk COAD patients.
Collapse
Affiliation(s)
- Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung 41354, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu 302, Taiwan
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - An‑Cheng Shiau
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - K. S. Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
26
|
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z, Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024; 187:294-311.e21. [PMID: 38128537 DOI: 10.1016/j.cell.2023.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 08/09/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422001, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoning Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingpeng Jin
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bingsong Huang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Ding
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Rui Li
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jie Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yiming He
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Qianwen Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Shanghai 200072, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
27
|
Chen J, Li G, Sun D, Li H, Chen L. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. Eur J Med Chem 2024; 264:115986. [PMID: 38011767 DOI: 10.1016/j.ejmech.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Hexokinase 2 (HK2) is a crucial enzyme involved in glycolysis, which converts glucose into glucose-6-phosphate and plays a significant role in glucose metabolism. HK2 can mediate glycolysis, which is linked to the release of inflammatory factors. The over-expression of HK2 increases the production of pro-inflammatory cytokines, exacerbating the inflammatory reaction. Consequently, HK2 is closely linked to various inflammatory-related diseases affecting multiple systems, including the digestive, nervous, circulatory, respiratory, reproductive systems, as well as rheumatoid arthritis. HK2 is regarded as a novel therapeutic target for inflammatory-related diseases, and this article provides a comprehensive review of its roles in these conditions. Furthermore, the development of potent HK2 inhibitors has garnered significant attention in recent years. Therefore, this review also presents a summary of potential HK2 inhibitors, offering promising prospects for the treatment of inflammatory-related diseases in the future.
Collapse
Affiliation(s)
- Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guirong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
28
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
29
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
30
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Lei Y, He L, Li Y, Hou J, Zhang H, Li G. PDLIM1 interacts with HK2 to promote gastric cancer progression through enhancing the Warburg effect via Wnt/β-catenin signaling. Cell Tissue Res 2024; 395:105-116. [PMID: 37930472 DOI: 10.1007/s00441-023-03840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein and is associated with the malignant pathological features of several tumors. However, the prognostic value of PDLIM1 and the molecular mechanisms by which it is involved in the metabolism and progression in gastric cancer (GC) are still unclear. The GEPIA database was used to predict the expression and prognosis of PDLIM1 in GC. qRT-PCR and western blot assays were applied to detect the mRNA and protein expression in GC tissues and cells. Loss- and gain-of-function experiments were performed to evaluate the biological role of PDLIM1 in GC cells. The Warburg effect was detected by a battery of glycolytic indicators. The interaction of PDLIM1 and hexokinase 2 (HK2) was determined by a co-immunoprecipitation assay. Furthermore, the modulatory effects of PDLIM1 and HK2 on Wnt/β-catenin signaling were assessed. The results showed that PDLIM1 expression was upregulated in GC tissues and cells and was associated with a poor prognosis for GC patients. PDLIM1 inhibition reduced GC cell proliferation, migration and invasion and promoted cell apoptosis. In the glucose deprivation (GLU-D) condition, the PDLIM1 level was reduced and PDLIM1 overexpression led to an increase in glycolysis. Besides, mechanistic investigation showed that PDLIM1 interacted with HK2 to mediate biological behaviors and the glycolysis of GC through Wnt/β-catenin signaling under glucose deprivation. In conclusion, PDLIM1 interacts with HK2 to promote gastric cancer progression by enhancing the Warburg effect via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Yue Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Haoran Zhang
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
32
|
Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules 2023; 29:75. [PMID: 38202657 PMCID: PMC10779805 DOI: 10.3390/molecules29010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.
Collapse
Affiliation(s)
- Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shi Qiao
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Qingyan Li
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Wang F, Yu B, Yu Q, Wang G, Li B, Guo G, Wang H, Shen H, Li S, Ma C, Jia X, Wang G, Cong B. NOP58 induction potentiates chemoresistance of colorectal cancer cells through aerobic glycolysis as evidenced by proteomics analysis. Front Pharmacol 2023; 14:1295422. [PMID: 38149051 PMCID: PMC10750250 DOI: 10.3389/fphar.2023.1295422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: The majority of individuals diagnosed with advanced colorectal cancer (CRC) will ultimately acquire resistance to 5-FU treatment. An increasing amount of evidence indicates that aerobic glycolysis performs a significant function in the progression and resistance of CRC. Nevertheless, the fundamental mechanisms remain to be fully understood. Methods: Proteomic analysis of 5-FU resistant CRC cells was implemented to identify and determine potential difference expression protein. Results: These proteins may exhibit resistance mechanisms that are potentially linked to the process of aerobic glycolysis. Herein, we found that nucleolar protein 58 (NOP58) has been overexpressed within two 5-FU resistant CRC cells, 116-5FuR and Lovo-5FuR. Meanwhile, the glycolysis rate of drug-resistant cancer cells has increased. NOP58 knockdown decreased glycolysis and enhanced the sensitivity of 116-5FuR and Lovo-5FuR cells to 5FU. Conclusion: The proteomic analysis of chemoresistance identifies a new target involved in the cellular adaption to 5-FU and therefore highlights a possible new therapeutic strategy to overcome this resistance.
Collapse
Affiliation(s)
- Feifei Wang
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Quanyong Yu
- China Pharmaceutical University, Nanjing, China
| | - Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baokun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ganlin Guo
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Handong Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Shen
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Chiou JT, Lee YC, Chang LS. Hydroquinone-selected chronic myelogenous leukemia cells are sensitive to chloroquine-induced cytotoxicity via MCL1 suppression and glycolysis inhibition. Biochem Pharmacol 2023; 218:115934. [PMID: 37989415 DOI: 10.1016/j.bcp.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Previous studies have provided evidence that repeated exposure to the benzene metabolite hydroquinone (HQ) induces malignant transformation and increases basal autophagy in the chronic myeloid leukemia (CML) cell line K562. This study explored the cytotoxicity of the autophagy inhibitor chloroquine (CQ) on parental and HQ-selected K562 (K562/HQ) cells. CQ triggered apoptosis in these cells independently of inhibiting autophagic flux; however, in K562/HQ cells, CQ-induced cytotoxicity was higher than in K562 cells. Mechanistically, CQ-induced NOXA upregulation led to MCL1 downregulation and mitochondrial depolarization in K562/HQ cells. MCL1 overexpression or NOXA silencing attenuated CQ-mediated cytotoxicity in K562/HQ cells. CQ triggered ERK inactivation to increase Sp1, NFκB, and p300 expression, and co-assembly of Sp1, NFκB, and p300 in the miR-29a promoter region coordinately upregulated miR-29a transcription. CQ-induced miR-29a expression destabilized tristetraprolin (TTP) mRNA, which in turn reduced TTP-mediated NOXA mRNA decay, thereby increasing NOXA protein expression. A similar mechanism explained the CQ-induced downregulation of MCL1 in K562 cells. K562/HQ cells relied more on glycolysis for ATP production than K562 cells, whereas inhibition of glycolysis by CQ was greater in K562/HQ cells than in K562 cells. Likewise, CQ-induced MCL1 suppression and glycolysis inhibition resulted in higher cytotoxicity in CML KU812/HQ cells than in KU812 cells. Taken together, our data confirm that CQ inhibits MCL1 expression through the ERK/miR-29a/TTP/NOXA pathway, and that inhibition of glycolysis is positively correlated to higher cytotoxicity of CQ on HQ-selected CML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
35
|
Abstract
As a gastrointestinal malignancy, colorectal cancer (CRC) is a main cause of cancer-related deaths worldwide. Mex-3 RNA-binding family member A (MEX3A) is upregulated in multiple types of tumors and plays a critical role in tumor proliferation and metastasis. However, the function of MEX3A in CRC angiogenesis has not been fully understood. Hence, the aim of this study was to explore the role of MEX3A in CRC angiogenesis and investigate its underlying mechanisms. MEX3A expression in CRC was first investigated by bioinformatics means and then measured by qRT-PCR and Western blot. CCK-8 assay was employed to test cell viability. Angiogenesis assay was used to assess angiogenesis. The protein levels of VEGF, FGF and SDF-1 were evaluated using Western blot. The expression levels of MYC, HK2 and PGK1 were investigated by qRT-PCR. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were determined by Seahorse XP 96. The levels of pyruvate, lactate, citric acid and malate were measured by corresponding kits. Bioinformatics analysis demonstrated high MEX3A expression in CRC tissues and MEX3A enrichment in glycolysis and angiogenesis pathways. Cell assays showed high MEX3A expression in CRC cells and its promoting effects in CRC cell proliferation and glycolysis as well as angiogenesis. Rescue experiment confirmed that glycolysis inhibitor 2-DG could offset the promoting effects of MEX3A on the proliferation, angiogenesis and glycolysis of CRC cells. In conclusion, MEX3A could facilitate CRC angiogenesis by activating the glycolytic pathway, suggesting that MEX3A may be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Tienan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Minhui Guo
- Department of Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
36
|
Wang J, Zhu M, Zhu J, Li J, Zhu X, Wang K, Shen K, Yang K, Ni X, Liu X, Zhang G, Xi Q, Shi T, Chen W. HES1 promotes aerobic glycolysis and cancer progression of colorectal cancer via IGF2BP2-mediated GLUT1 m6A modification. Cell Death Discov 2023; 9:411. [PMID: 37957183 PMCID: PMC10643658 DOI: 10.1038/s41420-023-01707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Aerobic glycolysis has been shown to play a key role in tumor cell proliferation and metastasis. However, how it is directly regulated is largely unknown. Here, we found that HES1 expression was significantly higher in CRC tissues than that in adjacent normal tissues. Moreover, high HES1 expression is associated with poor survival in CRC patients. HES1 knockdown markedly inhibited cell growth and metastasis both in vitro and in vivo. Additionally, silencing of HES1 suppressed aerobic glycolysis of CRC cells. Mechanistic studies revealed that HES1 knockdown decreased the expression of GLUT1, a key gene of aerobic glycolysis, in CRC cells. GLUT1 overexpression abolished the effects of HES1 knockdown on cell aerobic glycolysis, proliferation, migration and invasion. ChIP-PCR and dual-luciferase reporter gene assay showed that HES1 directly bound the promoter of IGF2BP2 and promoted IGF2BP2 expression. Furthermore, our data indicated that IGF2BP2 recognized and bound the m6A site in the GLUT1 mRNA and enhanced its stability. Taken together, our findings suggest that HES1 has a significant promotion effect on CRC aerobic glycolysis and progression by enhancing the stability of m6A-modified GLUT1 mRNA in an IGF2BP2-dependent manner, which may become a viable therapeutic target for the treatment of CRC in humans. The mechanism of HES1 regulating glycolysis in CRC.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengxin Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xin Liu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinhua Xi
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Li J, Feng H, Zhu J, Yang K, Zhang G, Gu Y, Shi T, Chen W. Gastric cancer derived exosomal THBS1 enhanced Vγ9Vδ2 T-cell function through activating RIG-I-like receptor signaling pathway in a N6-methyladenosine methylation dependent manner. Cancer Lett 2023; 576:216410. [PMID: 37783390 DOI: 10.1016/j.canlet.2023.216410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Gamma delta (γδ) T-cell-based immunotherapy has shown favorable safety and clinical response in patients with multiple types of cancer. However, its efficiency in treating patients with solid tumors remains limited. In the current study, we investigated the function and molecular mechanism underlying gastric cancer (GC) cell-derived exosomal THBS1 in the regulation of Vγ9Vδ2 T cells. We found that GC cell-derived exosomal THBS1 markedly enhanced the cytotoxicity of Vγ9Vδ2 T cells against GC cells and the production of IFN-γ, TNF-α, perforin and granzyme B in vitro and elevated the killing effects of Vγ9Vδ2 T cells on GC cells in vivo. Mechanistically, exosomal THBS1 could regulate METTL3-or IGF2BP2-mediated m6A modification, further activating the RIG-I-like receptor signaling pathway in Vγ9Vδ2 T cells. Moreover, blocking the RIG-I-like receptor signaling pathway reversed the effects of exosomal THBS1 on the function of Vγ9Vδ2 T cells. In addition, THBS1 was expressed at low levels in GC tissues and was associated with an unfavorable prognosis in GC patients. In sum, our findings indicate that exosomal THBS1 derived from GC cells enhanced the function of Vγ9Vδ2 T cells by activating the RIG-I-like signaling pathway in a m6A methylation-dependent manner. Targeting the exosomal THBS1/m6A/RIG-I axis may have important implications for GC immunotherapy based on Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
39
|
Chung IC, Huang WC, Huang YT, Chen ML, Tsai AW, Wu PY, Yuan TT. Unrevealed roles of extracellular enolase‑1 (ENO1) in promoting glycolysis and pro‑cancer activities in multiple myeloma via hypoxia‑inducible factor 1α. Oncol Rep 2023; 50:205. [PMID: 37800625 PMCID: PMC10568254 DOI: 10.3892/or.2023.8642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The involvement of enolase‑1 (ENO1), intracellularly or extracellularly, has been implicated in cancer development. Moreover, anticancer activities of an ENO1‑targeting antibody has demonstrated the pathological roles of extracellular ENO1 (surface or secreted forms). However, although ENO1 was first identified as a glycolytic enzyme in the cytosol, to the best of our knowledge, extracellular ENO1 has not been implicated in glycolysis thus far. In the present study, the effects of extracellular ENO1 on glycolysis and other related pro‑cancer activities were investigated in multiple myeloma (MM) cells in vitro and in vivo. Knockdown of ENO1 expression reduced lactate production, cell viability, cell migration and surface ENO1 expression in MM cells. Notably, addition of extracellular ENO1 protein in cancer cell culture enhanced glycolytic activity, hypoxia‑inducible factor 1‑α (HIF‑1α) expression, glycolysis‑related gene (GRG) expression and pro‑cancer activities, such as cell migration, cell viability and tumor‑promoting cytokine secretion. Consistently, these extracellular ENO1‑induced cellular effects were inhibited by an ENO1‑specific monoclonal antibody (mAb). In addition, extracellular ENO1‑mediated glycolysis, GRG expression and pro‑cancer activities were also reduced by HIF‑1α silencing. Lastly, administration of an ENO1 mAb reduced tumor growth and serum lactate levels in an MM xenograft model. These results suggested that extracellular ENO1 (surface or secreted forms) enhanced a HIF‑1α‑mediated glycolytic pathway, in addition to its already identified roles. Therefore, the results of the present study highlighted the therapeutic potential of ENO1‑specific antibodies in treating MM, possibly via glycolysis inhibition, and warrant further studies in other types of cancer.
Collapse
Affiliation(s)
- I-Che Chung
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| | - Wei-Ching Huang
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| | - Yung-Tsang Huang
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| | - Mao-Lin Chen
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| | - An-Wei Tsai
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| | - Pei-Yu Wu
- Department of Manufacturing, TFBS Bioscience, Inc., Taipei 221, Taiwan, R.O.C
| | - Ta-Tung Yuan
- Department of Research and Development, HuniLife Biotechnology, Inc., Neihu, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
40
|
Jin H, Zhu M, Zhang D, Liu X, Guo Y, Xia L, Chen Y, Chen Y, Xu R, Liu C, Xi Q, Xia S, Shi T, Zhang G. B7H3 increases ferroptosis resistance by inhibiting cholesterol metabolism in colorectal cancer. Cancer Sci 2023; 114:4225-4236. [PMID: 37661645 PMCID: PMC10637087 DOI: 10.1111/cas.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Ferroptosis, a newly discovered form of regulated cell death, has been reported to be associated with multiple cancers, including colorectal cancer (CRC). However, the underlying molecular mechanism is still unclear. In this study, we identified B7H3 as a potential regulator of ferroptosis resistance in CRC. B7H3 knockdown decreased but B7H3 overexpression increased the ferroptosis resistance of CRC cells, as evidenced by the expression of ferroptosis-associated genes (PTGS2, FTL, FTH, and GPX4) and the levels of important indicators of ferroptosis (malondialdehyde, iron load). Moreover, B7H3 promoted ferroptosis resistance by regulating sterol regulatory element binding protein 2 (SREBP2)-mediated cholesterol metabolism. Both exogenous cholesterol supplementation and treatment with the SREBP2 inhibitor betulin reversed the effect of B7H3 on ferroptosis in CRC cells. Furthermore, we verified that B7H3 downregulated SREBP2 expression by activating the AKT pathway. Additionally, multiplex immunohistochemistry was carried out to show the expression of B7H3, prostaglandin-endoperoxide synthase 2, and SREBP2 in CRC tumor tissues, which was associated with the prognosis of patients with CRC. In summary, our findings reveal a role for B7H3 in regulating ferroptosis by controlling cholesterol metabolism in CRC.
Collapse
Affiliation(s)
- Haiyan Jin
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Mengxin Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dongze Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Xiaoshan Liu
- Pasteurien College, Suzhou Medical College, Soochow UniversitySuzhouChina
| | - Yuesheng Guo
- Pasteurien College, Suzhou Medical College, Soochow UniversitySuzhouChina
| | - Lu Xia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanjun Chen
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuqi Chen
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ruyan Xu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Cuiping Liu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Qinhua Xi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Guangbo Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| |
Collapse
|
41
|
Chu YD, Cheng LC, Lim SN, Lai MW, Yeh CT, Lin WR. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis 2023; 14:660. [PMID: 37816733 PMCID: PMC10564793 DOI: 10.1038/s41419-023-06187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Division of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
42
|
Xie L, Liao J, Liu W, Wang R, Li X, Li W, Zhou Z. Gastrodin overcomes chemoresistance via inhibiting Skp2-mediated glycolysis. Cell Death Discov 2023; 9:364. [PMID: 37779163 PMCID: PMC10543462 DOI: 10.1038/s41420-023-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Aerobic glycolysis, a typical phenotype in human tumors, is associated with tumor progression and chemotherapy resistance. The present study demonstrated that cisplatin-resistant oral squamous cell carcinoma (OSCC) cells exerted a stronger glycolysis ability, which was associated with hexokinase 2 (HK2) overexpression. Additionally, the tumor growth of OSCC cells was delayed in vivo and the glycolysis was notably decreased following HK2 knockdown. The natural compound screening revealed that gastrodin could be an effective candidate for OSCC therapy since it inhibited HK2-mediated glucose metabolism and promoted endogenous OSCC cell apoptosis. Furthermore, gastrodin could bind to protein kinase B (Akt) and suppress its activity, thus downregulating HK2 at the transcriptional level. Additionally, S-phase kinase-associated protein 2 (Skp2) was highly expressed in OSCC cells, while K63-linked ubiquitination of Akt was inhibited in Skp2-depleted cisplatin-resistant OSCC cells. Gastrodin could also inhibit the cisplatin resistance of OSCC cells in vivo, particularly when combined with the Skp2 inhibitor, SZL P1-41. Overall, the aforementioned finding suggested that targeting the Skp2-Akt axis could be a potential therapeutic strategy for treating OSCC and overcoming chemoresistance.
Collapse
Affiliation(s)
- Li Xie
- Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan, 410015, China.
| |
Collapse
|
43
|
Pendleton KE, Wang K, Echeverria GV. Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 2023; 11:1254313. [PMID: 37779896 PMCID: PMC10534013 DOI: 10.3389/fcell.2023.1254313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Karen Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Li X, Xie L, Zhou L, Gan Y, Han S, Zhou Y, Qing X, Li W. Bergenin Inhibits Tumor Growth and Overcomes Radioresistance by Targeting Aerobic Glycolysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1905-1925. [PMID: 37646142 DOI: 10.1142/s0192415x23500842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. However, the effects of bergenin on the abnormal glucose metabolism of cancer cells are yet unclear. In this study, HK2 was overexpressed in OSCC tissues, and the depletion of HK2 inhibited the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, bergenin, exerted a robust antitumor effect on OSCC cells. Bergenin inhibited cancer cell proliferation, suppressed glycolysis, and induced intrinsic apoptosis in OSCC cells by downregulating HK2. Notably, bergenin restored the antitumor efficacy of irradiation in the radioresistant OSCC cells. A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Xie
- Department of Head and Neck Surgery, Hunan Cancer, Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P. R. China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Yuanfeng Zhou
- Department of Infectious Diseases, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Linhai, Taizhou 317000, P. R. China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
45
|
Xia L, Chen Y, Li J, Wang J, Shen K, Zhao A, Jin H, Zhang G, Xi Q, Xia S, Shi T, Li R. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl) 2023; 136:1977-1989. [PMID: 37488673 PMCID: PMC10431251 DOI: 10.1097/cm9.0000000000002772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Collapse
Affiliation(s)
- Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
46
|
Shin SH, Ju EJ, Park J, Ko EJ, Kwon MR, Lee HW, Son GW, Park YY, Kim YJ, Song SY, Lee S, Seo BS, Song JA, Lim S, Jung D, Kim S, Lee H, Park SS, Jeong SY, Choi EK. ITC-6102RO, a novel B7-H3 antibody-drug conjugate, exhibits potent therapeutic effects against B7-H3 expressing solid tumors. Cancer Cell Int 2023; 23:172. [PMID: 37596639 PMCID: PMC10439577 DOI: 10.1186/s12935-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The B7-H3 protein, encoded by the CD276 gene, is a member of the B7 family of proteins and a transmembrane glycoprotein. It is highly expressed in various solid tumors, such as lung and breast cancer, and has been associated with limited expression in normal tissues and poor clinical outcomes across different malignancies. Additionally, B7-H3 plays a crucial role in anticancer immune responses. Antibody-drug conjugates (ADCs) are a promising therapeutic modality, utilizing antibodies targeting tumor antigens to selectively and effectively deliver potent cytotoxic agents to tumors. METHODS In this study, we demonstrate the potential of a novel B7-H3-targeting ADC, ITC-6102RO, for B7-H3-targeted therapy. ITC-6102RO was developed and conjugated with dHBD, a soluble derivative of pyrrolobenzodiazepine (PBD), using Ortho Hydroxy-Protected Aryl Sulfate (OHPAS) linkers with high biostability. We assessed the cytotoxicity and internalization of ITC-6102RO in B7-H3 overexpressing cell lines in vitro and evaluated its anticancer efficacy and mode of action in B7-H3 overexpressing cell-derived and patient-derived xenograft models in vivo. RESULTS ITC-6102RO inhibited cell viability in B7-H3-positive lung and breast cancer cell lines, inducing cell cycle arrest in the S phase, DNA damage, and apoptosis in vitro. The binding activity and selectivity of ITC-6102RO with B7-H3 were comparable to those of the unconjugated anti-B7-H3 antibody. Furthermore, ITC-6102RO proved effective in B7-H3-positive JIMT-1 subcutaneously xenografted mice and exhibited a potent antitumor effect on B7-H3-positive lung cancer patient-derived xenograft (PDX) models. The mode of action, including S phase arrest and DNA damage induced by dHBD, was confirmed in JIMT-1 tumor tissues. CONCLUSIONS Our preclinical data indicate that ITC-6102RO is a promising therapeutic agent for B7-H3-targeted therapy. Moreover, we anticipate that OHPAS linkers will serve as a valuable platform for developing novel ADCs targeting a wide range of targets.
Collapse
Affiliation(s)
- Seol Hwa Shin
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Eun Jin Ju
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Jin Park
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Eun Jung Ko
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Mi Ri Kwon
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Hye Won Lee
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Ga Won Son
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sangkwang Lee
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Beom Seok Seo
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Jin-A Song
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Sangbin Lim
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Doohwan Jung
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Sunyoung Kim
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Hyangsook Lee
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seok Soon Park
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
| | - Seong-Yun Jeong
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
| | - Eun Kyung Choi
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
47
|
Guo X, Chang M, Wang Y, Xing B, Ma W. B7-H3 in Brain Malignancies: Immunology and Immunotherapy. Int J Biol Sci 2023; 19:3762-3780. [PMID: 37564196 PMCID: PMC10411461 DOI: 10.7150/ijbs.85813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
The immune checkpoint B7-H3 (CD276), a member of the B7 family with immunoregulatory properties, has been identified recently as a novel target for immunotherapy for refractory blood cancers and solid malignant tumors. While research on B7-H3 in brain malignancies is limited, there is growing interest in exploring its therapeutic potential in this context. B7-H3 plays a crucial role in regulating the functions of immune cells, cancer-associated fibroblasts, and endothelial cells within the tumor microenvironment, contributing to the creation of a pro-tumorigenic milieu. This microenvironment promotes uncontrolled cancer cell proliferation, enhanced metabolism, increased cancer stemness, and resistance to standard treatments. Blocking B7-H3 and terminating its immunosuppressive function is expected to improve anti-tumor immune responses and, in turn, ameliorate the progression of tumors. Results from preclinical or observative studies and early-phase trials targeting B7-H3 have revealed promising anti-tumor efficacy and acceptable toxicity in glioblastoma (GBM), diffuse intrinsic pontine glioma (DIPG), medulloblastoma, neuroblastoma, craniopharyngioma, atypical teratoid/rhabdoid tumor, and brain metastases. Ongoing clinical trials are now investigating the use of CAR-T cell therapy and antibody-drug conjugate therapy, either alone or in combination with standard treatments or other therapeutic approaches, targeting B7-H3 in refractory or recurrent GBMs, DIPGs, neuroblastomas, medulloblastomas, ependymomas, and metastatic brain tumors. These trials hold promise for providing effective treatment options for these challenging intracranial malignancies in both adult and pediatric populations.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengqi Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
48
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
49
|
Chen B, Xu X, Wu W, Zheng K, Yu Y. LINC00659 Inhibits Hepatocellular Carcinoma Malignant Progression by Blocking Aerobic Glycolysis through FUS Recruitment and SLC10A1 Modulation. Anal Cell Pathol (Amst) 2023; 2023:5852963. [PMID: 37234237 PMCID: PMC10208759 DOI: 10.1155/2023/5852963] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of liver cancer that poses severe threat to human health worldwide. Aerobic glycolysis is a hallmark of HCC and facilitates its progression. Solute carrier family 10 member 1 (SLC10A1) and long intergenic non-protein coding RNA 659 (LINC00659) were detected to be downregulated in HCC cells, yet their potential functions underlying HCC progression remained unidentified. In the current work, colony formation and transwell assays were used to detect HCC cells (HepG2 and HuH-7) proliferation and migration in vitro study. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were used for gene/protein expression determination. Seahorse assay was performed for aerobic glycolysis assessment. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted for detection of the molecular interaction between LINC00659 and SLC10A1. The results showed that overexpressed SLC10A1 significantly suppressed the proliferation, migration, and aerobic glycolysis in HCC cells. Mechanical experiments further demonstrated that LINC00659 positively regulated SLC10A1 expression in HCC cells by recruiting fused protein in sarcoma (FUS). Our work elucidated that LINC00659 inhibited HCC progression and aerobic glycolysis via the FUS/SLC10A1 axis, revealing a novel lncRNA-RNA-binding protein-mRNA network in HCC, which might provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Xin Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Wei Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Ke Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Yijun Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| |
Collapse
|
50
|
Liu G, Wang H, Ran R, Wang Y, Li Y. FOSL1 transcriptionally regulates PHLDA2 to promote 5-FU resistance in colon cancer cells. Pathol Res Pract 2023; 246:154496. [PMID: 37178619 DOI: 10.1016/j.prp.2023.154496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Tumor drug resistance is a leading cause of tumor treatment failure. To date, the association between FOS-Like antigen-1 (FOSL1) and chemotherapy sensitivity in colon cancer is unclear. The present study investigated the molecular mechanism of FOSL1 regulating 5-Fluorouracil (5-FU) resistance in colon cancer. METHODS FOSL1 expression in colon cancer was analyzed by bioinformatics methods, and its downstream regulatory factors were predicted. Pearson correlation analyzed the expression of FOSL1 and downstream regulatory gene. Meanwhile, the expression of FOSL1 and its downstream factor Pleckstrin Homology-Like Domain Family A Member 2 (PHLDA2) in colon cancer cell lines was measured by qRT-PCR and western blot. The regulatory relationship between FOSL1 and PHLDA2 was verified by chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter assay. The effects of the FOSL1/PHLDA2 axis on the resistance in colon cancer cells to 5-FU were analyzed by cell experiments. RESULTS FOSL1 expression was evidently up-regulated in colon cancer and 5-FU resistant cells. FOSL1 was positively correlated with PHLDA2 in colon cancer. In vitro cell assays showed that low expression of FOSL1 significantly enhanced 5-FU sensitivity in colon cancer cells, significantly suppressed the proliferation of cancer cells, and induced apoptosis. Overexpression of FOSL1 presented the opposite regulatory trend. Mechanistically, FOSL1 activated PHLDA2 and up-regulated its expression. Moreover, by activating glycolysis, PHLDA2 promoted 5-Fu resistance and cell proliferation, and reduced cell apoptosis in colon cancer. CONCLUSION Down-regulated FOSL1 expression could enhance the 5-FU sensitivity of colon cancer cells, and FOSL1/PHLDA2 axis may be an effective target for overcoming chemotherapy resistance in colon cancer.
Collapse
Affiliation(s)
- Guangyi Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huan Wang
- Department of Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rui Ran
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yicheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|