1
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
2
|
Yang S, Li Y, Zhang Y, Wang Y. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev 2024:S1359-6101(24)00085-6. [PMID: 39490234 DOI: 10.1016/j.cytogfr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic stress is a significant risk factor that contributes to the progression of colorectal cancer (CRC) and has garnered considerable attention in recent research. It influences the distribution and function of immune cells within the intestinal mucosa through the "brain-gut" axis, altering cytokine and chemokine secretion and creating an immunosuppressive tumor microenvironment. The intestine, often called the "second brain," is particularly susceptible to the effects of chronic stress. Cytokines and chemokines in intestinal mucosal immunity(IMI) are closely linked to CRC cells' proliferation, metastasis, and drug resistance under chronic stress. Recently, antidepressants have emerged as potential therapeutic agents for CRC, possibly by modulating IMI to restore homeostasis and exert anti-tumor effects. This article reviews the role of chronic stress in promoting CRC progression via its impact on intestinal mucosal immunity, explores potential targets within the intestinal mucosa under chronic stress, and proposes new approaches for CRC treatment.
Collapse
Affiliation(s)
- Shengya Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Komine C, Sohda M, Yokobori T, Shioi I, Ozawa N, Shibasaki Y, Nakazawa N, Osone K, Shiraishi T, Okada T, Sano A, Sakai M, Ogawa H, Kaira K, Shirabe K, Saeki H. Impact of Tumoral β2-Adrenergic Receptor Expression on Chemotherapeutic Response and Prognosis in Patients with Advanced Colorectal Cancer. Ann Surg Oncol 2024:10.1245/s10434-024-16195-8. [PMID: 39341920 DOI: 10.1245/s10434-024-16195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The β2-adrenergic receptor (β2-AR) is a therapeutic target for circulatory agonists and exhibits oncogenic activity in several cancers. However, its role in advanced colorectal cancer (CRC) treated using chemotherapy remains unclear. We investigated the potential of β2-AR as a novel chemosensitivity marker and therapeutic target in inoperable CRC. METHODS β2-AR expression was evaluated immunohistochemically in 80 advanced or recurrent CRC cases for which untreated resected specimens were available before systemic chemotherapy implementation. We assessed the relationship among β2-AR protein expression, clinicopathological factors, therapeutic response, and prognosis. Furthermore, we evaluated the significance of β2-AR as an in vitro and in vivo therapeutic target using CRC cell lines and a CRC xenograft model treated with the β-blocker, propranolol, and other anticancer agents. RESULTS High tumoral β2-AR expression was associated with shorter progression-free survival and chemotherapeutic resistance in patients treated with oxaliplatin-based regimens and bevacizumab-based regimens. We found no synergistic effect between propranolol and oxaliplatin. However, combined administration of propranolol and bevacizumab induced significant tumor shrinkage in the CRC xenograft model. CONCLUSIONS β2-AR is a possible biomarker for chemosensitivity and prognosis in advanced CRC. Repositioning existing β-blockers could be beneficial for treating CRC resistant to existing treatment regimens.
Collapse
Affiliation(s)
- Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan.
| | - Takehiko Yokobori
- Research Program for Omics-Based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan.
| | - Ikuma Shioi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
4
|
Yang J, Wei W, Zhang S, Jiang W. Chronic stress influences the macrophage M1-M2 polarization balance through β-adrenergic signaling in hepatoma mice. Int Immunopharmacol 2024; 138:112568. [PMID: 38936055 DOI: 10.1016/j.intimp.2024.112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Chronic stress negatively affects the immune system and promotes tumor progression. Tumor-associated macrophage (TAM) is an important component of the tumor immune microenvironment. However, the influence of chronic stress on M1-M2 polarization of TAM is unclear. We used flow cytometry to measure the M1-M2 polarization of TAM in chronic stress hepatocellular carcinoma (HCC) bearing mice. We also measured the level of norepinephrine and blocked β-adrenergic signaling to explore the role of β-adrenergic receptor in the effect of chronic stress on M1-M2 polarization of TAM. We found that chronic stress disrupts the M1-M2 polarization in tumor tissues, increased the level of CD11b+Ly6C+CCR2+ monocyte and interleukin-1beta in blood and promoted the growth of HCC. Furthermore, chronic stress upregulated the level of CCL2 in tumor tissues. Finally, we found chronic stress increased norepinephrine level in serum and propranolol, a blocker of β-adrenergic signaling, inhibited HCC growth, recovered the M1-M2 polarization balance of TAM in tumor tissues, blocked the increase of CD11b+Ly6C+CCR2+ monocytes in blood, and blocked the increase of CCL2 in tumor tissues induced by chronic stress. Our study indicated that chronic stress disrupts the M1-M2 polarization balance of TAMs through β-adrenergic signaling, thereby promoting the growth of HCC.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wei
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Zhou Y, Chu P, Wang Y, Li N, Gao Q, Wang S, Wei J, Xue G, Zhao Y, Jia H, Song J, Zhang Y, Pang Y, Zhu H, Sun J, Ma S, Su C, Hu B, Zhao Z, Zhang H, Lu J, Wang J, Wang H, Sun Z, Fang D. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. SCIENCE ADVANCES 2024; 10:eado1533. [PMID: 39151008 PMCID: PMC11328899 DOI: 10.1126/sciadv.ado1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis. Targeted USP22 deletion decreased ATGL expression and lipolysis, subsequently inhibiting EPI-mediated breast cancer lung metastasis. USP22 acts as a bona fide deubiquitinase for the Atgl gene transcription factor FOXO1, and EPI architects a lipolysis signaling pathway to stabilize USP22 through AKT-mediated phosphorylation. Notably, USP22 phosphorylation levels are positively associated with EPI and with downstream pathways involving both FOXO1 and ATGL in breast cancers. Pharmacological USP22 inhibition synergized with β-blockers in treating preclinical xenograft breast cancer models. This study reveals a molecular pathway behind EPI's tumor-promoting effects and provides a strong rationale for combining USP22 inhibition with β-blockers to treat aggressive breast cancer.
Collapse
Affiliation(s)
- Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ya Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juncheng Wei
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yujie Pang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jia Sun
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Suxian Ma
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chen Su
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Bingjin Hu
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoyue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice Lu
- Department of Medicine & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongjiang Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Deyu Fang
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Zhang J, Teng F, Wu T, Li S, Li K. Quercetin inhibits chronic stress-mediated progression of triple-negative breast cancer by blocking β 2-AR/ERK1/2 pathway. Biomed Pharmacother 2024; 177:116985. [PMID: 38901200 DOI: 10.1016/j.biopha.2024.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Chronic stress-mediated sustained release of neurotransmitters, which ultimately leads to the activation of β2-adrenergic receptor (β2-AR) signaling, is one of the most important reasons for triple-negative breast cancer (TBNC) progression. Quercetin (Que) has been proven to have the advantage of ameliorating stress psychological disorder. Our present study aimed to investigate the effect of Que on tumor growth and metastasis in TNBC xenograft mice undergoing stress, and to explore its underlying mechanisms. We first evaluated the effect of Que on the progression of TNBC in nude mice in vivo. The results showed that, Que could inhibit chronic stress-induced TNBC growth and occurrence of lung metastasis. We subsequently employed epinephrine (E) as a representative of stress hormone to investigate its possible mechanism in vitro. The results showed that, Que could inhibit E-mediated proliferation and migration of TNBC cells by blocking β2-AR/ERK1/2 pathway. In conclusion, our data demonstrated that Que could inhibit chronic stress-induced ERK1/2 activity in TNBC cells, and thereby weakening the potential for TNBC growth and metastasis.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Feiyu Teng
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Tingting Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Shizheng Li
- Department of Emergency Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Kun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
7
|
Liu J, Chai XX, Qiu XR, Sun WJ, Tian YL, Guo WH, Yin DC, Zhang CY. Type X collagen knockdown inactivate ITGB1/PI3K/AKT to suppress chronic unpredictable mild stress-stimulated triple-negative breast cancer progression. Int J Biol Macromol 2024; 273:133074. [PMID: 38866293 DOI: 10.1016/j.ijbiomac.2024.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Rong Qiu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Yi-Le Tian
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China.
| |
Collapse
|
8
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Attia Y, Hakeem A, Samir R, Mohammed A, Elsayed A, Khallaf A, Essam E, Amin H, Abdullah S, Hikmat S, Hossam T, Mohamed Z, Aboelmagd Z, Hammam O. Harnessing adrenergic blockade in stress-promoted TNBC in vitro and solid tumor in vivo: disrupting HIF-1α and GSK-3β/β-catenin driven resistance to doxorubicin. Front Pharmacol 2024; 15:1362675. [PMID: 38962320 PMCID: PMC11220203 DOI: 10.3389/fphar.2024.1362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 07/05/2024] Open
Abstract
Sympathetic activation triggered by chronic stress afflicting cancer survivors is an emerging modulator of tumorigenesis. Adrenergic blockade was previously associated with improving response to doxorubicin (DOX) in triple-negative breast cancer (TNBC), yet the precise underlying mechanisms remain obscure. The resilience of cancer stem cells (CSCs) during chemotherapy fosters resistance and relapse. Hypoxia-inducible factor-1α (HIF-1α) and β-catenin are intertwined transcriptional factors that enrich CSCs and evidence suggests that their expression could be modulated by systemic adrenergic signals. Herein, we aimed to explore the impact of adrenoreceptor blockade using carvedilol (CAR) on DOX and its potential to modulate CSCs overcoming chemoresistance. To achieve this aim, in vitro studies were conducted using adrenaline-preincubated MDA-MB-231 cells and in vivo studies using a chronic restraint stress-promoted solid tumor mouse model. Results revealed that adrenaline increased TNBC proliferation and induced a phenotypic switch reminiscent of CSCs, as evidenced by enhanced mammosphere formation. These results paralleled an increase in aldehyde dehydrogenase-1 (ALDH-1) and Nanog expression levels as well as HIF-1α and β-catenin upsurge. In vivo, larger tumor volumes were observed in mice under chronic stress compared to their unstressed counterparts. Adrenergic blockade using CAR, however, enhanced the impact DOX had on halting TNBC cell proliferation and tumor growth via enhanced apoptosis. CAR also curbed HIF-1α and β-catenin tumor levels subsequently suppressing ALDH-1 and SOX2. Our study unveils a central role for HIF-1α linking stress-induced sympathetic activation fueling CSC enrichment via the β-catenin pathway. It also highlights novel insights into CAR's capacity in reversing DOX chemoresistance in TNBC.
Collapse
Affiliation(s)
- Yasmeen Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Andrew Hakeem
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Rawda Samir
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Aya Mohammed
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | | | - Alaa Khallaf
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Eman Essam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Hossameldeen Amin
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Sarah Abdullah
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Salwan Hikmat
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Tarek Hossam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Mohamed
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Aboelmagd
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
10
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
11
|
Lou F, Luo S, Kang N, Yan L, Long H, Yang L, Wang H, Liu Y, Pu J, Xie P, Ji P, Jin X. Oral microbiota dysbiosis alters chronic restraint stress-induced depression-like behaviors by modulating host metabolism. Pharmacol Res 2024; 204:107214. [PMID: 38763328 DOI: 10.1016/j.phrs.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China.
| |
Collapse
|
12
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
13
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
14
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Cui Y, Zhuang M, Huang Z, Guo Y, Chen F, Li Y, Long Y, Liu Y, Zeng G, Feng X, Chen X. An antihypertensive drug-AT1 inhibitor attenuated BRCA development promoted by chronic psychological stress via Ang II/PARP1/FN1 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167031. [PMID: 38253214 DOI: 10.1016/j.bbadis.2024.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Chronic psychological stress contributes to the occurrence of cancer and activates the renin-angiotensin system (RAS). However, the mechanisms by which RAS promotes the progression of breast cancer (BRCA) under chronic psychological stress are remain unknown. In this study, we observed elevated levels of Angiotensin II (Ang II) in both serum and BRCA tissue under chronic stress, leading to accelerated BRCA growth in a mouse model. An antihypertensive drug, candesartan (an AT1 inhibitor), effectively attenuated Ang II-induced cell proliferation and metastasis. Utilizing mass spectrometry and weighted gene co-expression network analysis (WGCNA), we identified fibronectin 1 (FN1) as the hub protein involved in chronic stress-Ang II/AT1 axis. Focal adhesion pathway was identified as a downstream signaling pathway activated during the progression of chronic stress. Depletion of FN1 significantly attenuated Ang II-induced proliferation and metastasis of BRCA cells. Poly (ADP-ribose) polymerase 1 (PARP1) was found to bind to the DNA promoter of FN1, leading to the transcription of FN1. Ang II upregulated PARP1 expression, resulting in increased FN1 levels. Recombinant FN1 partially restored the progress of BRCA malignancy induced by the Ang II/PARP1 pathway. In vivo, candesartan reversed the progressive effect of chronic psychological stress on BRCA. In clinical samples, Ang II levels in both serum and tumor tissues are higher in stressed patients compared to control patients. Serum Ang II levels were positively correlated with chronic stress indicators. In conclusion, our study demonstrated that chronic psychological stress accelerates the malignancy of BRCA, and the AT1 inhibitor candesartan counteracts these effects by suppressing the Ang II-AT1 axis and the downstream PARP1/FN1/focal adhesion pathway.
Collapse
Affiliation(s)
- Yuqing Cui
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ming Zhuang
- The Department Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Zheping Huang
- Women & Infants Hospital of Rhode Island & Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Yan Guo
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Fengzhi Chen
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yangyang Li
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yuanhui Long
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Ying Liu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Guangchun Zeng
- The Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xujing Feng
- The Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xuesong Chen
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
16
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Nair SG, Benny S, Jose WM, Aneesh T P. Beta-blocker adjunct therapy as a prospective anti-metastatic with cardio-oncologic regulation. Clin Exp Metastasis 2024; 41:9-24. [PMID: 38177715 DOI: 10.1007/s10585-023-10258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The prevailing treatment stratagem in cancer therapy still challenges the dilemma of a probable metastatic spread following an initial diagnosis. Including an anti-metastatic agent demands a significant focus to overrule the incidence of treatment failures. Adrenergic stimulation underlying the metastatic spread paved the way for beta blockers as a breakthrough in repurposing as an anti-metastatic agent. However, the current treatment approach fails to fully harness the versatile potential of the drug in inhibiting probable metastasis. The beta blockers were seen to show a myriad of grip over the pro-metastatic and prognostic parameters of the patient. Novel interventions in immune therapy, onco-hypertension, surgery-induced stress, induction of apoptosis and angiogenesis inhibition have been used as evidence to interpret our objective of discussing the potential adjuvant role of the drug in the existing anti-cancer regimens. Adding weight to the relative incidence of onco-hypertension as an unavoidable side effect from chemotherapy, the slot for an anti-hypertensive agent is necessitated, and we try to suggest beta-blockers to fill this position. However, pointing out the paucity in the clinical study, we aim to review the current status of beta blockers under this interest to state how the drug should be included as a drug of choice in every patient undergoing cancer treatment.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi, Kerala, 682041, India.
| | - Aneesh T P
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
18
|
Lu Y, Cheng D, Pang J, Peng Y, Jin S, Zhang X, Li Y, Zuo Y. Chronic stress promotes gastric cancer progression via the adrenoceptor beta 2/PlexinA1 pathway. Cell Stress Chaperones 2024; 29:201-215. [PMID: 38331165 PMCID: PMC10939071 DOI: 10.1016/j.cstres.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic stress is a common emotional disorder in cancer patients. Chronic stress promotes progression of gastric cancer (GC) and leads to poor outcomes. However, the underlying mechanisms remain not clear. Herein, we explored the possible mechanisms of chronic stress in GC progression. The Cancer Genome Atlas (TCGA) datasets were analyzed for differentially expressed genes. Clinical data of GC were evaluated for their association with PlexinA1 using TCGA and Kaplan-Meier-plotter databases. Chronic stress of GC patients was evaluated using the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Chronic unpredictable mild stress (CUMS) was used to induce chronic stress in mice. Gastric xenograft tumor was constructed using the sewing method. Chronic stress-like behaviors were assessed using light/dark box and tail suspension tests. Protein expression was detected using immunohistochemistry and Western blot analysis. Analyses of TCGA and the Kaplan-Meier-plotter databases showed that patients with high levels of PlexinA1 in GC had worse overall survival than those with low levels of PlexinA1. A total of 36 GC patients were enrolled in the study, and about 33% of the patients had chronic stress. Compared with patients without chronic stress, higher expression levels of adrenoceptor beta 2 and PlexinA1 were observed in patients with chronic stress. The tumor size in mice under CUMS was significantly increased compared with the control mice. Adrenoceptor beta 2, PlexinA1, N-cadherin, and alpha-smooth muscle actin, as well as Ki67 were highly expressed in the tumors of CUMS group. However, E-cadherin was lowly expressed in the tumors of CUMS group. Importantly, chemical sympathectomy with 6-hydroxydopamine or treatment with a selective β2 adrenergic receptor antagonist (ICI118,551) could reverse these effects. Our findings suggest that chronic stress plays an important role in GC progression and there is a potential for blocking the epinephrine-β2AR/PlexinA1 pathway in the treatment of GC.
Collapse
Affiliation(s)
- Yanjie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China; Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China
| | - Die Cheng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Jiayu Pang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuqiao Peng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Shunkang Jin
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Xinyu Zhang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuhong Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China; Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
| | - Yanzhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
| |
Collapse
|
19
|
Luo S, Long H, Lou F, Liu Y, Wang H, Pu J, Ji P, Jin X. Chronic restraint stress promotes oral squamous cell carcinoma development by inhibiting ALDH3A1 via stress response hormone. BMC Oral Health 2024; 24:43. [PMID: 38191346 PMCID: PMC10773021 DOI: 10.1186/s12903-023-03787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Chronic restraint stress (CRS) has iteratively been reported to be possibly implicated in the development of numerous cancer types. However, its role in oral squamous cell carcinoma (OSCC) has not been well elucidated. Here we intended to evaluate the role and mechanism. METHODS The effects of CRS were investigated in xenograft models of OSCC by using transcriptome sequencing, LC-MS, ELISA and RT-PCR. Moreover, the role of CRS and ALDH3A1 on OSCC cells was researched by using Trans-well, flow cytometry, western blotting, immunofluorescence, ATP activity and OCR assay. Furthermore, immunohistochemical staining was employed to observe the cell proliferation and invasion of OSCC in xenotransplantation models. RESULTS CRS promoted the progression of OSCC in xenograft models, stimulated the secretion of norepinephrine and the expression of ADRB2, but decreased the expression of ALDH3A1. Moreover, CRS changed energy metabolism and increased mitochondrial metabolism markers. However, ALDH3A1 overexpression suppressed proliferation, EMT and mitochondrial metabolism of OSCC cells. CONCLUSION Inhibition of ALDH3A1 expression plays a pivotal role in CRS promoting tumorigenic potential of OSCC cells, and the regulatory of ALDH3A1 on mitochondrial metabolism may be involved in this process.
Collapse
Affiliation(s)
- Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.
| |
Collapse
|
20
|
Amato R, Lucchesi M, Marracci S, Filippi L, Dal Monte M. β-Adrenoceptors in Cancer: Old Players and New Perspectives. Handb Exp Pharmacol 2024; 285:665-688. [PMID: 37982890 DOI: 10.1007/164_2023_701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of β-adrenoceptors (β-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that β-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among β-ARs, β2-AR seems to be the main β-AR subtype involved in tumor development and progression. However, there are data indicating that also β1-AR and β3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three β-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of β-ARs as therapeutic targets in treating tumors.
Collapse
MESH Headings
- Humans
- Neoplasms/metabolism
- Neoplasms/drug therapy
- Neoplasms/pathology
- Animals
- Receptors, Adrenergic, beta-3/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Receptors, Adrenergic, beta-1/metabolism
- Signal Transduction
- Disease Progression
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
21
|
Yuan C, Wu S, Wu Y, Tian C, Wang Z, Zhang X. Effects of Traditional Chinese Medicine "Fuzheng Qingdu Decoction" on Autonomic Function and Cancer-Related Symptoms in Patients with Advanced Gastric Cancer undergoing Chemotherapy: A Controlled Trial. Integr Cancer Ther 2024; 23:15347354241229414. [PMID: 38323452 PMCID: PMC10851715 DOI: 10.1177/15347354241229414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE To evaluate the effects of Fuzheng Qingdu Decoction (FZQDD) on the autonomic function and cancer-related symptoms of patients with advanced gastric cancer undergoing chemotherapy to verify its clinical efficacy. METHODS Sixty-two patients with stage III or IV gastric cancer were included in this study. The patients were divided into 2 groups: the chemotherapy (33 patients) and chemotherapy with FZQDD (29 patients) groups. The primary outcome was the autonomic function of the patients before and after the interventions. The parameters that were used to assess autonomic function were deceleration capacity (DC) and acceleration capacity (AC) of heart rate and heart rate variability (HRV), which comprised standard deviation of the normal-normal interval (SDNN), root mean square of successive interval differences (RMSSD), low-frequency power (LF), high-frequency power (HF), total power (TP), and LF-HF ratio. The secondary outcomes were cancer-related symptoms and the quality of life. RESULTS DC and HRV parameters (ie, SDNN, RMSSD, LF, HF, and TP) were significantly decreased in the chemotherapy group; however, AC significantly increased after the interventions. No significant differences were observed in the DC, AC, and HRV parameters before and after the interventions in the chemotherapy with FZQDD group. Nevertheless, the changes in DC, AC, and HRV parameters (SDNN, RMSSD, HF, and TP) before and after the interventions were statistically significant between both the groups. FZQDD significantly improved the cancer-related symptoms and the quality of life of the patients. CONCLUSIONS Oxaliplatin combined with S-1 (tegafur, gimeracil, and oteracil potassium) can impair autonomic modulation in patients with advanced gastric cancer. FZQDD can alleviate autonomic dysfunction by increasing the parasympathetic activity and decreasing the sympathetic tone, helping patients restore the dynamic sympathovagal balance, and significantly improving the cancer-related symptoms and the quality of life of patients.
Collapse
Affiliation(s)
- Chengjia Yuan
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuang Wu
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Wu
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cuiling Tian
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zaichuan Wang
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaochun Zhang
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Lin X, He J, Liu F, Li L, Sun L, Niu L, Xi H, Zhan Y, Liu X, Hu P. β‑adrenergic receptor activation promotes the proliferation of HepG2 cells via the ERK1/2/CREB pathways. Oncol Lett 2023; 26:519. [PMID: 37927415 PMCID: PMC10623085 DOI: 10.3892/ol.2023.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Primary liver cancer is one of the most frequently diagnosed malignant tumors seen in clinics, and typically exhibits aggressive invasive behaviors, a poor prognosis, and is associated with high mortality rates. Long-term stress exposure causes norepinephrine (NE) release and activates the β-Adrenergic receptor (β-AR), which in turn exacerbates the occurrence and development of different types of cancers; however, the molecular mechanisms of β-AR in liver cancer are not fully understood. In the present study, reverse transcription (RT)-PCR and RT-quantitative PCR showed that β-AR expression was upregulated in human liver cancer cells (HepG2) compared with normal liver cells (LO2). Moreover, NE treatment promoted the growth of HepG2 cells, which could be blocked by propranolol, a β-AR antagonist. Notably, NE had no significant effect on the migration and epithelial-mesenchymal transition in HepG2 cells. Further experiments revealed that NE increased the phosphorylation levels of the extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element-binding protein (CREB), while inhibition of ERK1/2 and CREB activation significantly blocked NE-induced cell proliferation. In summary, the findings of the present study suggested that β-adrenergic receptor activation promoted the proliferation of HepG2 cells through ERK1/2/CREB signaling pathways.
Collapse
Affiliation(s)
- Xingcheng Lin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Jingjing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Fuhong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Lehui Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liyan Niu
- Huan Kui College, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Haolin Xi
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohua Liu
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
23
|
Fraterman I, Reijers ILM, Dimitriadis P, Broeks A, Gonzalez M, Menzies AMM, Lopez-Yurda M, Kapiteijn E, van der Veldt AAM, Suijkerbuijk KPM, Hospers GAP, Long GV, Blank CU, van de Poll-Franse LV. Association between pretreatment emotional distress and neoadjuvant immune checkpoint blockade response in melanoma. Nat Med 2023; 29:3090-3099. [PMID: 37957378 DOI: 10.1038/s41591-023-02631-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Neoadjuvant immune checkpoint blockade (ICB) outperforms adjuvant ICB for treatment of stage IIIB-D melanoma, but potential biomarkers of response, such as interferon-gamma (IFNγ) signature and tumor mutational burden (TMB), are insufficient. Preclinical studies suggest that emotional distress (ED) can negatively affect antitumor immune responses via β-adrenergic or glucocorticoid signaling. We performed a post hoc analysis evaluating the association between pretreatment ED and clinical responses after neoadjuvant ICB treatment in patients with stage IIIB-D melanoma in the phase 2 PRADO trial ( NCT02977052 ). The European Organisation for Research and Treatment of Cancer scale for emotional functioning was used to identify patients with ED (n = 28) versus those without (n = 60). Pretreatment ED was significantly associated with reduced major pathologic responses (46% versus 65%, adjusted odds ratio 0.20, P = 0.038) after adjusting for IFNγ signature and TMB, reduced 2-year relapse-free survival (74% versus 91%, adjusted hazard ratio 3.81, P = 0.034) and reduced 2-year distant metastasis-free survival (78% versus 95%, adjusted hazard ratio 4.33, P = 0.040) after adjusting for IFNγ signature. RNA sequencing analyses of baseline patient samples could not identify clear β-adrenergic- or glucocorticoid-driven mechanisms associated with these reduced outcomes. Pretreatment ED may be a marker associated with clinical responses after neoadjuvant ICB in melanoma and warrants further investigation. ClinicalTrials.gov registration: NCT02977052 .
Collapse
Affiliation(s)
- Itske Fraterman
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Petros Dimitriadis
- Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility and Molecular Pathology & Biobanking Department, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M Gonzalez
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - A M M Menzies
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid A M van der Veldt
- Departments of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands.
- Department of Medical and Clinical Psychology, Center of Research on Psychological and Somatic Disorders (CoRPS), Tilburg University, Tilburg, the Netherlands.
| |
Collapse
|
24
|
Vahid F, Rahmani W, Davoodi SH, Bohn T. Mental Health Conditions, Including Depression and Stress, Are Associated with Increased Odds of Gastric Cancer-Insights into the Role of Diet: A Case-Control Study. Nutrients 2023; 15:4981. [PMID: 38068839 PMCID: PMC10708069 DOI: 10.3390/nu15234981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Several risk factors, including nutritional/lifestyle ones, play a role in gastric cancer etiology. Further interactions with mental health have also been emphasized. We hypothesized that individuals with mental disorders would exhibit compromised nutrient intake, increasing their risk of gastric cancer. The state of mental health was evaluated in 82 patients with gastric cancer and 95 healthy controls using the 21-item Depression-Anxiety-Stress Scale. The participants' dietary intakes were evaluated by a 168-item food frequency questionnaire. Based on fully adjusted logistic regressions, there was a significant association between depression (OR = 1.938, CI 95%: 1.009-3.723) and stress (OR = 2.630, CI 95%: 1.014-6.819) with increased odds of gastric cancer. According to fully adjusted multinomial regressions, vitamins A and B6, beta-carotene, and black tea decreased the odds of depression, based on comparing the control group with cases of depression, while sugar and salt increased its odds. The highest significant association was found for salt intake and anxiety in cases with present anxiety (OR = 4.899, 95% CI: 2.218-10.819), and the highest significant protective effect was found for vitamin B6 and depression in cases with present depression (OR = 0.132, 95% CI: 0.055-0.320). However, considering causal relationships and clarifying the underlying mechanisms is imperative and requires further investigation. Advising healthy dietary patterns, e.g., a Mediterranean diet rich in vitamins, minerals, and phytochemicals such as vitamin A, B6, beta-carotene, and fiber, is expected to reduce the odds of gastric cancer, possibly related to lower levels of anxiety and depression.
Collapse
Affiliation(s)
- Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg;
| | - Wena Rahmani
- School of Medicine, Arak University of Medical Science, Arak 3848176941, Iran
| | - Sayed Hossein Davoodi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg;
| |
Collapse
|
25
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
26
|
Wu S, Guan W, Zhao H, Li G, Zhou Y, Shi B, Zhang X. Prognostic role of short-term heart rate variability and deceleration/acceleration capacities of heart rate in extensive-stage small cell lung cancer. Front Physiol 2023; 14:1277383. [PMID: 38028778 PMCID: PMC10663334 DOI: 10.3389/fphys.2023.1277383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Prior research suggests that autonomic modulation investigated by heart rate variability (HRV) might act as a novel predictive biomarker for cancer prognosis, such as in breast cancer and pancreatic cancer. It is not clear whether there is a correlation between autonomic modulation and prognosis in patients with extensive-stage small cell lung cancer (ES-SCLC). Therefore, the purpose of the study was to examine the association between short-term HRV, deceleration capacity (DC) and acceleration capacity (AC) of heart rate and overall survival in patients with ES-SCLC. Methods: We recruited 40 patients with ES-SCLC, and 39 were included in the final analysis. A 5-min resting electrocardiogram of patients with ES-SCLC was collected using a microelectrocardiogram recorder to analyse short-term HRV, DC and AC. The following HRV parameters were used: standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD). Overall survival of patients with ES-SCLC was defined as time from the date of electrocardiogram measurement to the date of death or the last follow-up. Follow-up was last performed on 07 June 2023. There was a median follow-up time of 42.2 months. Results: Univariate analysis revealed that the HRV parameter SDNN, as well as DC significantly predicted the overall survival of ES-SCLC patients (all p < 0.05). Multivariate analysis showed that the HRV parameters SDNN (hazard ratio = 5.254, 95% CI: 1.817-15.189, p = 0.002), RMSSD (hazard ratio = 3.024, 95% CI: 1.093-8.372, p = 0.033), as well as DC (hazard ratio = 3.909, 95% CI: 1.353-11.293, p = 0.012) were independent prognostic factors in ES-SCLC patients. Conclusion: Decreased HRV parameters (SDNN, RMSSD) and DC are independently associated with shorter overall survival in ES-SCLC patients. Autonomic nervous system function (assessed based on HRV and DC) may be a new biomarker for evaluating the prognosis of patients with ES-SCLC.
Collapse
Affiliation(s)
- Shuang Wu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Weizheng Guan
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yufu Zhou
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Zhang Y, Gan C, Xu J, Pang L, Li W, Cheng H. Psychological distress as a risk factor for the efficacy of chemotherapy in advanced gastric cancer patients. Support Care Cancer 2023; 31:669. [PMID: 37922088 DOI: 10.1007/s00520-023-08143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023]
Abstract
AIM To assess the relationship between psychological distress and quality of life (QoL), cancer-related fatigue (CRF), and chemotherapy efficacy in advanced gastric cancer patients. METHODS Advanced gastric cancer patients (39 with psychological distress and 35 without psychological distress) completed the Distress Thermometer (DT), QoL, and CRF test before receiving chemotherapy and assessed the efficacy after completing 2 courses of chemotherapy. RESULTS Psychological distress was a significant factor in the efficacy of chemotherapy in advanced gastric cancer patients (χ2 = 6.324; p = 0.042). Compared to advanced gastric cancer patients with no psychological distress, advanced gastric cancer patients with psychological distress had a poorer QoL (50.41 ± 6.17 vs. 60.01 ± 7.94, t = - 5.882, p < 0.01) and more pronounced CRF (5.75 ± 1.16 vs. 3.22 ± 0.75, t = 11.231, p < 0.01) while receiving chemotherapy. FACT-G (p = 0.0035, r = - 0.4568), as well as PFS (p < 0.0001, r = 0.6599), correlated significantly with efficacy for patients in the psychological distress group. The FACT-G (p = 0.0134, r = - 0.4139) of patients in the no psychological distress group correlated significantly with efficacy. CONCLUSION Psychological distress has a negative impact on QoL, CRF, and efficacy and may be a potential risk for the efficacy of palliative chemotherapy in advanced gastric cancer patients.
Collapse
Affiliation(s)
- Yongkang Zhang
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230088, China
| | - Chen Gan
- Department of Oncology, Anhui Medical University, Hefei, 230601, China
| | - Jian Xu
- Department of Oncology, Anhui Medical University, Hefei, 230601, China
| | - Lulian Pang
- Department of Oncology, Anhui Medical University, Hefei, 230601, China
| | - Wen Li
- Department of Oncology, Anhui Medical University, Hefei, 230601, China
| | - Huaidong Cheng
- Department of Oncology, Anhui Medical University, Hefei, 230601, China.
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, China.
| |
Collapse
|
28
|
Mi K, Zeng L, Chen Y, Yang S. Integrative Analysis of Single-Cell and Bulk RNA Sequencing Reveals Prognostic Characteristics of Macrophage Polarization-Related Genes in Lung Adenocarcinoma. Int J Gen Med 2023; 16:5031-5050. [PMID: 37942473 PMCID: PMC10629586 DOI: 10.2147/ijgm.s430408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a group of cancers with poor prognosis. The combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) can identify important genes involved in cancer development and progression from a broader perspective. Methods The scRNA-seq data and bulk RNA-seq data of LUAD were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Analyzing scRNA-seq for core cells in the GSE131907 dataset, and the uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Macrophage polarization-associated subtypes were acquired from the TCGA-LUAD dataset after analysis, followed by further identification of differentially expressed genes (DEGs) in the TCGA-LUAD dataset (normal/LUAD tissue samples, two subtypes). Venn diagrams were utilized to visualize differentially expressed and highly variable macrophage polarization-related genes. Subsequently, a prognostic risk model for LUAD patients was constructed by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO), and the model was investigated for stability in the external data GSE72094. After analyzing the correlation between the trait genes and significantly mutated genes, the immune infiltration between the high/low-risk groups was then examined. The Monocle package was applied to analyze the pseudo-temporal trajectory analysis of different cell clusters in macrophage clusters. Subsequently, cell clusters of data macrophages were selected as key cell clusters to explore the role of characteristic genes in different cell populations and to identify transcription factors (TFs) that affect signature genes. Finally, qPCR were employed to validate the expression levels of prognosis signature genes in LUAD. Results 424 macrophage highly variable genes, 3920 DEGs, and 9561 DEGs were obtained from macrophage clusters, the macrophage polarization-related subtypes, and normal/LUAD tissue samples, respectively. Twenty-eight differentially expressed and highly mutated MPRGs were obtained. A prognostic risk model with 7 DE-MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) was constructed. This prognostic model still has a good prediction effect in the GSE72094 dataset. ZNF536 and DNAH9 were mutated in the low-risk group, while COL11A1 was mutated in the high-risk group, and they were highly correlated with the characteristic genes. A total of 11 immune cells were significantly different in the high/low-risk groups. Five cell types were again identified in the macrophage cluster, and then NK cells: CD56hiCD62L+ differentiated earlier and were present mainly on 2 branches. While macrophages were present on 2 branches and differentiated later. It was found that the expression levels of BCLAF1 and MAX were higher in cluster 1, which might be the TFs affecting the expression of the characteristic genes. Moreover, qPCR confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Conclusion Seven MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) were identified as prognostic genes for LUAD and revealed the mechanisms of MPRGs at the single-cell level.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
29
|
Tiwari RK, Rawat SG, Kumar A. The antagonist of β-adrenergic receptor propranolol inhibits T cell lymphoma growth and enhances antitumor efficacy of cisplatin in vivo: A role of modulated apoptosis, glucose metabolism, pH regulation, and antitumor immune response. Int Immunopharmacol 2023; 124:110825. [PMID: 37619412 DOI: 10.1016/j.intimp.2023.110825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Accumulating evidence has shown a vital role of stress-regulatory hormones, including epinephrine, in the progression of numerous cancers, including T cell lymphoma. Further, the antitumor and chemosensitizing potential of propranolol, an inexpensive β-adrenergic receptor antagonist has also been reported against breast, colon, ovarian, and pancreatic cancers. However, in vivo antitumor and chemopotentiating activity of propranolol have not yet been examined against malignancies of hematological origin, including T cell lymphoma. Therefore, the present study is designed to evaluate the antitumor and chemopotentiating action of propranolol in a T cell lymphoma murine model. In this study, T cell lymphoma-bearing mice were treated with vehicle alone (PBS) or containing propranolol followed by administration of with or without cisplatin. The progression of the tumor was assessed along with analysis of tumor cell apoptosis, glucose metabolism, pH regulation, and antitumor immune response. The apoptosis was estimated by cellular and nuclear morphology analysis through Wright-Giemsa, annexin-V, and DAPI staining. ELISA was used to detect the epinephrine level in serum. The glucose, lactate, and NO levels were measured in the tumor ascitic fluid by calorimetric methods. RT-PCR and Western blot were used to assess the levels of various crucial regulators at gene and protein levels, respectively. Our results showed that propranolol exerts antitumor as well as chemopotentiating ability in DL-bearing mice by altering apoptosis, glycolysis, acidification of TME, and immunosuppression.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shiv Govind Rawat
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ajay Kumar
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
30
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
31
|
Gui H, Chen X, Li L, Zhu L, Jing Q, Nie Y, Zhang X. Psychological distress influences lung cancer: Advances and perspectives on the immune system and immunotherapy. Int Immunopharmacol 2023; 121:110251. [PMID: 37348230 DOI: 10.1016/j.intimp.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.
Collapse
Affiliation(s)
- Huan Gui
- Department of Hyperbaric Oxygen, People`s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Xulong Chen
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
32
|
Qadir J, Majid S, Khan MS, Wani MD, Naikoo NA. Vitamin D receptor gene variations and their haplotypic association: Possible impact on gastric cancer risk. J Cancer Res Ther 2023; 19:1115-1125. [PMID: 37787272 DOI: 10.4103/jcrt.jcrt_1479_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Vitamin D receptor (VDR) gene alterations have been associated with the occurrence and prognosis of various types of cancers, but only few studies have focussed on gastric cancer (GC) risk. Objectives This case-control study was conceived to evaluate possible association of VDR polymorphisms (Fok1, Taq1, and Cdx2) with GC risk. Materials and Methods A total of 293 subjects, including 143 GC patients and 150 controls were included in this study. The genotypes were elucidated by polymerase chain reaction-restriction fragment length polymorphism followed by DNA sequencing. Results The frequency of Fok1 genotypes (TC and TT) was found higher in GC cases compared to controls (P ≤ 0.05). In the stratified analysis, we observed a significant association of the (CT + TT) variant with GC risk in males, rural dwellers, smokers, and preobese cases, and those having no family history of Gastrointestinal cancer (P ≤ 0.05). In silico analysis predicted that the Fok1 variant impacts the stability and functional efficiency of the protein. Some exact haplotypes (CCG and CCA) of the VDR gene may act as low penetrance alleles in inclination to GC. Conclusion VDR Fok1 polymorphism is significantly associated with GC risk in the Kashmiri population. Specific haplotypes in the VDR gene could act synergistically in the development of GC.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry, Associated SMHS and Super Speciality Hospital and Research Centre, Government Medical College, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sabhiya Majid
- Department of Biochemistry, Associated SMHS and Super Speciality Hospital and Research Centre, Government Medical College, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Associated SMHS and Super Speciality Hospital and Research Centre, Government Medical College, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mumtaz Din Wani
- Department of Surgery, Associated SMHS and Super Speciality Hospital, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Niyaz A Naikoo
- Department of Biotechnology, Government College for Women, Cluster University, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
33
|
Wang Q, Liu Y, Li Z, Tang Y, Long W, Xin H, Huang X, Zhou S, Wang L, Liang B, Li Z, Xu M. Establishment of a novel lysosomal signature for the diagnosis of gastric cancer with in-vitro and in-situ validation. Front Immunol 2023; 14:1182277. [PMID: 37215115 PMCID: PMC10196375 DOI: 10.3389/fimmu.2023.1182277] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Gastric cancer (GC) represents a malignancy with a multi-factorial combination of genetic, environmental, and microbial factors. Targeting lysosomes presents significant potential in the treatment of numerous diseases, while lysosome-related genetic markers for early GC detection have not yet been established, despite implementing this process by assembling artificial intelligence algorithms would greatly break through its value in translational medicine, particularly for immunotherapy. Methods To this end, this study, by utilizing the transcriptomic as well as single cell data and integrating 20 mainstream machine-learning (ML) algorithms. We optimized an AI-based predictor for GC diagnosis. Then, the reliability of the model was initially confirmed by the results of enrichment analyses currently in use. And the immunological implications of the genes comprising the predictor was explored and response of GC patients were evaluated to immunotherapy and chemotherapy. Further, we performed systematic laboratory work to evaluate the build-up of the central genes, both at the expression stage and at the functional aspect, by which we could also demonstrate the reliability of the model to guide cancer immunotherapy. Results Eight lysosomal-related genes were selected for predictive model construction based on the inclusion of RMSE as a reference standard and RF algorithm for ranking, namely ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4, and NEU4. Taking into account accuracy, precision, recall, and F1 measurements, a preliminary determination of our study was carried out by means of applying the extra tree and random forest algorithms, incorporating the ROC-AUC value as a consideration, the Extra Tree model seems to be the optimal option with the AUC value of 0.92. The superiority of diagnostic signature is also reflected in the analysis of immune features. Conclusion In summary, this study is the first to integrate around 20 mainstream ML algorithms to construct an AI-based diagnostic predictor for gastric cancer based on lysosomal-related genes. This model will facilitate the accurate prediction of early gastric cancer incidence and the subsequent risk assessment or precise individualized immunotherapy, thus improving the survival prognosis of GC patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Weiguo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Huaiyu Xin
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bochuan Liang
- Faculty of Chinese Medicine, Nanchang Medical College, Nanchang, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Xu WW, Liao L, Dai W, Zheng CC, Tan XP, He Y, Zhang QH, Huang ZH, Chen WY, Qin YR, Chen KS, He ML, Law S, Lung ML, He QY, Li B. Genome-wide CRISPR/Cas9 screening identifies a targetable MEST-PURA interaction in cancer metastasis. EBioMedicine 2023; 92:104587. [PMID: 37149929 DOI: 10.1016/j.ebiom.2023.104587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Metastasis is one of the most lethal hallmarks of esophageal squamous cell carcinoma (ESCC), yet the mechanisms remain unclear due to a lack of reliable experimental models and systematic identification of key drivers. There is urgent need to develop useful therapies for this lethal disease. METHODS A genome-wide CRISPR/Cas9 screening, in combination with gene profiling of highly invasive and metastatic ESCC sublines, as well as PDX models, was performed to identify key regulators of cancer metastasis. The Gain- and loss-of-function experiments were taken to examine gene function. Protein interactome, RNA-seq, and whole genome methylation sequencing were used to investigate gene regulation and molecular mechanisms. Clinical significance was analyzed in tumor tissue microarray and TCGA databases. Homology modeling, modified ELISA, surface plasmon resonance and functional assays were performed to identify lead compound which targets MEST to suppress cancer metastasis. FINDINGS High MEST expression was associated with poor patient survival and promoted cancer invasion and metastasis in ESCC. Mechanistically, MEST activates SRCIN1/RASAL1-ERK-snail signaling by interacting with PURA. miR-449a was identified as a direct regulator of MEST, and hypermethylation of its promoter led to MEST upregulation, whereas systemically delivered miR-449a mimic could suppress tumor metastasis without overt toxicity. Furthermore, molecular docking and computational screening in a small-molecule library of 1,500,000 compounds and functional assays showed that G699-0288 targets the MEST-PURA interaction and significantly inhibits cancer metastasis. INTERPRETATION We identified the MEST-PURA-SRCIN1/RASAL1-ERK-snail signaling cascade as an important mechanism underlying cancer metastasis. Blockade of MEST-PURA interaction has therapeutic potential in management of cancer metastasis. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900, 2017YFA0505100); National Natural Science Foundation of China (31961160727, 82073196, 81973339, 81803551); NSFC/RGC Joint Research Scheme (N_HKU727/19); Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035); Key Laboratory of Guangdong Higher Education Institutes of China (2021KSYS009).
Collapse
Affiliation(s)
- Wen Wen Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Long Liao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Peng Tan
- Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qi-Hua Zhang
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Hao Huang
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wen-You Chen
- Department of Thoracic Surgery, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan-Ru Qin
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kui-Sheng Chen
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
35
|
Liu LB, Li J, Lai JX, Shi S. Harnessing interventions during the immediate perioperative period to improve the long-term survival of patients following radical gastrectomy. World J Gastrointest Surg 2023; 15:520-533. [PMID: 37206066 PMCID: PMC10190732 DOI: 10.4240/wjgs.v15.i4.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Although the incidence and mortality of gastric cancer (GC) have been decreasing steadily worldwide, especially in East Asia, the disease burden of this malignancy is still very heavy. Except for tremendous progress in the management of GC by multidisciplinary treatment, surgical excision of the primary tumor is still the cornerstone intervention in the curative-intent treatment of GC. During the relatively short perioperative period, patients undergoing radical gastrectomy will suffer from at least part of the following perioperative events: Surgery, anesthesia, pain, intraoperative blood loss, allogeneic blood transfusion, postoperative complications, and their related anxiety, depression and stress response, which have been shown to affect long-term outcomes. Therefore, in recent years, studies have been carried out to find and test interventions during the perioperative period to improve the long-term survival of patients following radical gastrectomy, which will be the aim of this review.
Collapse
Affiliation(s)
- Lin-Bo Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Vascular Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| | - Jian-Xiong Lai
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| | - Sen Shi
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
36
|
Zhao H, Yin Y, Lin T, Wang W, Gong L. Administration of serotonin and norepinephrine reuptake inhibitors tends to have less ocular surface damage in a chronic stress-induced rat model of depression than selective serotonin reuptake inhibitors. Exp Eye Res 2023; 231:109486. [PMID: 37080380 DOI: 10.1016/j.exer.2023.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Depressed patients who medicate with selective serotonin reuptake inhibitors (SSRIs) often report ocular dryness. Epidemiological studies have found that serotonin and norepinephrine reuptake inhibitors (SNRIs) are not risk factors for dry eye in depressed patients. However, the effect of SNRIs on the ocular surface is unknown. A depression rat model was induced by chronic unpredictable mild stress (CUMS), and SNRIs or SSRIs were administered to the rats for 3 or 6 weeks. The levels of norepinephrine (NE) and serotonin in tear fluid were tested by ELISA. The corneal fluorescence and lissamine green staining were used to evaluate ocular surface damage. NE and/or serotonin were administered to human corneal epithelial cells in vitro. RNA sequencing (RNA-seq) analysis was performed to investigate the mRNA expression profiles. Tear NE levels were higher in the SNRIs group, and ocular surface inflammation and apoptosis were significantly reduced compared to the SSRIs group. RNA-Seq indicated that NE significantly activate MAPK signaling pathway. NE can inhibit serotonin-induced activation of the NF-κB signaling pathway through α-1 adrenergic receptors and promotes the proliferation of corneal epithelial cells through activation of the MAPK signaling pathway. SNRIs administration have less ocular surface damage than SSRIs. NE protects human corneal epithelial cells from damage, and reduce inflammation on the ocular surface via activating the MAPK signaling pathway. SNRIs might be used as an appropriate treatment for depression-related DED.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
37
|
Zhang B, Zhang L, Qi P, Pang R, Wang Z, Liu X, Shi Q, Zhang Q. Potential role of LPAR5 gene in prognosis and immunity of thyroid papillary carcinoma and pan-cancer. Sci Rep 2023; 13:5850. [PMID: 37037831 PMCID: PMC10086052 DOI: 10.1038/s41598-023-32733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Papillary carcinomas account for the largest proportion of thyroid cancers, with papillary thyroid carcinoma (PTC) being prone to early lymph node metastasis. Some studies have confirmed that LPAR5 can promote the progression of PTC, but immune-related analyses of LPAR5 and PTC have not been widely discussed. This study aimed to determine the role of LPAR5 in PTC prognosis and immunity. We will further explore the role of LPAR5 in 33 different tumor types. Regarding PTC, we analyzed the effect of LPAR5 expression on overall survival (OS). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Immune-related analyses of immune checkpoints (ICPs) and immune cell infiltration were also performed. For pan-cancer, R packages were used to analyze prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), and immune cell infiltration. Analysis of tumor microenvironment (TME) and ICPs was performed using Sangerbox ( http://vip.sangerbox.com/home.html ). The TISIDB database ( http://cis.hku.hk/TISIDB/index.php ) was used to identify immune and molecular subtypes. LPAR5 expression is associated with PTC prognosis and immunity as well as various human tumors. LPAR5 may be a potential biomarker for multiple malignancies and may provide a new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ben Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Lixi Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Peng Qi
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Renzhu Pang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ziming Wang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Xuyao Liu
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Qi Shi
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Qiang Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
38
|
Jardim SR, de Souza LMP, de Souza HSP. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3640. [PMID: 36834334 PMCID: PMC9962127 DOI: 10.3390/ijerph20043640] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The overall burden of cancer is rapidly increasing worldwide, reflecting not only population growth and aging, but also the prevalence and spread of risk factors. Gastrointestinal (GI) cancers, including stomach, liver, esophageal, pancreatic, and colorectal cancers, represent more than a quarter of all cancers. While smoking and alcohol use are the risk factors most commonly associated with cancer development, a growing consensus also includes dietary habits as relevant risk factors for GI cancers. Current evidence suggests that socioeconomic development results in several lifestyle modifications, including shifts in dietary habits from local traditional diets to less-healthy Western diets. Moreover, recent data indicate that increased production and consumption of processed foods underlies the current pandemics of obesity and related metabolic disorders, which are directly or indirectly associated with the emergence of various chronic noncommunicable conditions and GI cancers. However, environmental changes are not restricted to dietary patterns, and unhealthy behavioral features should be analyzed with a holistic view of lifestyle. In this review, we discussed the epidemiological aspects, gut dysbiosis, and cellular and molecular characteristics of GI cancers and explored the impact of unhealthy behaviors, diet, and physical activity on developing GI cancers in the context of progressive societal changes.
Collapse
Affiliation(s)
- Silvia Rodrigues Jardim
- Division of Worker’s Health, Universidade Federal do Rio de Janeiro, Rio de Janeiro 22290-140, RJ, Brazil
| | - Lucila Marieta Perrotta de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
39
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
40
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
41
|
Liang Y, Wu G, Luo T, Xie H, Zuo Q, Huang P, Li H, Chen L, Lu H, Chen Q. 10-Gingerol Enhances the Effect of Taxol in Triple-Negative Breast Cancer via Targeting ADRB2 Signaling. Drug Des Devel Ther 2023; 17:129-142. [PMID: 36712945 PMCID: PMC9880022 DOI: 10.2147/dddt.s390602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Although paclitaxel is widely used in cancer treatment, severe side effects and drug resistance limit its clinical use. 10-gingerol (10-G) is a natural compound isolated from ginger, which displays anti-inflammatory, antioxidant, and antiproliferative properties. However, the chemotherapy-sensitization effect of 10-G on triple-negative breast cancer (TNBC) has not been fully clarified. This study is aimed at investigating the effect of 10-G on the paclitaxel sensitivity in TNBC, and its underlying mechanism. Methods The study was determined through in vitro and in vivo experiments. Cell viability and proliferation were detected by cell counting kit 8 (CCK-8) and colony formation. To detect cell apoptosis, flow cytometry and TUNEL were used. The expression of proteins was detected by Western blotting and immunohistochemistry. The molecular docking and gene knockout were corroborated by interactions between 10-G and adrenoceptor Beta 2 (ADRB2). The body weight of mice, histopathology and organs (kidney and spleen) coefficients were used to monitor the drug toxicities. Results In vitro, 10-G increased the sensitivity of TNBC cells to paclitaxel, and could synergistically promote the apoptosis of TNBC cells induced by paclitaxel. In combination with molecular docking and lentivirus knockdown studies, ADRB2 was identified as a 10-G binding protein. 10-G inhibited ADRB2 by binding to the active site of ADRB2. Knockdown of ADRB2 reduces the proliferation activity of TNBC cells but also attenuates the sensitizing effects of 10-G to paclitaxel. Western blotting and immunohistochemistry showed that 10-G played an anti-proliferation and chemotherapy-sensitizing role by inhibiting the ADRB2/ERK signal. Toxicity evaluation showed that 10-G would not increase hepatorenal toxicity with paclitaxel. Conclusion This data suggests that 10-G may be used as a new chemotherapeutic synergist in combination with paclitaxel to enhance anticancer activity. The potential value of ADRB2 as a target for improving chemotherapy sensitivity was also emphasized.
Collapse
Affiliation(s)
- Yuqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Guosong Wu
- Nanfang Hospital Baiyun Branch, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Tianyu Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Haimei Xie
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Qian Zuo
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Ping Huang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Hai Lu
- The First People’s Hospital of Shaoguan, Shaoguan, Guangdong, 512099, People’s Republic of China,Hai Lu, The First People’s Hospital of Shaoguan, No. 3, South Dongdi Road, Shaoguan, 512099, People’s Republic of China, Tel +86 15622187291, Email
| | - Qianjun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China,Correspondence: Qianjun Chen, Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510102, People’s Republic of China, Email
| |
Collapse
|
42
|
Norepinephrine inhibits CD8 + T-cell infiltration and function, inducing anti-PD-1 mAb resistance in lung adenocarcinoma. Br J Cancer 2023; 128:1223-1235. [PMID: 36646807 PMCID: PMC10050078 DOI: 10.1038/s41416-022-02132-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental stress-induced neurotransmitters can affect the immune system in various ways. Therefore, a better understanding of the role of neurotransmitters in the tumour immune microenvironment is expected to promote the development of novel anti-tumour therapies. METHODS In this study, we analysed the plasma levels of neurotransmitters in anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb)-resistance patients and sensitive patients, to identify significantly different neurotransmitters. Subsequently, animal experiments and experiments in vitro were used to reveal the specific mechanism of norepinephrine's (NE) effect on immunotherapy. RESULTS The plasma NE levels were higher in anti-PD-1 mAb-resistance patients, which may be the main cause of anti-PD-1 mAb resistance. Then, from the perspective of the immunosuppressive microenvironment to explore the specific mechanism of NE-induced anti-PD-1 mAb resistance, we found that NE can affect the secretion of C-X-C Motif Chemokine Ligand 9 (CXCL9) and adenosine (ADO) in tumour cells, thereby inhibiting chemotaxis and function of CD8+ T cells. Notably, the WNT7A/β-catenin signalling pathway plays a crucial role in this progression. CONCLUSION NE can affect the secretion of CXCL9 and ADO in tumour cells, thereby inhibiting chemotaxis and the function of CD8+ T cells and inducing anti-PD-1 mAb resistance in lung adenocarcinoma (LUAD).
Collapse
|
43
|
Tiwari RK, Rawat SG, Gupta VK, Jaiswara PK, Sonker P, Kumar S, Gautam V, Mishra MK, Kumar A. Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact 2023; 369:110278. [PMID: 36423730 DOI: 10.1016/j.cbi.2022.110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
In recent years, studies have reported the role of stress-regulatory hormones, including epinephrine, in regulating the progression of a few cancers. However, the tumor-promoting action of epinephrine is not yet investigated in T cell malignancy, a rare and complicated neoplastic disorder. More so, very little is known regarding the implication of epinephrine in the glucose metabolic rewiring in tumor cells. The present investigation showed that epinephrine enhanced the proliferation of T lymphoma cells through up- and down-regulating the expression of PCNA, cyclin D, and p53, respectively. In addition, epinephrine inhibited apoptosis in T lymphoma cells possibly by increasing the level of BCL2 (an anti-apoptotic protein) and decreasing PARP level (a pro-apoptotic protein). Intriguingly, epinephrine is reported to stimulate glycolysis in T lymphoma cells by increasing the expression of crucial glycolysis regulatory molecules, namely HKII and PKM2, in a HIF-1α-dependent manner. Moreover, augmented production of ROS has been observed in T lymphoma cells, which might be a central player in epinephrine-mediated T cell lymphoma growth. Taken together, our study demonstrates that epinephrine might have a significant role in the progression of T cell lymphoma.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shiv Govind Rawat
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vishal Kumar Gupta
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradip Kumar Jaiswara
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pratishtha Sonker
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Ajay Kumar
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
44
|
Satilmis H, Verheye E, Vlummens P, Oudaert I, Vandewalle N, Fan R, Knight JM, De Beule N, Ates G, Massie A, Moreaux J, Maes A, De Bruyne E, Vanderkerken K, Menu E, Sloan EK, De Veirman K. Targeting the β 2 -adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J Pathol 2023; 259:69-80. [PMID: 36245401 PMCID: PMC10953387 DOI: 10.1002/path.6020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022]
Abstract
While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called β-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the β2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the β2 -adrenergic receptor (β2 AR) using either selective or non-selective β-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the β2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of β1 -adrenergic receptors. Combining β2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of β2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective β-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hatice Satilmis
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Emma Verheye
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Myeloid Cell ImmunologyVIB Center for Inflammation ResearchBrusselsBelgium
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
- Department of Clinical HematologyUniversitair Ziekenhuis GentGhentBelgium
| | - Inge Oudaert
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Niels Vandewalle
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Rong Fan
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWIUSA
| | - Nathan De Beule
- Department of Clinical HematologyUniversitair Ziekenhuis Brussel, Vrije Universiteit BrusselBrusselsBelgium
| | - Gamze Ates
- Neuro‐Aging & Viro‐Immunotherapy, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ann Massie
- Neuro‐Aging & Viro‐Immunotherapy, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Jerome Moreaux
- Institute of Human Genetics, CNRSUniversity of MontpellierMontpellierFrance
- Laboratory for Monitoring Innovative Therapies, Department of Biological HematologyCHU MontpellierMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - Anke Maes
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology ThemeMonash UniversityParkvilleVICAustralia
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
45
|
Du J, Rui F, Hao Z, Hang Y, Shu J. Transcription Factor E2F1 Regulates the Expression of ADRB2. Int J Anal Chem 2023; 2023:8210685. [PMID: 37128280 PMCID: PMC10148742 DOI: 10.1155/2023/8210685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023] Open
Abstract
Adrenergic beta-2-receptor (ADRB2) is highly expressed in various tissue cells, affecting the susceptibility, development, and drug efficacy of diseases such as bronchial asthma and malignant tumor. However, the transcriptional regulatory mechanism of the human ADRB2 gene remains unclear. This study aimed to clarify whether E2F transcription factor 1 (E2F1) was involved in the transcriptional regulation of the human ADRB2 gene. First, the 5' flanking region of the human ADRB2 gene was cloned, and its activity was detected using A549 and BEAS-2B cells. Second, it was found that the overexpression of E2F1 could increase promoter activity by a dual-luciferase reporter gene assay. In contrast, treatment of knockdown of E2F1 significantly resulted in a decrease in its promoter activity. Moreover, mutation of the binding site of E2F1 greatly reduced the potential of human ADRB2 promoter transcriptional activity to be regulated by E2F1 overexpression and knockdown. Additionally, by real-time quantitative PCR and Western blot analysis, we demonstrated that overexpression of E2F1 elevated the ADRB2 mRNA expression and protein levels while si-E2F1 reduced its expression. Finally, the consequence of the chromatin immunoprecipitation assay showed that E2F1 was able to bind to the promoter region of ADRB2 in vivo. These results confirmed that E2F1 upregulated the expression of the human ADRB2 gene.
Collapse
Affiliation(s)
- Juan Du
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Rui
- Department of Neonatology, Changzhou Maternal and Child Health Hospital, Changzhou, Jiangsu, China
| | - Zhongfen Hao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Hang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
46
|
Lou F, Long H, Luo S, Liu Y, Pu J, Wang H, Ji P, Jin X. Chronic restraint stress promotes the tumorigenic potential of oral squamous cell carcinoma cells by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Exp Neurol 2023; 359:114268. [PMID: 36343679 DOI: 10.1016/j.expneurol.2022.114268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Chronic stress promotes tumor progression and may harm homeostasis of energy metabolism by disrupting key metabolic processes. Recently, emerging evidence that chemokines CXCL3 as a novel adipokine plays a new role in lipid metabolism and various human malignancies. However, the role and mechanism of the CXCL3 in oral squamous cell carcinoma (OSCC) progression and reprogramming lipid metabolism induced by chronic restraint stress is unclear. The analysis of transcriptome sequencing, LC-MS, GC-MS, CCK8, cell apoptosis assays, cell cycle analysis, qRT-PCR, ELISA, western blotting, immunofluorescence, immunohistochemistry, RNA interference and lentivirus transfection and a xenograft tumor growth and chronic restraint stress model were used to investigate the role of CXCL3 in the regulation of lipid metabolism and OSCC and explore the underlying molecular mechanisms. We showed that CXCL3 plays a critical role in in fatty acid de novo synthesis and tumor growth induced by chronic restraint stress. We demonstrated that chronic restraint stress promoted lipid accumulation, OSCC growth and metastasis in a mouse xenograft model. CXCL3 knockdown and FH535, an inhibitor of Wnt/β-catenin pathway, could attenuate fatty acid de novo synthesis, cell proliferation and epithelial-mesenchymal transition induced by chronic restraint stress in OSCC cells. Our findings demonstrate that chronic restraint stress promotes the proliferation and metastasis of OSCC by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Our study provides novel insights to help understand the underlying mechanisms of CXCL3 in OSCC progression induced by chronic restraint stress.
Collapse
Affiliation(s)
- Fangzhi Lou
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Huiqing Long
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Shihong Luo
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Xin Jin
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
47
|
Guan Y, Yao W, Yu H, Feng Y, Zhao Y, Zhan X, Wang Y. Chronic stress promotes colorectal cancer progression by enhancing glycolysis through β2-AR/CREB1 signal pathway. Int J Biol Sci 2023; 19:2006-2019. [PMID: 37151872 PMCID: PMC10158030 DOI: 10.7150/ijbs.79583] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide, and chronic stress has been considered as a significant risk factor for CRC. However, the role of chronic stress in CRC progression is unclear. The present study showed that pre-exposure to chronic stress facilitated CRC tumor growth in mice, and epinephrine promoted CRC cell proliferation in vitro. Metabolomics analysis revealed that chronic stress reshaped metabolic pathways to enhance glycolysis. Additional studies have shown that stress enhanced the expression levels of glycolytic-associated enzymes, including GLUT1, HK2 and PFKP. Mechanistically, chronic stress activated the β2-AR/PKA/CREB1 pathway, as a result, phosphorylated CREB1 transcriptional induced glycolytic enzymes expression. Furthermore, stress-induced cell proliferation and tumor growth could be reversed by administration of glycolysis inhibitor 2-deoxyglucose (2-DG) and β2-AR antagonist ICI118,551, respectively. Altogether, these findings define novel insights into the stress-induced epinephrine-mediated CRC progression from the point of view of tumor energy metabolism reprogramming and provide a perspective on targeting glycolysis as a potential approach in stress-associated CRC treatment.
Collapse
Affiliation(s)
- Yunfeng Guan
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Yao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Feng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangyang Zhan
- Center of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- ✉ Corresponding author: Yan Wang ()
| |
Collapse
|
48
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
49
|
Lu T, Zheng C, Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. PHARMACEUTICAL BIOLOGY 2022; 60:1011-1021. [PMID: 35645356 PMCID: PMC9154753 DOI: 10.1080/13880209.2022.2069823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Cardamonin (CDN) can suppress cell growth in colorectal cancer (CRC), a common digestive malignancy. OBJECTIVE We explored the effect and mechanism of CDN on metastatic CRC. MATERIALS AND METHODS Two cell lines (HT29 and HCT116) were initially treated with CDN at different concentrations (5, 10 and 20 μmol/L) or 50 μmol/L propranolol (positive control) for 24 or 48 h. Then, the two cell lines were separately transfected with siADRB2 and ADRB2 overexpression plasmids, and further treated with 10 μmol/L CDN for 24 h. The cell viability, migration and invasion were determined by cell counting kit-8 (CCK-8), wound healing and transwell assays, respectively. The levels of ADRB2, matrix metalloprotease (MMP)-2, MMP-9, E-cadherin and N-cadherin were measured by Western blotting or/and RT-qPCR. A CRC metastasis model was established to evaluate the antimetastatic potential of CDN (25 mg/kg). RESULTS ADRB2 (3.2-fold change; p < 0.001) was highly expressed in CRC tissues. CDN at 10 μmol/L suppressed viability (69% and 70%), migration (33% and 66%), invasion (43% and 72%) and ADRB2 expression (2.2- and 2.84-fold change) in HT29 and HCT116 cells (p < 0.001). CDN at 10 μmol/L inhibited MMP-2, MMP-9 and N-cadherin expression but promoted E-cadherin expression in CRC cells (p < 0.001). Importantly, the effect of CDN on CRC cells was impaired by ADRB2 overexpression, but further enhanced by ADRB2 down-regulation (p < 0.01). Additionally, ADRB2 overexpression reversed the inhibitory effect of CDN on metastatic lung nodules (p < 0.05). Discussion and conclusions: CDN is a potential candidate for the treatment of metastatic CRC in clinical practice.
Collapse
Affiliation(s)
- Ting Lu
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunju Zheng
- Proctology Department, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Zhimin Fan
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
50
|
Shi Y, Gu L, Zhang X, Chen M. Traditional Chinese medicine mediated tumor suppression via regulating psychological factors. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|