1
|
Wu L, Xue X, He C, Lai Y, Tong L. Cell death‑related molecules and targets in the progression of urolithiasis (Review). Int J Mol Med 2024; 53:52. [PMID: 38666544 PMCID: PMC11090264 DOI: 10.3892/ijmm.2024.5376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Urolithiasis is a high‑incidence disease caused by calcium oxalate (mainly), uric acid, calcium phosphate, struvite, apatite, cystine and other stones. The development of kidney stones is closely related to renal tubule cell damage and crystal adhesion and aggregation. Cell death, comprising the core steps of cell damage, can be classified into various types (i.e., apoptosis, ferroptosis, necroptosis and pyroptosis). Different crystal types, concentrations, morphologies and sizes cause tubular cell damage via the regulation of different forms of cell death. Oxidative stress caused by high oxalate or crystal concentrations is considered to be a precursor to a variety of types of cell death. In addition, complex crosstalk exists among numerous signaling pathways and their key molecules in various types of cell death. Urolithiasis is considered a metabolic disorder, and tricarboxylic acid cycle‑related molecules, such as citrate and succinate, are closely related to cell death and the inhibition of stone development. However, a literature review of the associations between kidney stone development, metabolism and various types of cell death is currently lacking, at least to the best of our knowledge. Thus, the present review summarizes the major advances in the understanding of regulated cell death and urolithiasis progression.
Collapse
Affiliation(s)
- Liping Wu
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China
| | - Xiaoyan Xue
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China
| | - Chengwu He
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Yongchang Lai
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lingfei Tong
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Wang Z, Liu L, Zhao YW, Tong XY, Tang GH, Ouyang JM. Carboxymethylated Desmodium styracifolium polysaccharide reduces the risk of calcium oxalate kidney stone formation by inhibiting crystal adhesion and promoting crystal endocytosis. J Cell Physiol 2024; 239:e31272. [PMID: 38646844 DOI: 10.1002/jcp.31272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The inhibition of cell surface crystal adhesion and an appropriate increase in crystal endocytosis contribute to the inhibition of kidney stone formation. In this study, we investigated the effects of different degrees of carboxymethylation on these processes. An injury model was established by treating human renal proximal tubular epithelial (HK-2) cells with 98.3 ± 8.1 nm calcium oxalate dihydrate (nanoCOD) crystals. The HK-2 cells were protected with carboxy (-COOH) Desmodium styracifolium polysaccharides at 1.17% (DSP0), 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3). Changes in biochemical indexes and effects on nanoCOD adhesion and endocytosis were detected. The protection of HK-2 cells from nanoCOD-induced oxidative damage by carboxymethylated Desmodium styracifolium polysaccharides (CDSPs) is closely related to the protection of subcellular organelles, such as mitochondria. CDSPs can reduce crystal adhesion on the cell surface and maintain appropriate crystal endocytosis, thereby reducing the risk of kidney stone formation. CDSP2 with moderate -COOH content showed the strongest protective activity among the CDSPs.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Li Liu
- Department of Urology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Yao-Wang Zhao
- Department of Urology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Gu-Hua Tang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Gombedza FC, Shin S, Sadiua J, Stackhouse GB, Bandyopadhyay BC. The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation. Int J Mol Sci 2024; 25:4787. [PMID: 38732005 PMCID: PMC11084476 DOI: 10.3390/ijms25094787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.
Collapse
Affiliation(s)
- Farai C. Gombedza
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
| | - Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - Jaclyn Sadiua
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
| | - George B. Stackhouse
- Urology Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA;
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
4
|
Deng F, Zhang H, Zhou W, Ma S, Kang Y, Yang W, Zhao L, Qin W. TRPA1 promotes cisplatin-induced acute kidney injury via regulating the endoplasmic reticulum stress-mitochondrial damage. J Transl Med 2023; 21:695. [PMID: 37798747 PMCID: PMC10557178 DOI: 10.1186/s12967-023-04351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/11/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Cisplatin is a widely used and effective chemotherapeutic agent against cancer. However, nephrotoxicity is one of the most common side effects of cisplatin, and it can proceed to acute kidney injury (AKI). Studies have reported that activation of transient receptor potential ankyrin-1 (TRPA1) mediates cisplatin-induced renal tubular cytotoxic injury. The aim of this study was to investigate the mechanism of TRPA1 in promoting cisplatin-induced AKI through modulation of the endoplasmic reticulum stress (ERS)-mitochondrial damage. METHODS A cisplatin-induced HK-2 cell model in vitro and mouse model in vivo were established. The mechanism of TRPA1 promotes AKI was elucidated by H&E staining, TUNEL staining, transmission electron microscope (TEM), immunofluorescence, CCK-8 viability assays, flow cytometry, Western blotting, JC-1 assay, and enzyme linked immunosorbent assay (ELISA). RESULT In vivo and in vitro, HC-030031 reduced cisplatin-induced Scr and BUN level elevations; improved cisplatin-induced renal tissue injury, apoptosis, and mitochondrial dysfunction; elevated the reduced ERS-associated proteins glucose-regulated protein 78 (GRP78), glucose-regulated protein 75 (GRP75), and C/EBP homologous protein (CHOP) levels induced by cisplatin; reduced the elevated optic atrophy 1 (OPA1), mito-fusion 1 (MFN1), and mito-fusion 2 (MFN2) protein levels, and elevated phospho-dynamin-related protein 1 (p-DRP1) and mitochondrial fission factor (MFF) protein levels. HC-030031 also reduced the mitochondria-associated endoplasmic reticulum membrane (MAM) structure. In addition, TRPA1 agonists also decreased cell proliferation, increased apoptosis, and triggered mitochondrial dysfunction and calcium overload in HK-2 cells via modulation of MAM. ERS inhibitors and GRP75 inhibitors reversed these changes caused by TRPA1 agonists. CONCLUSION Our findings suggest that TRPA1 enhances cisplatin-induced AKI via modulation of ERS and mitochondrial damage.
Collapse
Affiliation(s)
- Fei Deng
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610044, China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu, China
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Heping Zhang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei Zhou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Kang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Yang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiao Road, Jinniu District, Chengdu, 610072, China.
| | - Wei Qin
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610044, China.
| |
Collapse
|
5
|
Hong SY, Yang YY, Wang SG, Qin BL. Inhibition of AT1R/IP3/IP3R-mediated Ca 2+ release protects against calcium oxalate crystals-induced renal oxidative stress. Chem Biol Interact 2023; 382:110636. [PMID: 37454925 DOI: 10.1016/j.cbi.2023.110636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Calcium oxalate (CaOx) stones are the most prevalent type of kidney stones. CaOx crystals can stimulate reactive oxygen species (ROS) generation and induce renal oxidative stress to promote stone formation. Intracellular Ca2+ is an important signaling molecule, and an elevation of cytoplasmic Ca2+ levels could trigger oxidative stress. Our previous study has revealed that upregulation of Ang II/AT1R promoted renal oxidative stress during CaOx exposure. IP3/IP3R/Ca2+ signaling pathway activated via Ang II/AT1R is involved in several diseases, but its role in stone formation has not been reported. Herein, we focus on the role of AT1R/IP3/IP3R-mediated Ca2+ release in CaOx crystals-induced oxidative stress and explore whether inhibition of this pathway could alleviate renal oxidative stress. NRK-52E cells were exposed to CaOx crystals pretreated with AT1R inhibitor losartan or IP3R inhibitor 2-APB, and glyoxylic acid monohydrate-induced CaOx stone-forming rats were treated with losartan or 2-APB. The intracellular Ca2+ levels, ROS levels, oxidative stress indexes, and the gene expression of this pathway were detected. Our results showed that CaOx crystals activated AT1R to promote IP3/IP3R-mediated Ca2+ release, leading to increased cytoplasmic Ca2+ levels. The Ca2+ elevation was able to stimulate NOX2 and NOX4 to generate ROS, induce oxidative stress, and upregulate the expression of stone-related proteins. 2-APB and losartan reversed the referred effects, reduced CaOx crystals deposition and alleviated tissue injury in the rat kidneys. In summary, our results indicated that CaOx crystals promoted renal oxidative stress by activating the AT1R/IP3/IP3R/Ca2+ pathway. Inhibition of AT1R/IP3/IP3R-mediated Ca2+ release protected against CaOx crystals-induced renal oxidative stress. 2-APB and losartan might be promising preventive and therapeutic agents for the treatment of kidney stone disease.
Collapse
Affiliation(s)
- Sen-Yuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Kuravi SJ, Ahmed NS, Taylor KA, Capes EM, Bye A, Unsworth AJ, Gibbins JM, Pugh N. Delineating Zinc Influx Mechanisms during Platelet Activation. Int J Mol Sci 2023; 24:11689. [PMID: 37511448 PMCID: PMC10380784 DOI: 10.3390/ijms241411689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Zinc (Zn2+) is released by platelets during a hemostatic response to injury. Extracellular zinc ([Zn2+]o) initiates platelet activation following influx into the platelet cytosol. However, the mechanisms that permit Zn2+ influx are unknown. Fluctuations in intracellular zinc ([Zn2+]i) were measured in fluozin-3-loaded platelets using fluorometry and flow cytometry. Platelet activation was assessed using light transmission aggregometry. The detection of phosphoproteins was performed by Western blotting. [Zn2+]o influx and subsequent platelet activation were abrogated by blocking the sodium/calcium exchanged, TRP channels, and ZIP7. Cation store depletion regulated Zn2+ influx. [Zn2+]o stimulation resulted in the phosphorylation of PKC substates, MLC, and β3 integrin. Platelet activation via GPVI or Zn2+ resulted in ZIP7 phosphorylation in a casein kinase 2-dependent manner and initiated elevations of [Zn2+]i that were sensitive to the inhibition of Orai1, ZIP7, or IP3R-mediated pathways. These data indicate that platelets detect and respond to changes in [Zn2+]o via influx into the cytosol through TRP channels and the NCX exchanger. Platelet activation results in the externalization of ZIP7, which further regulates Zn2+ influx. Increases in [Zn2+]i contribute to the activation of cation-dependent enzymes. Sensitivity of Zn2+ influx to thapsigargin indicates a store-operated pathway that we term store-operated Zn2+ entry (SOZE). These mechanisms may affect platelet behavior during thrombosis and hemostasis.
Collapse
Affiliation(s)
- Sahithi J. Kuravi
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Niaz S. Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Kirk A. Taylor
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Emily M. Capes
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Alex Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Nicholas Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| |
Collapse
|
7
|
Shin S, Gombedza FC, Awuah Boadi E, Yiu AJ, Roy SK, Bandyopadhyay BC. Reduction of TRPC1/TRPC3 mediated Ca 2+-signaling protects oxidative stress-induced COPD. Cell Signal 2023; 107:110681. [PMID: 37062436 PMCID: PMC10542863 DOI: 10.1016/j.cellsig.2023.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.
Collapse
Affiliation(s)
- Samuel Shin
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Farai C Gombedza
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Eugenia Awuah Boadi
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Allen J Yiu
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Sanjit K Roy
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Bidhan C Bandyopadhyay
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America.
| |
Collapse
|
8
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
9
|
Choi BE, Shin S, Evans S, Singh BB, Bandyopadhyay BC. Ablation of TRPC3 disrupts Ca 2+ signaling in salivary ductal cells and promotes sialolithiasis. Sci Rep 2023; 13:5772. [PMID: 37031239 PMCID: PMC10082769 DOI: 10.1038/s41598-023-32602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Clinical studies and structural analyses of salivary stones strongly suggest a linkage between higher saliva calcium (Ca2+) and salivary stone formation, sialolithiasis; however, the process and the mechanism leading to Ca2+ overload during sialolithiasis is not well understood. Here, we show that TRPC3 null (-/-) mice presented with a reduction in Ca2+ entry and current in ductal cells with higher saliva [Ca2+] suggesting diminished transepithelial Ca2+ flux across the salivary ductal cells, leaving more Ca2+ in ductal fluid. Significantly, we found that TRPC3 was expressed in mice and human salivary ductal cells, while intraductal stones were detected in both mice (TRPC3-/-) and patient (sialolithiasis) salivary glands. To identify the mechanism, we found that TRPC3 was crucial in preventing the expression of calcification genes (BMP2/6, Runx2) in ductal cells which may be due to higher extracellular Ca2+ in SMG tissues. Similarly, inflammatory (IL6, NLRP3), fibrotic (FN1, TGFβ1) and apoptotic (Bax1/Bcl2) markers were also elevated, suggesting that the loss of TRPC3 induces genetic changes that leads to salivary gland cell death and induction of inflammatory response. Overall, ablation of TRPC3-/- leads to higher saliva [Ca2+], along with elevated detrimental gene expressions, altogether contributing to salivary gland stone formation.
Collapse
Affiliation(s)
- Bok-Eum Choi
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA
| | - Sade Evans
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Brij B Singh
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA.
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA.
| |
Collapse
|
10
|
Shin S, Awuah Boadi E, Shah S, Ezell M, Li P, Bandyopadhyay BC. Anti-inflammatory role of extracellular l-arginine through calcium sensing receptor in human renal proximal tubular epithelial (HK-2) cells. Int Immunopharmacol 2023; 117:109853. [PMID: 36827919 PMCID: PMC10124988 DOI: 10.1016/j.intimp.2023.109853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Renal tubular epithelial cells are capable of synthesizing interleukins (IL) in response to a variety of proinflammatory cytokines. Moreover, elevated urinary levels of IL have been shown in patients with various forms of nephritic diseases. However, the underlying intracellular signaling mechanism is unclear. Here we show the immunological signaling role of l-Arginine (l-Arg) through Ca2+-sensing receptor (CaSR) in human kidney 2 (HK-2) renal proximal tubular epithelial cells, using Ca2+ imaging and patch clamp techniques and its mechanistic link to the downstream cellular function. Both pharmacological and siRNA inhibitors support the activation CaSR by extracellular l-Arg to induced Ca2+ entry via a Transient receptor potential canonical (TRPC) channel in HK-2 cells mainly through the receptor operated Ca2+ entry (ROCE). Activation of CaSR by l-Arg led to the rise in p-p38/p38 expression suggesting [Ca2+]i as a regulator for p38-signaling pathways. Notably, l-Arg activated CaSR-induced Ca2+ signaling reduced the expressions of key fibrotic, inflammatory, and apoptotic genes, suggesting its nephroprotective role via Ca2+ signaling through CaSR in HK-2 cells. Since we found that the IL-6 expressions were inversely proportional to the increasing concentrations of l-Arg in HK-2 cells, we measured the release of IL-6, which steadily decreased as the concentrations of l-Arg were elevated. Taken together, extracellular l-Arg is a negative regulator for IL-6-induced inflammatory process, through the activation of CaSR and TRPC channel by ROCE pathway and can have a potential to alleviate inflammatory renal diseases.
Collapse
Affiliation(s)
- Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Saloni Shah
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Madison Ezell
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Peijun Li
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC 20037, USA; Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA.
| |
Collapse
|
11
|
Yu BX, Zhang YH, Li CY, Xian JY, Li SJ, Huang WB, Huang LH, Sun XY. Cell Protection and Crystal Endocytosis Inhibition by Sulfated Laminaria Polysaccharides Against Nano-COM-Induced Oxidative Damage in Renal Epithelial Cells. ACS OMEGA 2023; 8:7816-7828. [PMID: 36872978 PMCID: PMC9979320 DOI: 10.1021/acsomega.2c07584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Background: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. Methods: This study aims to explore the protective effects of four different sulfate groups (-OSO3 -) of Laminaria polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection. COM with a size of 230 ± 80 nm was used to damage HK-2 cells to establish a damage model. The protection capability of SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3 - contents of 0.73, 15, 23, and 31%, respectively, against COM crystal damage and the effect of SLPs on the endocytosis of COM crystals were studied. Results: Compared with that of the SLP-unprotected COM-injured group, the cell viability of the SLP-protected group was improved, healing capability was enhanced, cell morphology was restored, production of reactive oxygen species was reduced, mitochondrial membrane potential and lysosome integrity were increased, intracellular Ca2+ level and autophagy were decreased, cell mortality was reduced, and internalized COM crystals were lessened. The capability of SLPs to protect cells from damage and inhibit the endocytosis of crystals in cells enhanced with an increase in the -OSO3 - content of SLPs. Conclusions: SLPs with a high -OSO3 - content may become a potential green drug for preventing the formation of kidney stones.
Collapse
Affiliation(s)
- Bang-Xian Yu
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Yi-Han Zhang
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Chun-Yao Li
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jun-Yi Xian
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Shu-Jue Li
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Wei-Bo Huang
- Department
of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ling-Hong Huang
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xin-Yuan Sun
- Department
of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory
of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
12
|
Zhang L, Li S, Cong M, Liu Z, Dong Z, Zhao M, Gao K, Hu L, Qiao H. Lemon-Derived Extracellular Vesicle-like Nanoparticles Block the Progression of Kidney Stones by Antagonizing Endoplasmic Reticulum Stress in Renal Tubular Cells. NANO LETTERS 2023; 23:1555-1563. [PMID: 36727669 DOI: 10.1021/acs.nanolett.2c05099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kidney stones, represented by the calcium oxalate (CaOx) type, are highly prevalent and recrudescent. Cumulative evidence shows regular consumption of lemonade intervenes with stone development. However, the detailed mechanism remains obscure. Here, extracellular vesicle-like nanoparticles (LEVNs) isolated from lemonade are demonstrated to traffick from the gut to the kidney, primarily enriched in tubule cells. Oral administration of LEVNs significantly alleviates the progression of kidney stones in rats. Mechanistically, in addition to altering the crystallization of CaOx toward a less stable subtype, LEVNs suppress the CaOx-induced endoplasmic reticulum stress response of tubule cells, as indicated by homeostasis of specific signaling molecules and restoration of subcellular function, thus indirectly inhibiting stone formation. To exercise this regulation, endocytosed LEVNs traffick along the microtubules throughout the cytoplasm and are eventually recruited into lysosomes. In conclusion, this study reveals a LEVNs-mediated mechanism against renal calculi and provides positive evidence for consumption of lemonade preventing stone formation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Cong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoya Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyue Dong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongzhi Qiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Englisch CN, Paulsen F, Tschernig T. TRPC Channels in the Physiology and Pathophysiology of the Renal Tubular System: What Do We Know? Int J Mol Sci 2022; 24:ijms24010181. [PMID: 36613622 PMCID: PMC9820145 DOI: 10.3390/ijms24010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The study of transient receptor potential (TRP) channels has dramatically increased during the past few years. TRP channels function as sensors and effectors in the cellular adaptation to environmental changes. Here, we review literature investigating the physiological and pathophysiological roles of TRPC channels in the renal tubular system with a focus on TRPC3 and TRPC6. TRPC3 plays a key role in Ca2+ homeostasis and is involved in transcellular Ca2+ reabsorption in the proximal tubule and the collecting duct. TRPC3 also conveys the osmosensitivity of principal cells of the collecting duct and is implicated in vasopressin-induced membrane translocation of AQP-2. Autosomal dominant polycystic kidney disease (ADPKD) can often be attributed to mutations of the PKD2 gene. TRPC3 is supposed to have a detrimental role in ADPKD-like conditions. The tubule-specific physiological functions of TRPC6 have not yet been entirely elucidated. Its pathophysiological role in ischemia-reperfusion injuries is a subject of debate. However, TRPC6 seems to be involved in tumorigenesis of renal cell carcinoma. In summary, TRPC channels are relevant in multiples conditions of the renal tubular system. There is a need to further elucidate their pathophysiology to better understand certain renal disorders and ultimately create new therapeutic targets to improve patient care.
Collapse
Affiliation(s)
- Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
- Correspondence: ; Tel.: +49-6841-1626-100
| |
Collapse
|
14
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
15
|
Liang X, Xie J, Liu H, Zhao R, Zhang W, Wang H, Pan H, Zhou Y, Han W. STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells. Cell Mol Gastroenterol Hepatol 2022; 14:193-217. [PMID: 35367664 PMCID: PMC9130113 DOI: 10.1016/j.jcmgh.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS As an indispensable component of store-operated Ca2+ entry, stromal interaction molecule 1 (STIM1) is known to promote colorectal cancer and T-cell-mediated inflammatory diseases. However, whether the intestinal mucosal STIM1 is involved in inflammatory bowel diseases (IBDs) is unclear. This study aimed to investigate the role of intestinal epithelial STIM1 in IBD. METHODS Inflammatory and matched normal intestinal tissues were collected from IBD patients to investigate the expression of STIM1. Intestinal epithelium-specific STIM1 conditional knockout mice (STIM1ΔIEC) were generated and induced to develop colitis and colitis-associated colorectal cancer. The mucosal barrier, including the epithelial barrier and mucus barrier, was analyzed. The mechanisms by which STIM1 regulate goblet cell endoplasmic reticulum stress and apoptosis were assessed. RESULTS STIM1 could regulate intestinal epithelial homeostasis. STIM1 was augmented in the inflammatory intestinal tissues of IBD patients. In dextran sodium sulfate-induced colitis, STIM1 deficiency in intestinal epithelium reduced the loss of goblet cells through alleviating endoplasmic reticulum stress induced by disturbed Ca2+ homeostasis, resulting in the maintenance of the integrated mucus layer. These effects prevented commensal bacteria from contacting and stimulating the intestinal epithelium of STIM1ΔIEC mice and thereby rendered STIM1ΔIEC mice less susceptible to colitis and colitis-associated colorectal cancer. In addition, microbial diversity in dextran sodium sulfate-treated STIM1ΔIEC mice slightly shifted to an advantageous bacteria, which further protected the intestinal epithelium. CONCLUSIONS Our results establish STIM1 as a crucial regulator for the maintenance of the intestinal barrier during colitis and provide a potential target for IBD treatment.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence Address correspondence to: Weidong Han, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China; fax: 86-571-86436673.
| |
Collapse
|
16
|
Shin S, Ibeh CL, Awuah Boadi E, Choi BE, Roy SK, Bandyopadhyay BC. Hypercalciuria switches Ca 2+ signaling in proximal tubular cells, induces oxidative damage to promote calcium nephrolithiasis. Genes Dis 2022; 9:531-548. [PMID: 35224165 PMCID: PMC8843860 DOI: 10.1016/j.gendis.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Proximal tubule (PT) transports most of the renal Ca2+, which was usually described as paracellular (passive). We found a regulated Ca2+ entry pathway in PT cells via the apical transient receptor potential canonical 3 (TRPC3) channel, which initiates transcellular Ca2+ transport. Although TRPC3 knockout (-/-) mice were mildly hypercalciuric and displayed luminal calcium phosphate (CaP) crystals at Loop of Henle (LOH), no CaP + calcium oxalate (CaOx) mixed urine crystals were spotted, which are mostly found in calcium nephrolithiasis (CaNL). Thus, we used oral calcium gluconate (CaG; 2%) to raise the PT luminal [Ca2+]o further in TRPC3 -/- mice for developing such mixed stones to understand the mechanistic role of PT-Ca2+ signaling in CaNL. Expectedly, CaG-treated mice urine samples presented with numerous mixed crystals with remains of PT cells, which were pronounced in TRPC3 -/- mice, indicating PT cell damage. Notably, PT cells from CaG-treated groups switched their mode of Ca2+ entry from receptor-operated to store-operated pathway with a sustained rise in intracellular [Ca2+] ([Ca2+]i), indicating the stagnation in PT Ca2+ transport. Moreover, those PT cells from CaG-treated groups demonstrated an upregulation of calcification, inflammation, fibrotic, oxidative stress, and apoptotic genes; effects of which were more robust in TRPC3 ablated condition. Furthermore, kidneys from CaG-treated groups exhibited fibrosis, tubular injury and calcifications with significant reactive oxygen species generation in the urine, thus, indicating in vivo CaNL. Taken together, excess PT luminal Ca2+ due to escalation of hypercalciuria in TRPC3 ablated mice induced surplus CaP crystal formation and caused stagnation of PT [Ca2+]i, invoking PT cell injury, hence mixed stone formation.
Collapse
Affiliation(s)
| | | | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bok-Eum Choi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Sanjit K. Roy
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| |
Collapse
|
17
|
Boadi EA, Shin S, Gombedza F, Bandyopadhyay BC. Differential biomolecular recognition by synthetic vs. biologically-derived components in the stone-forming process using 3D microfluidics. J Mater Chem B 2021; 10:34-46. [PMID: 34779812 PMCID: PMC9045411 DOI: 10.1039/d1tb01213d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcium phosphate (CaP) biomineralization is the hallmark of extra-skeletal tissue calcification and renal calcium stones. Although such a multistep process starts with CaP crystal formation, the mechanism is still poorly understood due to the complexity of the in vivo system and the lack of a suitable approach to simulate a truly in vivo-like environment. Although endogenous proteins and lipids are engaged with CaP crystals in such a biological process of stone formation, most in vitro studies use synthetic materials that can display differential bioreactivity and molecular recognition by the cellular component. Here, we used our in vitro microfluidic (MF) tubular structure, which is the first completely cylindrical platform, with renal tubular cellular microenvironments closest to the functional human kidney tubule, to understand the precise role of biological components in this process. We systematically evaluated the contribution of synthetic and biological components in the stone-forming process in the presence of dynamic microenvironmental cues that originated due to cellular pathophysiology, which are critical for the nucleation, aggregation, and growth of CaP crystals. Our results show that crystal aggregation and growth were enhanced by immunoglobulin G (IgG), which was further inhibited by etidronic acid due to the chelation of extracellular Ca2+. Interestingly, biogenic CaP crystals from mice urine, when applied with cell debris and non-specific protein (bovine serum albumin), exhibited a more discrete crystal growth pattern, compared to exposure to synthetic CaP crystals under similar conditions. Furthermore, proteins found on those calcium crystals from mice urine produced discriminatory effects on crystal-protein attachment. Specifically, such biogenic crystals exhibited enhanced affinity to the proteins inherent to those crystals. More importantly, a physiological comparison of crystal induction in renal tubular cells revealed that biogenic crystals are less effective at producing a sustained rise in cytosolic Ca2+ compared to synthetic crystals, suggesting a milder detrimental effect to downstream signaling. Finally, synthetic crystal-internalized cells induced more oxidative stress, inflammation, and cellular damage compared to the biogenic crystal-internalized cells. Together, these results suggest that the intrinsic nature of biogenically derived components are appropriate to generate the molecular recognition needed for spatiotemporal effects and are critical towards understanding the process of kidney stone formation.
Collapse
Affiliation(s)
- Eugenia Awuah Boadi
- Calcium Signaling Laboratory, 151 Research Service, DC Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, 20422, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, 151 Research Service, DC Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, 20422, USA
| | - Farai Gombedza
- Calcium Signaling Laboratory, 151 Research Service, DC Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, 20422, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, 151 Research Service, DC Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, 20422, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington DC, 20037, USA,Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington DC, 20064, USA
| |
Collapse
|
18
|
Ning B, Guo C, Kong A, Li K, Xie Y, Shi H, Gu J. Calcium Signaling Mediates Cell Death and Crosstalk with Autophagy in Kidney Disease. Cells 2021; 10:cells10113204. [PMID: 34831428 PMCID: PMC8622220 DOI: 10.3390/cells10113204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
The kidney is an important organ for the maintenance of Ca2+ homeostasis in the body. However, disruption of Ca2+ homeostasis will cause a series of kidney diseases, such as acute kidney injury (AKI), chronic kidney disease (CKD), renal ischemia/reperfusion (I/R) injury, autosomal dominant polycystic kidney disease (ADPKD), podocytopathy, and diabetic nephropathy. During the progression of kidney disease, Ca2+ signaling plays key roles in various cell activities such as necrosis, apoptosis, eryptosis and autophagy. Importantly, there are complex Ca2+ flux networks between the endoplasmic reticulum (ER), mitochondria and lysosomes which regulate intracellular Ca2+ signaling in renal cells and contribute to kidney disease. In addition, Ca2+ signaling also links the crosstalk between various cell deaths and autophagy under the stress of heavy metals or high glucose. In this regard, we present a review of Ca2+ signaling in cell death and crosstalk with autophagy and its potential as a therapeutic target for the development of new and efficient drugs against kidney diseases.
Collapse
Affiliation(s)
- Bo Ning
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
| | - Yimin Xie
- Affiliated Hospital of Jiangsu University—Yixing Hospital, Yixing 214200, China;
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (B.N.); (C.G.); (A.K.); (K.L.); (H.S.)
- Correspondence: ; Tel.: +86-0511-88791923
| |
Collapse
|
19
|
Awuah Boadi E, Shin S, Bandyopadhyay BC. Tannic acid attenuates vascular calcification-induced proximal tubular cells damage through paracrine signaling. Biomed Pharmacother 2021; 140:111762. [PMID: 34126317 PMCID: PMC8753424 DOI: 10.1016/j.biopha.2021.111762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification is common in chronic kidney disease; however, the extent to which such condition can affect the renal microvasculature and the neighboring cell types is unclear. Our induced-calcification model in renal proximal tubular (PT) cells exhibited endoplasmic reticulum (ER) stress and oxidative damage, leading to apoptosis. Here, we utilized such calcification in mouse vascular smooth muscle (MOVAS-1) cells as a vascular calcification model, because it exhibited reactive oxygen species (ROS) generation, ER and oxidative stress, inflammatory, and apoptotic gene expressions. To demonstrate whether the vascular calcification condition can dictate the function of the adjacent PT cell layer, we utilized a Transwell multilayer culture system by combining those MOVAS-1 cells in the bottom chamber and polarized PT cells in the upper chamber to show the dimensional cross-signaling effect. Interestingly, calcification of MOVAS-1 cells, in this co-culture, induced H2O2 and lactate dehydrogenase (LDH) release leading to store-operated Ca2+ entry, ROS generation, and activation of oxidative, inflammatory, and apoptotic gene expressions in PT cells through paracrine signaling. Interestingly, application of tannic acid (TA) to either calcified MOVAS-1 or uncalcified PT cells diminished such detrimental pathway activation. Furthermore, the TA-mediated protection was much higher in the PT cells when applied on the calcified MOVAS-1 cells, and the delayed the pathological effects in neighboring PT cells can well be via paracrine signaling. Together, these results provide evidence of vascular calcification-induced PT cell damage, and the protective role of TA in preventing such pathological consequences, which can potentially be used as a nephroprotective remedy.
Collapse
Affiliation(s)
- Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, Washington DC 20422, NW, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, Washington DC 20422, NW, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, Washington DC 20422, NW, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington DC 20037, USA; Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue, Washington DC 20064, NE, USA.
| |
Collapse
|
20
|
TRPV1 Hyperfunction Contributes to Renal Inflammation in Oxalate Nephropathy. Int J Mol Sci 2021; 22:ijms22126204. [PMID: 34201387 PMCID: PMC8228656 DOI: 10.3390/ijms22126204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation worsens oxalate nephropathy by exacerbating tubular damage. The transient receptor potential vanilloid 1 (TRPV1) channel is present in kidney and has a polymodal sensing ability. Here, we tested whether TRPV1 plays a role in hyperoxaluria-induced renal inflammation. In TRPV1-expressed proximal tubular cells LLC-PK1, oxalate could induce cell damage in a time- and dose-dependent manner; this was associated with increased arachidonate 12-lipoxygenase (ALOX12) expression and synthesis of endovanilloid 12(S)-hydroxyeicosatetraenoic acid for TRPV1 activation. Inhibition of ALOX12 or TRPV1 attenuated oxalate-mediated cell damage. We further showed that increases in intracellular Ca2+ and protein kinase C α activation are downstream of TRPV1 for NADPH oxidase 4 upregulation and reactive oxygen species formation. These trigger tubular cell inflammation via increased NLR family pyrin domain-containing 3 expression, caspase-1 activation, and interleukin (IL)-1β release, and were alleviated by TRPV1 inhibition. Male hyperoxaluric rats demonstrated urinary supersaturation, tubular damage, and oxidative stress in a time-dependent manner. Chronic TRPV1 inhibition did not affect hyperoxaluria and urinary supersaturation, but markedly reduced tubular damage and calcium oxalate crystal deposition by lowering oxidative stress and inflammatory signaling. Taking all these results together, we conclude that TRPV1 hyperfunction contributes to oxalate-induced renal inflammation. Blunting TRPV1 function attenuates hyperoxaluric nephropathy.
Collapse
|
21
|
Zhang H, Sun XY, Chen XW, Ouyang JM. Degraded Porphyra yezoensis polysaccharide protects HK-2 cells and reduces nano-COM crystal toxicity, adhesion and endocytosis. J Mater Chem B 2021; 8:7233-7252. [PMID: 32638810 DOI: 10.1039/d0tb00360c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We studied the protection of degraded Porphyra yezoensis polysaccharide (PYP) on human proximal tubular epithelial cells (HK-2) from cytotoxicity of nano-calcium oxalate monohydrate (COM) crystal, and the regulation of adhesion and endocytosis of the COM crystal. Four degraded fractions, namely, PYP1, PYP2, PYP3, and PYP4, were successfully obtained, with molecular weights (Mws) of 576.2, 49.5, 12.6, and 4.02 kDa, respectively. PYP protection reduced the crystal toxicity, prevented the destruction of cell morphology and cytoskeleton, inhibited the production of reactive oxygen species and the decline of lysosomal integrity, and reduced the expression of osteopontin and transmembrane protein (CD44). PYPi inhibited the adhesion and endocytosis of HK-2 cells by nano-COM. Endocytic COM crystals were accumulated in the lysosomes. With decreasing molecular weight, the ability of PYP to reduce cell damage and inhibit cell adhesion and endocytosis increased. PYP4, which has the smallest molecular weight, weaker intramolecular hydrogen bonds and more reducing groups, showed the best biological activity. PYPi can reduce the oxidative damage of the crystal to the cell, inhibit the adhesion and endocytosis of the crystal, and reduce the risk of kidney stone formation. Therefore, PYP, especially PYP4, has potential for use as a green drug to inhibit the formation and recurrence of calcium oxalate stones.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry, Jinan University, Guangzhou 510632, China. and Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Xue-Wu Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China. and Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China. and Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L. Effects of PM 2.5 exposure on reproductive system and its mechanisms. CHEMOSPHERE 2021; 264:128436. [PMID: 33032215 DOI: 10.1016/j.chemosphere.2020.128436] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With the development of human society, haze has become an important form of air pollution. Haze is a mixture of fog and haze, and the main component of haze is fine particulate matter (PM2.5), which is the most important indicator of composite air pollution. Epidemiological studies proved that PM2.5 can break through the respiratory mucosal barrier and enter the human body, causing pathological effects on multiple systems of the body. In the past, people put more attention to PM2.5 in the respiratory system, cardiovascular system, nervous system, etc, and relatively paid less attention to the reproductive system. Recent studies have shown that PM2.5 will accumulate in the reproductive organs through blood-testis barrier, placental barrier, epithelial barrier and other barriers protecting reproductive tissues. In addition, PM2.5 can disrupt hormone levels, ultimately affecting fertility. Prior studies have shown that oxidative stress, inflammation, apoptosis, and the breakdown of barrier structures are now considered to contribute to reproductive toxicity and may cause damage at the molecular and genetic levels. However, the exact mechanism remains to be elucidated. Our review aims to provide an understanding of the pathological effects of PM2.5 on reproductive system and the existing injury mechanism.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin, 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Luo
- Department of Cardiovascular Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730000, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China.
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| |
Collapse
|
23
|
Chaudhari S, Mallet RT, Shotorbani PY, Tao Y, Ma R. Store-operated calcium entry: Pivotal roles in renal physiology and pathophysiology. Exp Biol Med (Maywood) 2020; 246:305-316. [PMID: 33249888 DOI: 10.1177/1535370220975207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Research conducted over the last two decades has dramatically advanced the understanding of store-operated calcium channels (SOCC) and their impact on renal function. Kidneys contain many types of cells, including those specialized for glomerular filtration (fenestrated capillary endothelium, podocytes), water and solute transport (tubular epithelium), and regulation of glomerular filtration and renal blood flow (vascular smooth muscle cells, mesangial cells). The highly integrated function of these myriad cells effects renal control of blood pressure, extracellular fluid volume and osmolality, electrolyte balance, and acid-base homeostasis. Many of these cells are regulated by Ca2+ signaling. Recent evidence demonstrates that SOCCs are major Ca2+ entry portals in several renal cell types. SOCC is activated by depletion of Ca2+ stores in the sarco/endoplasmic reticulum, which communicates with plasma membrane SOCC via the Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Orai1 is recognized as the main pore-forming subunit of SOCC in the plasma membrane. Orai proteins alone can form highly Ca2+ selective SOCC channels. Also, members of the Transient Receptor Potential Canonical (TRPC) channel family are proposed to form heteromeric complexes with Orai1 subunits, forming SOCC with low Ca2+ selectivity. Recently, Ca2+ entry through SOCC, known as store-operated Ca2+ entry (SOCE), was identified in glomerular mesangial cells, tubular epithelium, and renovascular smooth muscle cells. The physiological and pathological relevance and the characterization of SOCC complexes in those cells are still unclear. In this review, we summarize the current knowledge of SOCC and their roles in renal glomerular, tubular and vascular cells, including studies from our laboratory, emphasizing SOCE regulation of fibrotic protein deposition. Understanding the diverse roles of SOCE in different renal cell types is essential, as SOCC and its signaling pathways are emerging targets for treatment of SOCE-related diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
24
|
Chen X, Yin J, Xu Y, Qiu Z, Liu J, Chen X. Effect of selective inhibition or activation of PGE2 EP1 receptor on glomerulosclerosis. Mol Med Rep 2020; 22:2887-2895. [PMID: 32700746 PMCID: PMC7453572 DOI: 10.3892/mmr.2020.11353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Prostaglandin E2 (PGE2) is involved in numerous physiological and pathological processes of the kidney via its four receptors. A previous study has suggested that a defect in the PGE2 receptor 1 (EP1) gene markedly suppressed the transforming growth factor-β1 (TGF-β1)-induced mesangial cell (MC) proliferation and extracellular matrix aggregation. Therefore, the present study aimed to adopt a pharmacological method of specifically suppressing or activating the EP1 receptor to further verify and demonstrate these results. The EP1 receptor antagonist SC-19220 and EP1 receptor agonist 17-phenyl-trinor-PGE2 ethyl amide (17-pt-PGE2) were selectively used to treat five-sixths nephrectomy renal fibrosis model mice and TGF-β1-stimulated MCs. An Alpha screen PGE2 assay kit, flow cytometry, western blotting and immunohistochemical techniques were adopted to perform in vivo and in vitro experiments. The present results suggested that compared with the control group, the selective EP1 receptor antagonist SC-19220 improved renal function, markedly reduced the plasma blood urea nitrogen and creatinine levels (P<0.05) and alleviated glomerulosclerosis (P<0.05). By contrast, the EP1 receptor agonist 17-pt-PGE2 aggravated renal dysfunction and glomerulosclerosis (P<0.05). To verify the renal protection mechanisms mediated by suppression of the EP1 receptor, the expression levels of endoplasmic reticulum stress (ERS)-related proteins, including chaperone glucose-regulated protein 78 (GRP78), transient receptor potential channel 1 (TRPC1) and protein kinase R-like endoplasmic reticulum kinase (PERK), were further evaluated histologically. The expression of GRP78, TRPC1 and PERK in the antagonist treatment group were markedly downregulated (P<0.05), whereas those in the agonist treatment group were upregulated (P<0.05). The present in vitro experiments demonstrated that, compared with the control group, the EP1 receptor antagonist suppressed the expression of GRP78, TRPC1 and PERK (P<0.05), reduced the production of PGE2 (P<0.05) and decreased the MC apoptosis rate (P<0.05), thus alleviating TGF-β1-stimulated MC injury. Consequently, consistent with previous results, selectively antagonizing the EP1 receptor improved renal function and mitigated glomerulosclerosis, and its potential mechanism might be associated with the suppression of ERS.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jun Yin
- Department of Nephrology, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Yuyin Xu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhi Qiu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
25
|
Shin S, Gombedza FC, Bandyopadhyay BC. l-ornithine activates Ca 2+ signaling to exert its protective function on human proximal tubular cells. Cell Signal 2020; 67:109484. [PMID: 31770578 PMCID: PMC7302702 DOI: 10.1016/j.cellsig.2019.109484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) generation can be influenced by G-protein coupled receptor (GPCR)-mediated regulation of intracellular Ca2+ ([Ca2+]i) signaling. ROS production are much higher in proximal tubular (PT) cells; in addition, the lack of antioxidants enhances the vulnerability to oxidative damage. Despite such predispositions, PT cells show resiliency, and therefore must possess some inherent mechanism to protect from oxidative damage. While the mechanism in unknown, we tested the effect of l-ornithine, since it is abundantly present in PT luminal fluid and can activate Ca2+-sensing receptor (CaSR), a GPCR, expressed in the PT luminal membrane. We used human kidney 2 (HK2) cells, a PT cell line, and performed Ca2+ imaging and electrophysiological experiments to show that l-ornithine has a concentration-dependent effect on CaSR activation. We further demonstrate that the operation of CaSR activated Ca2+ signaling in HK-2 cells mediated by the transient receptor potential canonical (TRPC) dependent receptor-operated Ca2+ entry (ROCE) using pharmacological and siRNA inhibitors. Since PT cells are vulnerable to ROS, we simulated such deleterious effects using genetically encoded peroxide-induced ROS production (HyperRed indicator) to show that the l-ornithine-induced ROCE mediated [Ca2+]i signaling protects from ROS production. Furthermore, we performed cell viability, necrosis and apoptosis assays, and mitochondrial oxidative gene expression to establish that presence of l-ornithine rescued the ROS-induced damage in HK-2 cells. Moreover, l-ornithine-activation of CaSR can reverse ROS production and apoptosis via mitogen-activated protein kinase p38 activation. Such nephroprotective role of l-ornithine can be useful as the translational option for reversing kidney diseases involving PT cell damage due to oxidative stress or crystal nephropathies.
Collapse
Affiliation(s)
- Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Farai C Gombedza
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC 20037, USA; Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA.
| |
Collapse
|
26
|
Feng J, Kong R, Xie L, Lu W, Zhang Y, Dong H, Jiang H. Clemaichinenoside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro through activating the Nrf2/HO‐1 signalling pathway. Clin Exp Pharmacol Physiol 2019; 47:495-502. [PMID: 31785117 DOI: 10.1111/1440-1681.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Feng
- Department of Nephrology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Ranran Kong
- Department of Thoracic Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Liyi Xie
- Department of Nephrology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Wanhong Lu
- Department of Nephrology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Yali Zhang
- Department of Nephrology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Hongjuan Dong
- Department of Nephrology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Hongli Jiang
- Blood Purification Center The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|