1
|
Majewska M, Maździarz M, Krawczyk K, Paukszto Ł, Makowczenko KG, Lepiarczyk E, Lipka A, Wiszpolska M, Górska A, Moczulska B, Kocbach P, Sawicki J, Gromadziński L. SARS-CoV-2 disrupts host gene networks: Unveiling key hub genes as potential therapeutic targets for COVID-19 management. Comput Biol Med 2024; 183:109343. [PMID: 39500239 DOI: 10.1016/j.compbiomed.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Although the end of COVID-19 as a public health emergency was declared on May 2023, still new cases of the infection are reported and the risk remains of new variants emerging that may cause new surges in cases and deaths. While clinical symptoms have been rapidly defined worldwide, the basic body responses and pathogenetic mechanisms acting in patients with SARS-CoV-2 infection over time until recovery or death require further investigation. The understanding of the molecular mechanisms underlying the development and course of the disease is essential in designing effective preventive and therapeutic approaches, and ultimately reducing mortality and disease spreading. METHODS The current investigation aimed to identify the key genes engaged in SARS-CoV-2 infection. To achieve this goal high-throughput RNA sequencing of peripheral blood samples collected from healthy donors and COVID-19 patients was performed. The resulting sequence data were processed using a wide range of bioinformatics tools to obtain detailed modifications within five transcriptomic phenomena: expression of genes and long non-coding RNAs, alternative splicing, allel-specific expression and circRNA production. The in silico procedure was completed with a functional analysis of the identified alterations. RESULTS The transcriptomic analysis revealed that SARS-CoV-2 has a significant impact on multiple genes encoding ribosomal proteins (RPs). Results show that these genes differ not only in terms of expression but also manifest biases in alternative splicing and ASE ratios. The integrated functional analysis exposed that RPs mostly affected pathways and processes related to infection-COVID-19 and NOD-like receptor signaling pathway, SARS-CoV-2-host interactions and response to the virus. Furthermore, our results linked the multiple intronic ASE variants and exonic circular RNA differentiations with SARS-CoV-2 infection, suggesting that these molecular events play a crucial role in mRNA maturation and transcription during COVID-19 disease. CONCLUSIONS By elucidating the genetic mechanisms induced by the virus, the current research provides significant information that can be employed to create new targeted therapeutic strategies for future research and treatment related to COVID-19. Moreover, the findings highlight potentially promising therapeutic biomarkers for early risk assessment of critically ill patients.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Mateusz Maździarz
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Anna Górska
- Diagnostyka Medical Laboratories, 10-082, Olsztyn, Poland
| | - Beata Moczulska
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Piotr Kocbach
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| |
Collapse
|
2
|
Shimizu J, Sasaki T, Ong GH, Koketsu R, Samune Y, Nakayama EE, Nagamoto T, Yamamoto Y, Miyazaki K, Shioda T. IFN-γ derived from activated human CD4 + T cells inhibits the replication of SARS-CoV-2 depending on cell-type and viral strain. Sci Rep 2024; 14:26660. [PMID: 39496837 PMCID: PMC11535250 DOI: 10.1038/s41598-024-77969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit both T cell and B cell immune responses in immunocompetent individuals. However, the mechanisms underlying the antiviral effects mediated by CD4+ T cells are not fully understood. In this study, we analyzed the culture supernatant (SN) from polyclonally stimulated human CD4+ T cells as a model for soluble mediators derived from SARS-CoV-2-stimulated CD4+ T cells. Interestingly, this SN inhibited SARS-CoV-2 propagation in a viral strain- and host cell type-dependent manner. The original wild-type showed the highest susceptibility, whereas the Delta variant exhibited resistance in the human monocyte cell line. In addition, antibody-dependent enhancement (ADE) of infection with the original strain was also abolished in the presence of the SN. The findings showed that the inhibitory effect on viral propagation by the SN was mostly attributed to interferon-γ (IFN-γ) that was present in the SN. These results highlight the potential role of IFN-γ as an anti-SARS-CoV-2 mediator derived from CD4+ T cells, and suggest that we need to understand the SARS-CoV-2 strain-dependent sensitivity to IFN-γ in controlling clinical outcomes. In addition, characterization of new SARS-CoV-2 variants in terms of IFN-γ-sensitivity will have important implications for selecting therapeutic strategies.
Collapse
Affiliation(s)
- Jun Shimizu
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Guang Han Ong
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ritsuko Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Samune
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuharu Nagamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Yuki Yamamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Kayalar O, Cetinkaya PD, Eldem V, Argun Baris S, Kokturk N, Kuralay SC, Rajabi H, Konyalilar N, Mortazavi D, Korkunc SK, Erkan S, Aksoy GT, Eyikudamaci G, Pinar Deniz P, Baydar Toprak O, Yildiz Gulhan P, Sagcan G, Kose N, Tomruk Erdem A, Fakili F, Ozturk O, Basyigit I, Boyaci H, Azak E, Ulukavak Ciftci T, Oguzulgen IK, Ozger HS, Aysert Yildiz P, Hanta I, Ataoglu O, Ercelik M, Cuhadaroglu C, Okur HK, Tor MM, Nurlu Temel E, Kul S, Tutuncu Y, Itil O, Bayram H. Comparative Transcriptomic Analyses of Peripheral Blood Mononuclear Cells of COVID-19 Patients without Pneumonia and with Severe Pneumonia in the First Year of Follow-Up. Viruses 2024; 16:1211. [PMID: 39205185 PMCID: PMC11358892 DOI: 10.3390/v16081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The multisystemic effects of COVID-19 may continue for a longer time period following the acute phase, depending on the severity of the disease. However, long-term systemic transcriptomic changes associated with COVID-19 disease and the impact of disease severity are not fully understood. We aimed to investigate the impact of COVID-19 and its severity on transcriptomic alterations in peripheral blood mononuclear cells (PBMCs) following 1 year of the disease. PBMCs were isolated from the peripheral blood of healthy control donors who did not have COVID-19 (C; n = 13), from COVID-19 patients without pneumonia (NP; n = 11), and from COVID-19 patients with severe pneumonia (SP; n = 10) after 1-year of follow-up. Following RNA isolation from PBMCs, high-quality RNAs were sequenced after creating a library. Differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) were identified using Benjamini-Hochberg correction and they were analysed for hierarchical clustering and principal component analysis (PCA). Intergroup comparisons (C vs. NP, C vs. SP, and NP vs. SP) of DEGs and DElncRNAs were performed and hub genes were determined. Functional enrichment analyses of DEGs and DElncRNAs were made using Metascape (v3.5.20240101) and the first version of NCPATH. The RNA sequencing analysis revealed 4843 DEGs and 1056 DElncRNAs in "C vs. NP", 1651 DEGs and 577 DElncRNAs in "C vs. SP", and 954 DEGs and 148 DElncRNAs in "NP vs. SP", with 291 DEGs and 70 DElncRNAs shared across all groups, respectively. We identified 14 hub genes from 291 DEGs, with functional enrichment analysis showing upregulated DEGs mainly linked to inflammation and osteoclast differentiation and downregulated DEGs to viral infections and immune responses. The analysis showed that 291 common and 14 hub genes were associated with pneumonia and that these genes could be regulated by the transcription factors JUN and NFκB1 carrying the NFκB binding site. We also revealed unique immune cell signatures across DEG categories indicating that the upregulated DEGs were associated with neutrophils and monocytes, while downregulated DEGs were associated with CD4 memory effector T cells. The comparative transcriptomic analysis of NP and SP groups with 52 gene signatures suggestive of IPF risk showed a lower risk of IPF in the SP group than the NP patients. Our findings suggest that COVID-19 may cause long term pathologies by modulating the expression of various DEGs, DeLncRNAs, and hub genes at the cellular level.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Pelin Duru Cetinkaya
- Department of Pulmonary Medicine, Faculty of Medicine, Cukurova University, Adana 01790, Türkiye; (P.D.C.); (P.P.D.); (O.B.T.); (I.H.)
| | - Vahap Eldem
- Department of Biology, Science Faculty, Istanbul University, Istanbul 34134, Türkiye; (V.E.); (S.C.K.)
| | - Serap Argun Baris
- Department of Pulmonary Medicine, Faculty of Medicine, Kocaeli University, Kocaeli 41380, Türkiye; (S.A.B.); (I.B.); (H.B.)
| | - Nurdan Kokturk
- Department of Pulmonary Medicine, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye; (N.K.); (T.U.C.); (I.K.O.)
| | - Selim Can Kuralay
- Department of Biology, Science Faculty, Istanbul University, Istanbul 34134, Türkiye; (V.E.); (S.C.K.)
| | - Hadi Rajabi
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Nur Konyalilar
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Deniz Mortazavi
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Seval Kubra Korkunc
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Sinem Erkan
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Gizem Tuşe Aksoy
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Gul Eyikudamaci
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
| | - Pelin Pinar Deniz
- Department of Pulmonary Medicine, Faculty of Medicine, Cukurova University, Adana 01790, Türkiye; (P.D.C.); (P.P.D.); (O.B.T.); (I.H.)
| | - Oya Baydar Toprak
- Department of Pulmonary Medicine, Faculty of Medicine, Cukurova University, Adana 01790, Türkiye; (P.D.C.); (P.P.D.); (O.B.T.); (I.H.)
| | - Pinar Yildiz Gulhan
- Department of Pulmonary Medicine, Faculty of Medicine, Duzce University, Duzce 81620, Türkiye; (P.Y.G.); (O.A.); (M.E.)
| | - Gulseren Sagcan
- Department of Pulmonary Medicine, Altunizade Acibadem Hospital, Istanbul 34662, Türkiye; (G.S.); (C.C.); (H.K.O.)
| | - Neslihan Kose
- Department of Pulmonary Medicine, Bilecik Training and Research Hospital, Bilecik 11230, Türkiye;
| | - Aysegul Tomruk Erdem
- Department of Pulmonary Medicine, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak 67100, Türkiye; (A.T.E.); (M.M.T.)
| | - Fusun Fakili
- Department of Pulmonary Medicine, Faculty of Medicine, Gaziantep University, Gaziantep 27310, Türkiye;
| | - Onder Ozturk
- Department of Pulmonary Medicine, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Türkiye;
| | - Ilknur Basyigit
- Department of Pulmonary Medicine, Faculty of Medicine, Kocaeli University, Kocaeli 41380, Türkiye; (S.A.B.); (I.B.); (H.B.)
| | - Hasim Boyaci
- Department of Pulmonary Medicine, Faculty of Medicine, Kocaeli University, Kocaeli 41380, Türkiye; (S.A.B.); (I.B.); (H.B.)
| | - Emel Azak
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli 41380, Türkiye;
| | - Tansu Ulukavak Ciftci
- Department of Pulmonary Medicine, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye; (N.K.); (T.U.C.); (I.K.O.)
| | - Ipek Kivilcim Oguzulgen
- Department of Pulmonary Medicine, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye; (N.K.); (T.U.C.); (I.K.O.)
| | - Hasan Selcuk Ozger
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye; (H.S.O.); (P.A.Y.)
| | - Pinar Aysert Yildiz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gazi University, Ankara 06500, Türkiye; (H.S.O.); (P.A.Y.)
| | - Ismail Hanta
- Department of Pulmonary Medicine, Faculty of Medicine, Cukurova University, Adana 01790, Türkiye; (P.D.C.); (P.P.D.); (O.B.T.); (I.H.)
| | - Ozlem Ataoglu
- Department of Pulmonary Medicine, Faculty of Medicine, Duzce University, Duzce 81620, Türkiye; (P.Y.G.); (O.A.); (M.E.)
| | - Merve Ercelik
- Department of Pulmonary Medicine, Faculty of Medicine, Duzce University, Duzce 81620, Türkiye; (P.Y.G.); (O.A.); (M.E.)
| | - Caglar Cuhadaroglu
- Department of Pulmonary Medicine, Altunizade Acibadem Hospital, Istanbul 34662, Türkiye; (G.S.); (C.C.); (H.K.O.)
| | - Hacer Kuzu Okur
- Department of Pulmonary Medicine, Altunizade Acibadem Hospital, Istanbul 34662, Türkiye; (G.S.); (C.C.); (H.K.O.)
| | - Muge Meltem Tor
- Department of Pulmonary Medicine, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak 67100, Türkiye; (A.T.E.); (M.M.T.)
| | - Esra Nurlu Temel
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Türkiye;
| | - Seval Kul
- Department of Biostatistics, Faculty of Medicine, Gaziantep University, Gaziantep 27310, Türkiye;
| | - Yıldız Tutuncu
- Department of Immunology, Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University Istanbul, Istanbul 34010, Türkiye;
| | - Oya Itil
- Department of Pulmonary Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Türkiye;
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul 34010, Türkiye; (H.R.); (N.K.); (D.M.); (S.K.K.); (S.E.); (G.T.A.); (G.E.); (H.B.)
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul 34010, Türkiye
| |
Collapse
|
4
|
Lin C, Zeng M, Song J, Li H, Feng Z, Li K, Pei Y. PRRSV alters m 6A methylation and alternative splicing to regulate immune, extracellular matrix-associated function. Int J Biol Macromol 2023; 253:126741. [PMID: 37696370 DOI: 10.1016/j.ijbiomac.2023.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The alternative splicing and N6-methyladenosine (m6A) modifications occurring during porcine reproductive and respiratory syndrome virus (PRRSV) infections remain poorly understood. Transcriptome and MeRIP-seq analyses were performed to identify the gene expression changes, splicing and m6A modifications in the lungs of PRRSV-infected pigs. In total, 1624 differentially expressed genes (DEGs) were observed between PRRSV-infected and uninfected pigs. We observed significant alterations in alternative splicing (54,367 events) and m6A modifications (2265 DASEs) in numerous genes, including LMO7, SLC25A27, ZNF185, and ECM1, during PRRSV infection. LMO7 and ZNF185 exhibited alternative splicing variants and reduced mRNA expression levels following PRRSV infection. Notably, LMO7 inhibited c-JUN, SMAD3, and FAK expression, whereas ZNF185 affected the expression of FAK, CDH1, and GSK3β downstream. Additionally, ECM1 influenced FAK expression by targeting ITGB3 and AKT2, suggesting its involvement in extracellular matrix accumulation through the ITGB3-AKT2/FAK pathway. These changes may facilitate viral invasion and replication by modulating the expression of genes and proteins participating in crucial cellular processes associated with immunity and the extracellular matrix. We highlight the importance of these genes and their associated pathways in PRRSV infections and suggest that targeting these may be a promising therapeutic approach for treating viral infections.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
5
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Abstract
With the global rise in antimicrobial resistance, there has been a renewed interest in the application of therapeutic phages to treat bacterial infections. Therapeutic phage monitoring (TPM) is proposed as an essential element of phage therapy (PT) protocols to generate data and fill knowledge gaps regarding the in vivo efficacy of therapeutic phages, patients' immune responses to PT, and the wider ecological effects of PT. By monitoring phage concentrations in blood and tissues, together with immune responses and possible ecological changes during PT, TPM may enable the optimization of dosing and the implementation of precision medicine approaches. Furthermore, TPM can validate diagnostic surrogates of efficacy, direct research efforts, and establish quality assurance indicators for therapeutic phage products. Thus, TPM holds great potential for enhancing our understanding of the multidirectional phage-bacteria-host interactions and advancing "best practice" PT, ultimately improving patient care.
Collapse
Affiliation(s)
- Kiran Bosco
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie Lynch
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Indy Sandaradura
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ameneh Khatami
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Kim A, Ortega-Ribera M, McMullen MR, Bellar A, Taiwo M, Pathak V, Streem D, Dasarathy J, Welch N, Dasarathy S, Vachharajani V, Nagy LE. Altered Anti-Viral Immune Responses in Monocytes in Overweight Heavy Drinkers. iScience 2023; 26:107133. [PMID: 37361874 PMCID: PMC10268809 DOI: 10.1016/j.isci.2023.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Alcohol abuse causes increased susceptibility to respiratory syndromes like bacterial pneumonia and viral infections like SARS-CoV-2. Heavy drinkers (HD) are at higher risk of severe COVID-19 if they are also overweight, yet the molecular mechanisms are unexplored. Single-cell RNA-seq (scRNA-seq) was performed on peripheral blood mononuclear cells from lean or overweight HD and healthy controls (HC) after challenge with a dsRNA homopolymer (PolyI:C) to mimic a viral infection and/or with lipopolysaccharide (LPS). All monocyte populations responded to both PolyI:C and LPS with pro-inflammatory gene expression. However, expression of interferon stimulated genes, essential for inhibiting viral pathogenesis, was greatly reduced in overweight patients. Interestingly, the number of upregulated genes in response to PolyI:C challenge was far greater in monocytes from HD compared to HC, including much stronger pro-inflammatory cytokine and interferon-γ signaling responses. These results suggest increased body weight reduced anti-viral responses while heavy drinking increased pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Adam Kim
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- - Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Martí Ortega-Ribera
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Megan R McMullen
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Annette Bellar
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Moyinoluwa Taiwo
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - David Streem
- - Lutheran Hospital, Cleveland Clinic, Cleveland, OH
| | | | - Nicole Welch
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- - Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- - Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Srinivasan Dasarathy
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- - Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- - Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Vidula Vachharajani
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- - Department of Critical Care Medicine Cleveland Clinic Respiratory Institute, Cleveland, OH
| | - Laura E Nagy
- - Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- - Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- - Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Wang X, Yuen TTT, Dou Y, Hu J, Li R, Zeng Z, Lin X, Gong H, Chan CHC, Yoon C, Shuai H, Ho DTY, Hung IFN, Zhang BZ, Chu H, Huang JD. Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response. Nat Commun 2023; 14:3440. [PMID: 37301910 PMCID: PMC10257169 DOI: 10.1038/s41467-023-39096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The overall success of worldwide mass vaccination in limiting the negative effect of the COVID-19 pandemics is inevitable, however, recent SARS-CoV-2 variants of concern, especially Omicron and its sub-lineages, efficiently evade humoral immunity mounted upon vaccination or previous infection. Thus, it is an important question whether these variants, or vaccines against them, induce anti-viral cellular immunity. Here we show that the mRNA vaccine BNT162b2 induces robust protective immunity in K18-hACE2 transgenic B-cell deficient (μMT) mice. We further demonstrate that the protection is attributed to cellular immunity depending on robust IFN-γ production. Viral challenge with SARS-CoV-2 Omicron BA.1 and BA.5.2 sub-variants induce boosted cellular responses in vaccinated μMT mice, which highlights the significance of cellular immunity against the ever-emerging SARS-CoV-2 variants evading antibody-mediated immunity. Our work, by providing evidence that BNT162b2 can induce significant protective immunity in mice that are unable to produce antibodies, thus highlights the importance of cellular immunity in the protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jingchu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Zeng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huarui Gong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Celia Hoi-Ching Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chaemin Yoon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huiping Shuai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Deborah Tip-Yin Ho
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China.
- Clinical Oncology Center, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 DOI: 10.7554/elife.86002:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/28/2024] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, District of Columbia, United States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, United States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's Hospital, New York, United States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, United States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas, San Antonio, United States
| |
Collapse
|
10
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 PMCID: PMC10032659 DOI: 10.7554/elife.86002] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashington, District of ColumbiaUnited States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI)BethesdaUnited States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's HospitalNew YorkUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of CaliforniaSan FranciscoUnited States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of TexasSan AntonioUnited States
| |
Collapse
|
11
|
Kattner S, Müller J, Glanz K, Manoochehri M, Sylvester C, Vainshtein Y, Berger MM, Brenner T, Sohn K. Identification of two early blood biomarkers ACHE and CLEC12A for improved risk stratification of critically ill COVID-19 patients. Sci Rep 2023; 13:4388. [PMID: 36928077 PMCID: PMC10019437 DOI: 10.1038/s41598-023-30158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
In order to identify biomarkers for earlier prediction of COVID-19 outcome, we collected blood samples from patients with fatal outcomes (non-survivors) and with positive clinical outcomes (survivors) at ICU admission and after seven days. COVID-19 survivors and non-survivors showed significantly different transcript levels for 93 genes in whole blood already at ICU admission as revealed by RNA-Seq. These differences became even more pronounced at day 7, resulting in 290 differentially expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For validation, we designed an RT-qPCR assay for C-type lectin domain family 12 member A (CLEC12A) and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate between survivors and non-survivors at both time points. Using our combined RT-qPCR assay we examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% CI = 0.814-1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination (AUROC = 0.403, 95% CI = 0.108-0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451-0.951) at day 0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising approach for early risk stratification of severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Simone Kattner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Müller
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karolina Glanz
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Mehdi Manoochehri
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Caroline Sylvester
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Yevhen Vainshtein
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Kai Sohn
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| |
Collapse
|
12
|
Karbalaeimahdi M, Farajnia S, Bargahi N, Ghadiri-Moghaddam F, Rasouli Jazi HR, Bakhtiari N, Ghasemali S, Zarghami N. The Role of Interferons in Long Covid Infection. J Interferon Cytokine Res 2023; 43:65-76. [PMID: 36795973 DOI: 10.1089/jir.2022.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia. There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology. In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.
Collapse
Affiliation(s)
- Mohammad Karbalaeimahdi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz, Iran.,Drug Applied Research Center, Tabriz, Iran
| | | | - Farzaneh Ghadiri-Moghaddam
- Drug Applied Research Center, Tabriz, Iran.,Department of Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | | | | | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Feys S, Gonçalves SM, Khan M, Choi S, Boeckx B, Chatelain D, Cunha C, Debaveye Y, Hermans G, Hertoghs M, Humblet-Baron S, Jacobs C, Lagrou K, Marcelis L, Maizel J, Meersseman P, Nyga R, Seldeslachts L, Starick MR, Thevissen K, Vandenbriele C, Vanderbeke L, Vande Velde G, Van Regenmortel N, Vanstapel A, Vanmassenhove S, Wilmer A, Van De Veerdonk FL, De Hertogh G, Mombaerts P, Lambrechts D, Carvalho A, Van Weyenbergh J, Wauters J. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1147-1159. [PMID: 36029799 PMCID: PMC9401975 DOI: 10.1016/s2213-2600(22)00259-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1β, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.
Collapse
Affiliation(s)
- Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Bram Boeckx
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Denis Chatelain
- Department of Pathology, CHU Amiens Picardie, Amiens, France
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Hertoghs
- Department of Pathology, Network Hospitals GZA-ZNA, Antwerp, Belgium
| | | | - Cato Jacobs
- Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Julien Maizel
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Rémy Nyga
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Niels Van Regenmortel
- Department of Intensive Care Medicine, ZNA Stuivenberg, Antwerp, Belgium,Department of Intensive Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sam Vanmassenhove
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alexander Wilmer
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Diether Lambrechts
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium,Correspondence to: Dr Joost Wauters, Medical Intensive Care Unit, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
14
|
Khoshmirsafa M, Assarehzadegan MA, Fallahpour M, Azimi M, Faraji F, Riahi T, Minaeian S, Fassahat D, Divsalar F, Abbasi MA. Expression Pattern of Inflammatory and Anti-Inflammatory Cytokines and Key Differential Transcription Factors in Peripheral Blood Mononuclear Cells of Iranian Coronavirus Disease 2019 Patients with Different Disease Severity. Viral Immunol 2022; 35:474-482. [PMID: 35997599 DOI: 10.1089/vim.2021.0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this research was to investigate the gene expression levels of inflammatory cytokines interferon (IFN)γ, tumor necrosis factor (TNF)α, interleukin (IL)1β, IL2, IL6, IL8, and IL17, and anti-inflammatory cytokines IL4, IL10, IFNα, and IFNβ, as well as relevant key transcription factors (TFs), including GATA3, PU1, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), IRF3 (interferon regulatory factor 3), BCL6 (B cell lymphoma 6 protein), FOXP3 (forkhead box P3), RORγt, and T-bet (T-box expressed in T cell) in Iranian patients with moderate and severe coronavirus disease 2019 (COVID-19). Fifty-six patients with COVID-19, and 25 healthy controls (HCs) age and sex matched were investigated. Based on the interim guidance of COVID-19 from the World Health Organization, the patients were classified into 33 moderate and 23 severe patients with COVID-19. The gene expression levels of cytokines and relevant TFs were quantified in peripheral blood mononuclear cells by quantitative real-time polymerase chain reaction (qRT-PCR). The gene expression levels of TFs RoRγ (RAR-related orphan nuclear receptor γ), NF-κB, and T-bet were significantly higher in patients with COVID-19 compared with HCs. Furthermore, the gene expression levels of cytokines, including IL2, IFNγ, IL6, TNFα, IL1β, IL8, and IL17, were significantly higher in patients with COVID-19 than HCs. However, there was a significant increase for IL6, TNFα, and IL17 in severe compared with moderate patients with COVID-19. Finally, The Spearman correlation analysis revealed a significantly positive correlation for IL6 and TNFα, IL6 and IL2, IL6, IFNγ, and IL2 and IFNγ. These data suggest that expression of IL6, TNFα, and IL17 as well as the synergic effect of elevated values of IL2 and IFNγ should be considered in the treatment and management of patients with severe COVID-19.
Collapse
Affiliation(s)
- Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases; Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine; Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases; Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine; Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Allergy and Clinical Immunology Department, Rasool e Akram Hospital; Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases; Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases; Iran University of Medical Sciences, Tehran, Iran
| | - Taghi Riahi
- Rasoul-e-Akram Hospital; Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases; Iran University of Medical Sciences, Tehran, Iran
| | - Davood Fassahat
- Firoozabadi Clinical Research Development (FCRDU); Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Divsalar
- Firoozabadi Clinical Research Development (FCRDU); Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abbasi
- Firoozabadi Clinical Research Development (FCRDU); Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Khalid Z, Huan M, Sohail Raza M, Abbas M, Naz Z, Kombe Kombe AJ, Zeng W, He H, Jin T. Identification of Novel Therapeutic Candidates Against SARS-CoV-2 Infections: An Application of RNA Sequencing Toward mRNA Based Nanotherapeutics. Front Microbiol 2022; 13:901848. [PMID: 35983322 PMCID: PMC9378778 DOI: 10.3389/fmicb.2022.901848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Due to fast transmission and various circulating SARS-CoV-2 variants, a significant increase of coronavirus 2019 infection cases with acute respiratory symptoms has prompted worries about the efficiency of current vaccines. The possible evasion from vaccine immunity urged scientists to identify novel therapeutic targets for developing improved vaccines to manage worldwide COVID-19 infections. Our study sequenced pooled peripheral blood mononuclear cells transcriptomes of SARS-CoV-2 patients with moderate and critical clinical outcomes to identify novel potential host receptors and biomarkers that can assist in developing new translational nanomedicines and vaccine therapies. The dysregulated signatures were associated with humoral immune responses in moderate and critical patients, including B-cell activation, cell cycle perturbations, plasmablast antibody processing, adaptive immune responses, cytokinesis, and interleukin signaling pathway. The comparative and longitudinal analysis of moderate and critically infected groups elucidated diversity in regulatory pathways and biological processes. Several immunoglobin genes (IGLV9-49, IGHV7-4, IGHV3-64, IGHV1-24, IGKV1D-12, and IGKV2-29), ribosomal proteins (RPL29, RPL4P2, RPL5, and RPL14), inflammatory response related cytokines including Tumor Necrosis Factor (TNF, TNFRSF17, and TNFRSF13B), C-C motif chemokine ligands (CCL3, CCL25, CCL4L2, CCL22, and CCL4), C-X-C motif chemokine ligands (CXCL2, CXCL10, and CXCL11) and genes related to cell cycle process and DNA proliferation (MYBL2, CDC20, KIFC1, and UHCL1) were significantly upregulated among SARS-CoV-2 infected patients. 60S Ribosomal protein L29 (RPL29) was a highly expressed gene among all COVID-19 infected groups. Our study suggested that identifying differentially expressed genes (DEGs) based on disease severity and onset can be a powerful approach for identifying potential therapeutic targets to develop effective drug delivery systems against SARS-CoV-2 infections. As a result, potential therapeutic targets, such as the RPL29 protein, can be tested in vivo and in vitro to develop future mRNA-based translational nanomedicines and therapies to combat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weihong Zeng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- *Correspondence: Tengchuan Jin,
| |
Collapse
|
17
|
Agrawal P, Sambaturu N, Olgun G, Hannenhalli S. A Path-Based Analysis of Infected Cell Line and COVID-19 Patient Transcriptome Reveals Novel Potential Targets and Drugs Against SARS-CoV-2. Front Immunol 2022; 13:918817. [PMID: 35844595 PMCID: PMC9284228 DOI: 10.3389/fimmu.2022.918817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India
| | - Gulden Olgun
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Th1 cytokine endotype discriminates and predicts severe complications in COVID-19. Eur Cytokine Netw 2022; 33:25-36. [PMID: 36266985 PMCID: PMC9595088 DOI: 10.1684/ecn.2022.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of severe and critical cases of coronavirus disease 2019 (COVID-19) is still a top priority in public health. Previously, we reported distinct Th1 cytokines related to the pathophysiology of severe COVID-19 condition. In the present study, we investigated the association of Th1 and Th2 cytokine/chemokine endotypes with cell-mediated immunity via multiplex immunophenotyping, single-cell RNA-Seq analysis of peripheral blood mononuclear cells, and analysis of the clinical features of COVID-19 patients. Based on serum cytokine and systemic inflammatory markers, COVID-19 cases were classified into four clusters of increasing (I-IV) severity. Two prominent clusters were of interest and could be used as prognostic reference for a targeted treatment of severe COVID-19 cases. Cluster III reflected severe/critical pathology and was characterized by decreased in CCL17 levels and increase in IL-6, C-reactive protein CXCL9, IL-18, and IL-10 levels. The second cluster (Cluster II) showed mild to moderate pathology and was characterized by predominated CXCL9 and IL-18 levels, levels of IL-6 and CRP were relatively low. Cluster II patients received anti-inflammatory treatment in early-stage, which may have led prevent disease prognosis which is accompanied to IL-6 and CRP induction. In Cluster III, a decrease in the proportion of effector T cells with signs of T cell exhaustion was observed. This study highlights the mechanisms of endotype clustering based on specific inflammatory markers in related the clinical outcome of COVID-19.
Collapse
|
19
|
Programmed cell death: the pathways to severe COVID-19? Biochem J 2022; 479:609-628. [PMID: 35244141 PMCID: PMC9022977 DOI: 10.1042/bcj20210602] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Collapse
|
20
|
Papadopoulou G, Manoloudi E, Repousi N, Skoura L, Hurst T, Karamitros T. Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence. Pathogens 2022; 11:311. [PMID: 35335635 PMCID: PMC8948624 DOI: 10.3390/pathogens11030311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses several challenges to clinicians, due to its unpredictable clinical course. The identification of laboratory biomarkers, specific cellular, and molecular mediators of immune response could contribute to the prognosis and management of COVID-19 patients. Of utmost importance is also the detection of differentially expressed genes, which can serve as transcriptomic signatures, providing information valuable to stratify patients into groups, based on the severity of the disease. The role of biomarkers such as IL-6, procalcitonin, neutrophil-lymphocyte ratio, white blood cell counts, etc. has already been highlighted in recently published studies; however, there is a notable amount of new evidence that has not been summarized yet, especially regarding transcriptomic signatures. Hence, in this review, we assess the latest cellular and molecular data and determine the significance of abnormalities in potential biomarkers for COVID-19 severity and persistence. Furthermore, we applied Gene Ontology (GO) enrichment analysis using the genes reported as differentially expressed in the literature in order to investigate which biological pathways are significantly enriched. The analysis revealed a number of processes, such as inflammatory response, and monocyte and neutrophil chemotaxis, which occur as part of the complex immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Gethsimani Papadopoulou
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Eleni Manoloudi
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Nikolena Repousi
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece;
| | - Tara Hurst
- School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| |
Collapse
|
21
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
22
|
An S, Li Y, Lin Y, Chu J, Su J, Chen Q, Wang H, Pan P, Zheng R, Li J, Jiang J, Ye L, Liang H. Genome-Wide Profiling Reveals Alternative Polyadenylation of Innate Immune-Related mRNA in Patients With COVID-19. Front Immunol 2021; 12:756288. [PMID: 34777369 PMCID: PMC8578971 DOI: 10.3389/fimmu.2021.756288] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused many deaths worldwide. To date, the mechanism of viral immune escape remains unclear, which is a great obstacle to developing effective clinical treatment. RNA processing mechanisms, including alternative polyadenylation (APA) and alternative splicing (AS), are crucial in the regulation of most human genes in many types of infectious diseases. Because the role of APA and AS in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown, we performed de novo identification of dynamic APA sites using a public dataset of human peripheral blood mononuclear cell (PBMC) RNA-Seq data in COVID-19 patients. We found that genes with APA were enriched in innate immunity -related gene ontology categories such as neutrophil activation, regulation of the MAPK cascade and cytokine production, response to interferon-gamma and the innate immune response. We also reported genome-wide AS events and enriched viral transcription-related categories upon SARS-CoV-2 infection. Interestingly, we found that APA events may give better predictions than AS in COVID-19 patients, suggesting that APA could act as a potential therapeutic target and novel biomarker in those patients. Our study is the first to annotate genes with APA and AS in COVID-19 patients and highlights the roles of APA variation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sanqi An
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Yueqi Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Yao Lin
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jiemei Chu
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Qiuli Chen
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Hailong Wang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Ruili Zheng
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jingyi Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Ye
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Akamatsu MA, de Castro JT, Takano CY, Ho PL. Off balance: Interferons in COVID-19 lung infections. EBioMedicine 2021; 73:103642. [PMID: 34678609 PMCID: PMC8524139 DOI: 10.1016/j.ebiom.2021.103642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Interferons are innate and adaptive cytokines involved in many biological responses, in particular, viral infections. With the final response the result of the balance of the different types of Interferons. Cytokine storms are physiological reactions observed in humans and animals in which the innate immune system causes an uncontrolled and excessive release of pro-inflammatory signaling molecules. The excessive and prolonged presence of these cytokines can cause tissue damage, multisystem organ failure and death. The role of Interferons in virus clearance, tissue damage and cytokine storms are discussed, in view of COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The imbalance of Type I, Type II and Type III Interferons during a viral infection contribute to the clinical outcome, possibly together with other cytokines, in particular, TNFα, with clear implications for clinical interventions to restore their correct balance.
Collapse
Affiliation(s)
| | | | - Carolina Yumi Takano
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto Butantan
| | - Paulo Lee Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto Butantan.
| |
Collapse
|
24
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
25
|
Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, Amblard E, Noel F, Marie Y, Bouteiller D, Medvedovic J, Pène F, Soumelis V. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol 2021; 23:538-551. [PMID: 33972731 DOI: 10.1038/s41556-021-00681-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.
Collapse
Affiliation(s)
| | - Maha Zohra Ladjemi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | | | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Zakaria Ait Hamou
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Lucile Massenet-Regad
- Université de Paris, INSERM U976, Paris, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Elise Amblard
- Université de Paris, INSERM U976, Paris, France
- Université de Paris, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Yannick Marie
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Delphine Bouteiller
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
| | | | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.
- AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France.
| |
Collapse
|
26
|
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, dos Santos Freitas A, Ribeiro da Silveira P, Tiwari S, Alzahrani KJ, Góes-Neto A, Azevedo V, Ghosh P, Barh D. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021; 13:700. [PMID: 33919537 PMCID: PMC8072585 DOI: 10.3390/v13040700] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.
Collapse
Affiliation(s)
- Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sérgio Siqueira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Wagner Rodrigues de Assis Soares
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Departamento de Saúde II, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil
| | - Fernanda de Souza Rangel
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Naiane Oliveira Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Andria dos Santos Freitas
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Priscila Ribeiro da Silveira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Insti-tuto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CEP 31270-901, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Bio-technology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| |
Collapse
|
27
|
Sarmiento-Monroy JC, Parra-Medina R, Garavito E, Rojas-Villarraga A. T Helper 17 Response to Severe Acute Respiratory Syndrome Coronavirus 2: A Type of Immune Response with Possible Therapeutic Implications. Viral Immunol 2021; 34:190-200. [PMID: 33625297 DOI: 10.1089/vim.2020.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The initial immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) includes an interferon-dependent antiviral response. A late and uncontrolled inflammatory response characterized by high activity of proinflammatory cytokines and the recruitment of neutrophils and macrophages develops in predisposed individuals and is potentially harmful in some cases. Interleukin (IL)-17 is one of the many cytokines released during coronavirus disease 2019 (COVID-19). IL-17 is crucial in recruiting and activating neutrophils, cells that can migrate to the lung, and are heavily involved in the pathogenesis of COVID-19. During the infection T helper 17 (Th17) cells and IL-17-related pathways are associated with a worse outcome of the disease. All these have practical consequences considering that some drugs with therapeutic targets related to the Th17 response may have a beneficial effect on patients with SARS-CoV-2 infection. Herein, we present the arguments underlying our assumption that blocking the IL-23/IL-17 axis using targeted biological therapies as well as drugs that act indirectly on this pathway such as convalescent plasma therapy and colchicine may be good therapeutic options.
Collapse
Affiliation(s)
| | - Rafael Parra-Medina
- Research Department, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia.,Pathology Department, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | - Edgar Garavito
- Pathology Department, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia.,Basic Sciences Department, Fundación Universitaria Sanitas, Bogotá, Colombia.,Department of Morphology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|