1
|
Lam LY, Liang TR, Wu WJ, Lam HYP. Intestinal Lactobacillus johnsonii protects against neuroangiostrongyliasis in BALB/c mice through modulation of immune response. PLoS Negl Trop Dis 2025; 19:e0012977. [PMID: 40198714 DOI: 10.1371/journal.pntd.0012977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Neuroangiostrongyliasis is characterized by eosinophilic meningoencephalitis with a robust onset of severe neurological symptoms, by which immunological factors and peripheral metabolites have been postulated to affect the course of the disease. The gut-brain axis provides a bidirectional communication between the gut and the central nervous system, and therefore, understanding the gut microbiome may provide us with a deeper insight into the pathogenesis of angiostrongyliasis. Using 16S rRNA sequencing, we identified an increase in the abundance of different Lactobacillus species in Angiostrongylus cantonensis-infected mice, which was correlated to the disease severity. However, attempts to inoculate L. johnsonii into A. cantonensis-infected mice surprisingly revealed an improvement in neuroinflammation and prolonged survival. RNA sequencing suggested an immune-modulatory effect of L. johnsonii, which was confirmed by ELISA, showing increased levels of IL-10 and reduced levels of IL-2, IL-4, IL-5, and MCP-1 in the brain. Nevertheless, L. johnsonii-associated improvements were not associated with microbiome-related metabolites, as UHPLC-MS/MS analysis revealed no change in short-chain fatty acids, tryptophan metabolites, and bile acids. Our results suggest that while intestinal L. johnsonii appears to be linked to the progression of neuroangiostrongyliasis, these bacteria are likely attempting to modulate the dysregulated immune response to combat the disease. This is one of the first studies to investigate the gut microbiome in mice with A. cantonensis infection, which extends our knowledge from the microbiome-point-of-view of the pathogenesis of angiostrongyliasis and how the body defends against A. cantonensis. This work also extends to possible treatment approaches using L. johnsonii as probiotics.
Collapse
Affiliation(s)
- Long Yin Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Schütz B, Krause FF, Taudte RV, Zaiss MM, Luu M, Visekruna A. Modulation of Host Immunity by Microbiome-Derived Indole-3-Propionic Acid and Other Bacterial Metabolites. Eur J Immunol 2025; 55:e202451594. [PMID: 40170399 PMCID: PMC11962249 DOI: 10.1002/eji.202451594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
In recent years, we have witnessed a rapidly growing interest in the intricate communications between intestinal microorganisms and the host immune system. Research on the human microbiome is evolving from merely descriptive and correlative studies to a deeper mechanistic understanding of the bidirectional interactions between gut microbiota and the mucosal immune system. Despite numerous challenges, it has become increasingly evident that an imbalance in gut microbiota composition, known as dysbiosis, is associated with the development and progression of various metabolic, immune, cancer, and neurodegenerative disorders. A growing body of evidence highlights the importance of small molecules produced by intestinal commensal bacteria, collectively referred to as gut microbial metabolites. These metabolites serve as crucial diffusible messengers, translating the microbial language to host cells. This review aims to explore the complex and not yet fully understood molecular mechanisms through which microbiota-derived metabolites influence the activity of the immune cells and shape immune reactions in the gut and other organs. Specifically, we will discuss recent research that reveals the close relationship between microbial indole-3-propionic acid (IPA) and mucosal immunity. Furthermore, we will emphasize the beneficial effects of IPA on intestinal inflammation and discuss its potential clinical implications.
Collapse
Affiliation(s)
- Burkhard Schütz
- Institute of Anatomy and Cell BiologyPhilipps‐University MarburgMarburgGermany
| | - Felix F. Krause
- Institute for Medical Microbiology and HygienePhilipps‐University MarburgMarburgGermany
| | - R. Verena Taudte
- Core Facility for MetabolomicsDepartment of MedicinePhilipps‐University MarburgMarburgGermany
| | - Mario M. Zaiss
- Department of Internal Medicine 3Rheumatology and ImmunologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) and Universitätsklinikum ErlangenErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) and Universitätsklinikum ErlangenErlangenGermany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik IIUniversitätsklinikum WürzburgWürzburgGermany
| | - Alexander Visekruna
- Institute for Medical Microbiology and HygienePhilipps‐University MarburgMarburgGermany
| |
Collapse
|
3
|
Wu S, Luo Y, Wei F, Li Y, Fan J, Chen Y, Zhang W, Li X, Xu Y, Chen Z, Xia C, Hu M, Li P, Gu Q. Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation. Food Funct 2025. [PMID: 40152095 DOI: 10.1039/d4fo06308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yuenuo Luo
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiayi Fan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Wenjie Zhang
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Xuelong Li
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Mingyang Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Liu X, Zhang X, Liu H, Fu H, Liu Y, Ge Y, Deng S, Tang Z, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Garlic-Derived Exosome-Like Nanoparticles Enhance Gut Homeostasis in Stressed Piglets: Involvement of Lactobacillus reuteri Modulation and Indole-3-propionic Acid Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7228-7243. [PMID: 40082245 DOI: 10.1021/acs.jafc.4c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The occurrence of pediatric diarrhea is frequently associated with inflammatory responses, compromised barrier function, and dysbiosis in the gut. These conditions are commonly triggered by stressors, similar to postweaning diarrhea observed in piglets. Garlic-derived exosome-like nanoparticles (GELNs) hold the potential for ameliorating stress-induced diarrhea, yet supporting evidence remains scarce. Following the successful isolation of GELNs, this study employed weaned piglets as a model to evaluate the regulatory effects of GELNs on intestinal barrier integrity, mucosal inflammation, and the gut microbiota and its metabolites. Weaned Bama miniature piglets were orally administered phosphate buffer saline (PBS) or GELNs, and 1 week later, samples were collected following slaughter. Histological and molecular biological techniques were performed to examine intestinal structure, tight junction protein expression, mucin secretion, T lymphocyte infiltration, and the levels of pro-inflammatory cytokines. The composition of the gut microbiota was analyzed using 16S rRNA sequencing, while its derived metabolites were profiled via untargeted metabolomics. Subsequently, correlation analyses were performed to evaluate the associations between the microbiota and its derived metabolites, as well as between the microbiota and the key indicators of intestinal barrier function and cytokine levels in response to GELNs. The isolated GELNs exhibit typical exosome characteristics in size and morphology, alongside a rich content of proteins and RNAs. The incidence of diarrhea in weaned piglets was reduced with supplementation of GELNs at a dosage of 50 mg/kg body weight, compared to the control group. In addition, piglets receiving GELNs displayed an increase in mucin content within the tissues of the jejunum, ileum, and colon, a decrease in CD8+ T lymphocyte counts in the colon, and suppression of pro-inflammatory cytokines (IL-8 and TNF-α) levels in the mucosal layers of both the jejunum and ileum. Furthermore, 16S rRNA sequencing unveiled that GELNs reshaped the colonic microbiota in weaned piglets by augmenting beneficial bacteria, notably Lactobacillus and Lactobacillus reuteri, correlating strongly with diminished TNF-α protein levels and heightened mucin expression. Metabolite analysis demonstrated a significant increase in indole-3-propionic acid, derived from the gut microbiota, in piglets supplemented with GELNs. This increase was positively correlated with the abundance of Lactobacillus and Lactobacillus reuteri and negatively linked with the protein levels of IL-8 and TNF-α in the gut. In summary, our study demonstrates that GELNs mitigate stress-related intestinal mucosal inflammation and enhance mucin production in the gut of weaned piglets, which is potentially achieved through the optimization of gut microbiota composition, specifically by increasing the abundance of Lactobacillus and Lactobacillus reuteri, as well as via the induction of the anti-inflammatory microbial metabolite indole-3-propionic acid. The findings presented here provide essential groundwork for the future development of GELNs as a therapeutic strategy aimed at enhancing gut homeostasis disruption caused by stress in both weaned piglets and children.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhining Tang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Ma G, Gao X, Chen Y, Li H, Cui Y, Guo P, Zhao T, Di F. Chemical migration, digestive behaviors and effect on gut microbiota of PLA and PBAT oligomers. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137988. [PMID: 40121999 DOI: 10.1016/j.jhazmat.2025.137988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining migration experiments, an in vitro digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following in vitro colonic fermentation for 48 h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of "lifecycle", this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.
Collapse
Affiliation(s)
- Guowei Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaomeng Gao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yuting Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Hanfei Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yiling Cui
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Peixue Guo
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Feng Di
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Huang TY, Yang JJ. Non-targeted metabolomic profile of Leuconostoc mesenteroides-fermented milk reveals differentially expressed metabolites associated with electro-fermentation. Microb Cell Fact 2025; 24:46. [PMID: 39987182 PMCID: PMC11847352 DOI: 10.1186/s12934-025-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Leuconostoc mesenteroides (L. mesenteroides) has known as an electrogenic probiotic bacterium. However, metabolites related to electro-fermentation in ferments of L. mesenteroides are not unveiled. RESULT Electrogenic L. mesenteroides fermentatively metabolized bovine milk to dense ferments with homogeneous particle-size distribution. A non-targeted metabolomics approach was performed on non-fermented and L. mesenteroides-fermented milk. A total of 917 metabolites were identified and quantified by ultra-high performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS-MS). Thirteen prokaryotic metabolic pathways associated with differentially expressed metabolites (DEMs) were revealed through Koto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Anthranilic acid (AA) and 3-hydroxyanthranilin acid (3-HAA), potentially as electron donors, and quinolinic acid, an electron donor precursor, in the tryptophan kynurenine pathway were significantly increased in the fermented milk. Histidine, arginine, and riboflavin involved in bacterial survival or bioelectricity production were elevated after fermentation. CONCLUSIONS Results indicate that electrogenic L. mesenteroides can mediate electro-fermentation to transform milk to a new nutritional source which is rich in electron donors reportedly acting as antioxidants.
Collapse
Affiliation(s)
- Tristan Yusho Huang
- Arizona College of Osteopathic Medicine, Midwestern University, Arizona, 85308, USA.
| | - John Jackson Yang
- Department of Medical Biochemistry, Universitas Kristen Indonesia, Jakarta, 13630, Indonesia
| |
Collapse
|
7
|
Ji P, Wang N, Yu Y, Zhu J, Zuo Z, Zhang B, Zhao F. Single-cell delineation of the microbiota-gut-brain axis: Probiotic intervention in Chd8 haploinsufficient mice. CELL GENOMICS 2025; 5:100768. [PMID: 39914389 PMCID: PMC11872533 DOI: 10.1016/j.xgen.2025.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Emerging research underscores the gut microbiome's impact on the nervous system via the microbiota-gut-brain axis, yet comprehensive insights remain limited. Using a CHD8-haploinsufficient model for autism spectrum disorder (ASD), we explored host-gut microbiota interactions by constructing a single-cell transcriptome atlas of brain and intestinal tissues in wild-type and mutant mice across three developmental stages. CHD8 haploinsufficiency caused delayed development of radial glial precursors and excitatory neural progenitors in the E14.5 brain, inflammation in the adult brain, immunodeficiency, and abnormal intestinal development. Selective CHD8 knockdown in intestinal epithelial cells generated Chd8ΔIEC mice, which exhibited normal sociability but impaired social novelty recognition. Probiotic intervention with Lactobacillus murinus selectively rescued social deficits in Chd8ΔIEC mice, with single-cell transcriptome analysis revealing underlying mechanisms. This study provides a detailed single-cell transcriptomic dataset of ASD-related neural and intestinal changes, advancing our understanding of the gut-brain axis and offering potential therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - You Yu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Scala M, Del Rocío González Soltero M, Bellido Esteban A, Biscaia Fernández JM, Romero-Ferreiro V, Serretti A, Fanelli G, Rodriguez-Jimenez R. Oropharyngeal microbiota in patients with psychotic disorders: A scoping review on compositional and functional alterations. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111288. [PMID: 39923913 DOI: 10.1016/j.pnpbp.2025.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUNDS Oropharyngeal microbiota may be implicated in the onset and progression of psychotic disorders. This scoping review aims to map the existing evidence concerning the composition, diversity, and metabolic pathways of the oropharyngeal microbiota in patients aged 18 to 65 with a main diagnosis of a psychotic disorder, including individuals at clinical high-risk for psychosis (CHRP) or experiencing first episode psychosis (FEP). METHODS The scoping review was performed according to the PRISMA-ScR checklist. The systematic literature search was conducted using PubMed, Web of Science, and CINAHL until February 2024. RESULTS Seven cross-sectional studies were included, comprising 43 individuals at CHRP, 13 with FEP, 85 with first-episode of schizophrenia (FES), 171 with schizophrenia, and 8 with another schizophrenia spectrum disorder. The oropharyngeal microbiota showed an increase in Lactobacillus gasseri abundance in schizophrenia, and in Firmicutes/Proteobacteria phylum ratio in patients experiencing CHR-P and FES. In schizophrenia, an altered β-diversity was observed alongside increased metabolic pathways related to metabolite transporters. In FES, higher α-diversity and disruptions in amino acid, carbohydrate, and xenobiotic metabolism pathways were found. Hydrogen sulfide (H2S)-producing bacteria were generally enriched in all the stages of disease. Correlations were observed between oropharyngeal microbiota and psychotic symptom domains. CONCLUSIONS Potential microbial signatures, such as Lactobacillus gasseri and H2S-producing bacteria, were identified in the oropharyngeal microbiota. Alterations in the oropharyngeal microbiota composition and function may be associated with different stages of psychotic disorders, with some overlap between CHR-P and FES.
Collapse
Affiliation(s)
- Mauro Scala
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Italy; Health Research Institute Hospital 12 de Octubre, (imas12), Madrid, Spain; Faculty of Biomedical and Health Sciences, European University of Madrid (UEM), Madrid, Spain; Complutense University of Madrid (UCM), Madrid, Spain.
| | - María Del Rocío González Soltero
- Faculty of Biomedical and Health Sciences, European University of Madrid (UEM), Madrid, Spain; Molecular Microbiology Group, Health Research Institute of the University Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, Madrid, Spain.
| | - Alberto Bellido Esteban
- Faculty of Biomedical and Health Sciences, European University of Madrid (UEM), Madrid, Spain
| | | | - Verónica Romero-Ferreiro
- Health Research Institute Hospital 12 de Octubre, (imas12), Madrid, Spain; Faculty of Biomedical and Health Sciences, European University of Madrid (UEM), Madrid, Spain; CIBERSAM/ISCIII (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Roberto Rodriguez-Jimenez
- Health Research Institute Hospital 12 de Octubre, (imas12), Madrid, Spain; Complutense University of Madrid (UCM), Madrid, Spain; CIBERSAM/ISCIII (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| |
Collapse
|
9
|
Cao D, Hu M, Yang N, Qian K, Hong J, Tang J, Bian Y, Zhang C, Wang X, Wu G, Chen H, Zhang Y, Wang Z, Cui Z. Microbial and Transcriptomic Landscape Associated With Neutrophil Extracellular Traps in Perianal Fistulizing Crohn's Disease. Inflamm Bowel Dis 2025; 31:321-331. [PMID: 39438255 DOI: 10.1093/ibd/izae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Perianal fistulizing Crohn's disease (pfCD) poses significant healing challenges, closely associated with neutrophil extracellular traps (NETs). This study aimed to investigate the microbe-host interactions influencing NETs in pfCD. METHODS From January 2019 to July 2022, patients with pfCD were screened at Ren Ji Hospital. Patients in remission following comprehensive treatment were recruited. We documented clinical characteristics, medication regimens, healing outcomes, and infliximab levels in fistula tissues. NET positivity was confirmed by positive results in citrullinated histone H3 (CitH3) enzyme-linked immunosorbent assay (ELISA) and dual immunofluorescence staining for myeloperoxidase and CitH3. Microbial and transcriptomic profiles from fistula tissues, obtained during surgery, were analyzed using 16S rRNA gene sequencing and RNA sequencing. Differences in microbiome and transcriptomic profiles were evaluated, and their relationships were assessed using Mantel's and Spearman's coefficients. RESULTS Significant differences in microbial communities were found between groups (P = .007). Representatively differential microbes such as Prevotella bivia, Streptococcus gordonii, and Bacteroides dorei were enriched in NETs-positive fistulas (P < .05). Functional analysis of microbes revealed reduced ubiquinol biosynthesis and butanoate production in NETs-negative fistulas (P < .05). Transcriptomic analysis indicated increased neutrophil and monocyte infiltration in NETs-positive fistulas, associated with pathways involving bacterial response, neutrophil chemotaxis, secretory processes, and peptidase activity (P < .05). Species prevalent in NETs-positive fistulas correlated positively with immune responses and wound healing pathways, whereas bacteria in NETs-negative fistulas correlated negatively. NETs were negatively associated with tissue infliximab levels (P = .001) and healing outcomes (P = .025). CONCLUSIONS Our findings reveal unique microbial and transcriptomic signatures associated with NETs in pfCD, highlighting their profound influence on clinical outcomes.
Collapse
Affiliation(s)
- Dongxing Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Nailin Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Keyu Qian
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jian Tang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuhai Bian
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaohui Wang
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Guangyu Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Ye Zhang
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Kaur G, Kushwah AS. Sodium orthovanadate protects against ulcerative colitis and associated liver damage in mice: insights into modulations of Nrf2/Keap1 and NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1557-1574. [PMID: 39120720 DOI: 10.1007/s00210-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Ulcerative colitis (UC) is a prominent category of disease that is associated with bowel inflammation, it can occur at any period of life and is prevalently rising on a global scale. Dextran sulfate sodium (DSS) has been extensively used to develop colitis due to its ability to mimic human UC, providing consistent and reproducible inflammation, ulceration, and disruption of the epithelial barrier in the colon. Chronic inflammation in the gut can lead to alterations in the gut-liver axis, potentially impacting liver function over time, while direct evidence linking diversion colitis to liver damage is limited. Thus, the present study aims to assess the gut and liver damage against DSS and the possible molecular mechanisms. Forty-seven animals were randomly assigned to six groups. Ulcerative colitis was induced using 2.5% w/v DSS in three alternate cycles, each lasting 7 days, with 1-week remission periods in between. SOV (5 and 10 mg/kg, orally) and the standard drug 5-aminosalicylic acid (100 mg/kg, orally) were administered from the start of the 2nd DSS cycle until the end of the experiment. Biochemical parameters, ELISA, histopathological, and immunohistochemical analyses have been conducted to assess damage in the colon and liver. SOV significantly reduced colitis severity by lowering the DAI score, oxidative stress markers (LPS, IL-1β, MPO, nitrite), and restoring liver biomarkers (SGPT, SGOT). Histopathological findings supported these protective benefits in the liver and gut. Moreover, immunohistochemical analysis showed SOV enhanced the expression of the cytoprotective mediator Nrf2/Keap-1 and reduced the expression of inflammatory mediators NF-κB and IL-6. Present findings concluded that SOV demonstrated a dose-dependent effect against UC through anti-inflammatory and antioxidant pathways, with the highest dose of SOV 10 mg/kg having more significant (p < 0.001) results than the low dose of 5 mg/kg.
Collapse
Affiliation(s)
- Gurpreet Kaur
- IK Gujral Punjab Technical University, Kapurthala, 144601, Jalandhar, Punjab, India
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India.
| |
Collapse
|
11
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
12
|
Pan H, Yang S, Kulyar MF, Ma H, Li K, Zhang L, Mo Q, Li J. Lactobacillus fermentum 016 Alleviates Mice Colitis by Modulating Oxidative Stress, Gut Microbiota, and Microbial Metabolism. Nutrients 2025; 17:452. [PMID: 39940311 PMCID: PMC11820689 DOI: 10.3390/nu17030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic and progressive inflammatory gastrointestinal disease closely associated with gut microbiota dysbiosis and metabolic homeostasis disruption. Although targeted microbial therapies are an emerging intervention strategy for inflammatory bowel disease (IBD), the mechanisms by which specific probiotics, such as Lactobacillus fermentum 016 (LF), alleviate UC remain unclear. The current study evaluated the effects of LF supplementation on gut health in a basal model using C57BL/6 mice. Subsequently, the preventive effects and mechanisms of LF supplementation on DSS-induced UC were systematically investigated. According to our findings, LF supplementation revealed immunoregulatory capabilities with significantly altered gut the composition of microbiota and metabolic activities, particularly enhancing tryptophan metabolism. In the UC model, LF supplementation effectively mitigated weight loss, increased the disease activity index (DAI), and alleviated diarrhea, rectal bleeding, and colon shortening. Moreover, it reduced colonic pathological damage and histological injury scores. LF intervention improved antioxidant markers and intestinal mucosal barrier function with the activation of the Nrf2-Keap1 signaling pathway and regulation of systemic inflammatory markers, i.e., IL-1β, IL-6, TNF-α, IFN-γ, IL-4, and IL-10. Importantly, LF supplementation reversed metabolic disturbances by significantly increasing the abundance of beneficial genera (e.g., g_Dubosiella, g_Faecalibaculum, g_Odoribacter, g_Candidatus_saccharimonas, g_Roseburia, and g_Eubacterium_xylanophilum_group) and elevating tryptophan metabolites (e.g., melatonin, kynurenic acid, 3-indoleacetic acid, 5-methoxytryptophan, and 5-hydroxyindoleacetic acid). In conclusion, Lactobacillus fermentum 016 exhibits potential for regulating gut microbiota homeostasis, enhancing tryptophan metabolism, and alleviating UC, providing critical insights for developing probiotic-based precision therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Shumin Yang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Hongwei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Lihong Zhang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| |
Collapse
|
13
|
Guo J, Zhao Z, Broadwater C, Tobin I, Liu J, Whitmore M, Zhang G. Is Intestinal Microbiota Fully Restored After Chickens Have Recovered from Coccidiosis? Pathogens 2025; 14:81. [PMID: 39861042 PMCID: PMC11768824 DOI: 10.3390/pathogens14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The intestinal microbiota is known to be altered by Eimeria-induced coccidiosis, but it remains unclear whether the microbiota is fully restored after recovery. To address this, 110 newly hatched Cobb male broiler chickens were challenged with 2 × 104 sporulated oocysts of Eimeria maxima (EM) strain M6 or mock-infected with saline on day 10. Body weight and feed intake were recorded. Additionally, 10 mock- and 12 EM-infected birds were randomly selected to assess the small intestinal lesion, fecal oocyst shedding, and ileal and cecal microbiota compositions using 16S rRNA gene sequencing at 3, 5, 7, 14, and 21 days post-infection (dpi). EM infection significantly decreased (p < 0.001) body weight by 5 dpi, persisting through 21 dpi. The infection also reduced (p < 0.05) weight gain, feed intake, and feed efficiency in the first week; however, these parameters became comparable in the second and third weeks. At 7 dpi, during the peak of infection, major lactic acid bacteria were enriched, while short-chain fatty acid-producing bacteria were mostly suppressed in both the ileum and cecum. Opportunistic pathogens such as Escherichia and Clostridium perfringens transiently bloomed at 7 dpi. By 14 dpi, differential bacterial enrichment subsided, and nearly all commensal bacteria returned to healthy levels by 21 dpi. Coupled with comparable growth performance between healthy and EM-recovered chickens, we conclude that the intestinal microbiota is largely restored to its healthy state after recovery. Understanding the microbiota's responses to coccidiosis may inform probiotic-based mitigation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.G.); (Z.Z.); (C.B.); (I.T.); (J.L.); (M.W.)
| |
Collapse
|
14
|
Vocca C, Abrego-Guandique DM, Cione E, Rania V, Marcianò G, Palleria C, Catarisano L, Colosimo M, La Cava G, Palumbo IM, De Sarro G, Ceccato T, Botti S, Cai T, Palmieri A, Gallelli L. Probiotics in the Management of Chronic Bacterial Prostatitis Patients: A Randomized, Double-Blind Trial to Evaluate a Possible Link Between Gut Microbiota Restoring and Symptom Relief. Microorganisms 2025; 13:130. [PMID: 39858898 PMCID: PMC11767496 DOI: 10.3390/microorganisms13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Several studies have suggested that probiotics could play a role in the management of patients with chronic bacterial prostatitis (CBP). In this randomized, placebo-controlled clinical study, we evaluated the efficacy and safety of consumption of probiotics containing human Lactobacillus casei DG® as an add-on treatment in patients with clinical recurrences of CBP, through gut microbiota modification analysis. Enrolled patients with CBP were randomized to receive for 3 months probiotics containing human Lactobacillus casei DG® or placebo following 1 month treatment with ciprofloxacin. During the enrollment and follow-ups, urological examinations analyzed symptoms and quality of life, while microbiological tests analyzed gut and seminal microbiota. During the study, the development of adverse drug reactions was evaluated through the Naranjo scale. Twenty-four patients with CBP were recruited and treated for 3 months with placebo (n. 12) or with Lactobacillus casei DG® (n. 12). Lactobacillus casei DG® induced a significantly (p < 0.01) faster recovery of symptoms than placebo (2 days vs. 8 days) and an increased time free from symptoms (86 days vs. 42 days) without the occurrence of adverse events. In the probiotic group, the appearance of Lactobacilli after 30 days (T1) was higher vs. the placebo group, and a significant reduction in Corynebacterium, Peptoniphilus, Pseudomonas, Veillonella, Staphylococcus, and Streptococcus was also observed. These preliminary data suggest that in patients with CBP, the use of Lactobacillus casei DG after an antimicrobial treatment improves the days free of symptoms and the quality of life, without the development of adverse drug reactions.
Collapse
Affiliation(s)
- Cristina Vocca
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Diana Marisol Abrego-Guandique
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo Rania
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Gianmarco Marcianò
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Luca Catarisano
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Manuela Colosimo
- Operative Unit of Microbiology and Virology, AOU Dulbecco, 88100 Catanzaro, Italy;
| | - Gregorio La Cava
- Urology Division Azienda Sanitaria Provinciale, Department of Primary Care, 88100 Catanzaro, Italy;
| | - Italo Michele Palumbo
- Department of Urology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovambattista De Sarro
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Tommaso Ceccato
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Simone Botti
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Alessandro Palmieri
- Department of Urology, Federico II University of Naples, 80138 Naples, Italy;
| | - Luca Gallelli
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Medifarmagen, University of Catanzaro and Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Liu Z, Cao Q, Wang W, Wang B, Yang Y, Xian CJ, Li T, Zhai Y. The Impact of Lactobacillus reuteri on Oral and Systemic Health: A Comprehensive Review of Recent Research. Microorganisms 2024; 13:45. [PMID: 39858814 PMCID: PMC11767923 DOI: 10.3390/microorganisms13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Oral diseases, particularly dental caries and periodontal disease, pose significant global health challenges. The imbalance of the oral microbiota plays a key role in the occurrence of these diseases, prompting researchers to seek new strategies to restore oral ecological balance. Lactobacillus reuteri is a Gram-positive rod-shaped bacterium that exists in various body parts of humans, including the gastrointestinal tract, urinary tract, skin, and so on. This species has a potentially positive impact on oral health and plays an important role in maintaining systemic health. Recent studies have explored the application of Lactobacillus reuteri in the prevention and treatment of oral diseases, and its impact on systemic health has also been preliminarily revealed. The current review summarizes the role of Lactobacillus reuteri in oral health and systemic health and outlines its potential applications in the future. Lactobacillus reuteri has shown promising prospects in treating non-communicable biofilm-dependent oral diseases, but its mechanism of action and efficacy still need further research. In addition, Lactobacillus reuteri has also displayed some potential benefits in promoting overall health. Future research should focus on revealing the specific pathways of action of Lactobacillus reuteri, screening for the most beneficial strains, determining the most effective drug delivery strategies, developing oral and systemic health products based on Lactobacillus reuteri, and ensuring their safety in clinical applications.
Collapse
Affiliation(s)
- Zihui Liu
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Qing Cao
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wenqing Wang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Bowen Wang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yilun Yang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia;
| | - Tiejun Li
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
16
|
Ma W, Wu Y, Lin X, Yang L, Huang L. Amelioration of inflammatory bowel disease by Bifidobacterium animalis subsp. lactis XLTG11 in combination with mesalazine. Front Microbiol 2024; 15:1472776. [PMID: 39697653 PMCID: PMC11652597 DOI: 10.3389/fmicb.2024.1472776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The treatment of inflammatory bowel disease (IBD) remains challenging and significantly impacts both patients and their families. This study evaluated the role of Bifidobacterium animalis subsp. lacti XLTG11 (XLTG11) in combination with mesalazine (5-ASA) in the improvement of IBD. The results demonstrated that the XLTG11+5-ASA group exhibited superior recovery compared to both the XLTG11-only group and the 5-ASA-only group. The XLTG11+5-ASA group significantly reduced myeloperoxidase activity (MPO), attenuated colonic tissue damage, lowered the levels of lipopolysaccharides (LPS) and D-lactic acid (D-LA), and decreased intestinal permeability. Furthermore, it upregulated the mRNA expression of Claudin-1, Occludin, ZO-1, and MUC2, which contributed to the protective effect on intestinal barrier function. Additionally, the XLTG11+5-ASA group significantly increased the levels of anti-inflammatory cytokines while decreasing pro-inflammatory cytokine levels. Notably, treatment with the XLTG11+5-ASA group significantly increased levels of acetic, propionic, and butyric acids, as well as the relative abundance of beneficial bacteria such as Bifidobacterium and Lactobacillus, while decreasing the relative abundance of Enterococcus, Enterobacteriaceae, and Clostridium perfringens. The results indicate that the combination of XLTG11 and 5-ASA was more effective in treating IBD than either treatment alone, significantly improving IBD-related symptoms and providing a scientific basis for future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Lili Huang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Liu X, Ma Y, Guan K, Liu R, Mao K, Xu X, Li Q, Wang R. Intestinal barrier, immunity and gut microbiota-based protective effects of Lactococcus lactis HF08 and its postbiotic derivative on aging and aging colitis mice. Food Res Int 2024; 197:115164. [PMID: 39593375 DOI: 10.1016/j.foodres.2024.115164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/28/2024]
Abstract
The prevalence and severity of gastrointestinal diseases were increased with age. In this study, the intestinal protective effects of Lactococcus lactis HF08 (HF08) and its derived postbiotic (P-HF08) on D-gal-induced aging mice and D-gal/DSS-induced aging colitis mice were investigated. In D-gal-induced aging mice, both HF08 and P-HF08 alleviated aging-related intestinal barrier dysfunction, inflammatory status, and gut microbiota disorder. The effects of probiotic HF08 were superior to those of postbiotic P-HF08, attributed to ability of HF08 to regulate the gut microbiota. However, in D-gal/DSS-induced aging colitis mice, the effects of P-HF08 on colitis surpassed that of HF08. Specifically, both HF08 and P-HF08 could reduce symptoms of age-related colitis, including reduction of lose weight, the DAI score, colonic shortening, and colon tissue damage. The inhibitory effects of P-HF08 on intestinal inflammation surpassed those of HF08, as evidenced by the levels of colon IL-6, IL-1β, and IL-10. Western blot results demonstrated that the anti-inflammatory effects of P-HF08 were attributed to the downregulation of key proteins in the TLR4/NF-κB pathway. And four potential TLR4 inhibitors were identified from HF08 metabolites (eplerenone, genistein, indoleacrylic acid, and turanose) by molecular docking. Nevertheless, HF08 could better regulate gut microbiota and metabolite in aging-related colitis than P-HF08, which was consistent with the results on aging mice. Overall, our finding revealed that when the intestinal barrier was intact (aging), probiotics showed superior regulation of intestinal microbiota, while postbiotics offered greater safety in case of intestinal barrier damage (aging colitis). This study offered a novel perspective into the applications of probiotics and their derivatives in the aging related gastrointestinal diseases adjuvant therapy.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Rongmei Liu
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China; Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu 610000, Sichuan, China; Chengdu Molecular Power Biotechnology Co., Ltd., Chengdu 611732, Sichuan, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Company Limited, Shanghai 310000, China
| | - Xiaogang Xu
- Jiangsu HOWYOU Biotechnology Company Limited, Shanghai 310000, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China; Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu 610000, Sichuan, China; Chengdu Molecular Power Biotechnology Co., Ltd., Chengdu 611732, Sichuan, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
18
|
Atta SA, Fahmy ZH, Selim EAH, Aboushousha T, Mostafa RR. Effect of linex treatment on IFN-γ and IL-4 in mice infected with Trichinella. BMC Infect Dis 2024; 24:1360. [PMID: 39609767 PMCID: PMC11603642 DOI: 10.1186/s12879-024-10202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Trichinellosis is a zoonotic, foodborne parasitic infection causing muscle damage. This study investigated the potential therapeutic effects of the commercially available probiotic treatment Linex, both alone and in combination with Albendazole (ALB), on the intestinal and muscular stages of Trichinella spiralis infection in mice, assessing outcomes through parasitological, immunological, and histopathological measures. This study is the first to demonstrate the synergistic effect of combining the commercially available probiotic Linex with Albendazole for trichinellosis treatment. By enhancing both parasitological and immunological outcomes, this combined therapy not only significantly reduces parasite burden but also modulates the immune response, shifting it toward a protective Th1 profile. In parasitological terms, the highest adult and larval count reduction was observed in combined Linex and Albendazole treatment (100%, 97.7%) respectively. Lesser percentage of reduction were recorded in Linex alone therapy (43.2%, 88.4%) respectively. Histopathologically there was amelioration of the inflammatory cellular infiltration in all treated groups with best results in combined Linex and Albendazole treatment. Immunologically, serum IFN-γ levels increased significantly in all treated groups with highest levels in combined Linex and Albendazole treatment, while IL-4 and IL-13 level decreased significantly in all treated groups with best results observed in Linex alone treatment. To conclude; combined Linex and Albendazole treatment of mice infected with T. spirals could ameliorate the infection and improve the immune response.
Collapse
Affiliation(s)
- Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab H Fahmy
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Eman A H Selim
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Reham Refaat Mostafa
- Departments of Medical Parasitology Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
19
|
Feng X, Chen Y, Luo L, Fang Z, Ma S, Li Z, Huang J, Pan Y, Lv H, Gong S, Zheng X, Fan F, Chen P, Zhu J, Chu Q. Liubao insect tea polyphenols ameliorate DSS-induced experimental colitis by protecting intestinal barrier and regulating intestinal microbiota. Food Chem 2024; 467:142156. [PMID: 39632169 DOI: 10.1016/j.foodchem.2024.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Liubao insect tea (LIT) is a traditional tea produced from the excreta of Hydrillodes repugnalis that are fed with Liubao tea. In this study, LIT polyphenols (LITP) were extracted and identified, mainly consisting of brevifolin carboxylic acid, brevifolin, ellagic acid. The study aimed to explore the therapeutic potential of LITP in experimental colitis induced by dextran sulfate sodium in mice. LITP treatment effectively mitigated colitis symptoms, including body weight loss, diarrhoea and haematochezia, etc. Furthermore, LITP treatment significantly increased colon length, attenuated inflammatory cell infiltration and mucosal damage, safeguarded the integrity of the epithelial cell barrier, and reduced proinflammatory cytokines levels. Noteworthy alterations in the abundance of gut microbiota community were also observed, with increases in beneficial bacteria Akkermansia, Clostridia_UCG-014, and decreases in harmful bacteria Turicibacter and Erysipelatoclostridium. In conclusion, LITP exerted alleviative effects on colitis via fortifying intestinal barrier and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, China; Department of Food Science, Zhejiang University, Hangzhou, China
| | - Yanwen Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China; College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Luo
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Zhoutao Fang
- Zhejiang Minghuang Natural Products Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | | | - Jing Huang
- Tea Research Institute, Zhejiang University, Hangzhou, China; Institute of Landscape Architecture, Zhejiang University, Hangzhou, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Department of Food Science, Zhejiang University, Hangzhou, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Ye W, Shi H, Qian W, Meng L, Wang M, Zhou Y, Wen Z, Han M, Peng Y, Li H, Xu Y. Immunomodulatory Effects of a Prebiotic Formula with 2'-Fucosyllactose and Galacto- and Fructo-Oligosaccharides on Cyclophosphamide (CTX)-Induced Immunosuppressed BALB/c Mice via the Gut-Immune Axis. Nutrients 2024; 16:3552. [PMID: 39458546 PMCID: PMC11510297 DOI: 10.3390/nu16203552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obejectives: This study explored the immunomodulatory effects of a prebiotic formula consisting of 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOSs), and fructo-oligosaccharides (FOSs) (hereinafter referred to as 2FGF) in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice and its underlying mechanisms. Methods: Sixty healthy female BALB/c mice were randomly divided into the following groups: normal control (NC) group; CTX treatment (CTX) group; 2FGF low-dose (2FGF-L) group; 2FGF medium-dose (2FGF-M) group; and 2FGF high-dose (2FGF-H) group. An immunosuppressed model was established in the 2FGF-H group by intraperitoneal injection of 80 mg/kg CTX. After 30 days of 2FGF intervention, peripheral blood, spleen tissue, thymus tissue, and intestinal tissue from the mice were collected and analyzed. The changes in weight and food intake of the mice were recorded weekly. Hematoxylin-eosin (HE) staining was used to observe the histological change of the spleen tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect cytokine levels in peripheral blood. Flow cytometry was used to analyze T lymphocyte subgroup ratio of splenic lymphocytes. Western blot analysis was conducted on intestinal tissues to assess the expression of proteins involved in the tight junction, toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathways. Additionally, molecular techniques were used to analyze the intestinal microbiota. Results: The results showed that 2FGF restored CTX-induced splenic injury, increased the number of splenic T lymphocytes, and elevated serum cytokines such as interleukin-4 (IL-4) and IL-10. In the intestine, 2FGF upregulated the expression of intestinal epithelial tight junction proteins such as Claudin-1 and zonula occludens 1 (ZO-1), thereby enhancing intestinal barrier function and activating the MAPK and NF-κB pathways via TLR4. Furthermore, 2FGF elevated the α-diversity (Shannon and Simpson indices) of the gut microbiota in CTX-induced immunosuppressed mice, enriching bacteria species positively correlated with anti-inflammatory cytokines (e.g., IL-4) such as g_Streptomyces and g_Bacillus and negatively correlated with pro-inflammatory cytokines (e.g., IL-1β) such as g_Saccharomyces. The results suggest that 2FGF may enhance immunity via the gut-immune axis. Conclusions: The 2FGF prebiotic formula showed an immunomodulatory effect in CTX-induced immunosuppressed mice, and the mechanism of which might involve optimizing the gut flora, enhancing intestinal homeostasis, strengthening the intestinal barrier, and promoting the expression of immune factors by regulating the TLR-4/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Wanyun Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Hanxu Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Wentao Qian
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Liping Meng
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Meihua Wang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Zhang Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Muke Han
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Yile Peng
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Hongliang Li
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
22
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
23
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Lu X, Fan M, Ma Y, Feng Y, Pan L. Redox-sensitive hydrogel based on hyaluronic acid with selenocystamine cross-linking for the delivery of Limosilactobacillus reuteri in a DSS-induced colitis mouse model. Int J Biol Macromol 2024; 276:133855. [PMID: 39032895 DOI: 10.1016/j.ijbiomac.2024.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Disrupted gut microbiota homeostasis is an important cause of inflammatory colitis. Studies have shown that effective supplementation with probiotics can maintain microbial homeostasis and alleviate colitis. Here, to increase the viability of probiotics in the harsh gastrointestinal environments and enable targeted delivery, a redox-sensitive selenium hyaluronic acid (HA-Se) hydrogel encapsulating probiotics was developed. HA was modified with selenocystamine dihydrochloride and crosslinked by an amide reaction to generate a redox-sensitive hydrogel with stable mechanical properties, a low hemolysis rate and satisfactory biocompatibility. The HA-Se hydrogel exhibited suitable sensitivity to 10 mM GSH or 100 μM H2O2. The encapsulation of Limosilactobacillus reuteri (LR) in the HA-Se hydrogel (HA-Se-LR) significantly increased the survival rate of the probiotics in simulated gastric and intestinal fluid. HA-Se-LR administration increased the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis, significantly alleviated oxidative stress and inflammation, and increased the effect of LR on microbiota α diversity. These results indicate that the HA-Se hydrogel constructed in this study can be used as a delivery platform to treat colitis, expanding the targeted applications of the natural polymer HA in disease treatment and the administration of probiotics as drugs to alleviate disease symptoms.
Collapse
Affiliation(s)
- Xi Lu
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China.
| | - Mingming Fan
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yuzhe Ma
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yimeng Feng
- Mathematics Teaching and Research Group, Dajindian Town Junior High School, Zhengzhou 450000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| |
Collapse
|
25
|
Li K, Liu P, Wang X, Zheng Z, Liu M, Ye J, Zhu L. Causal role of gut microbiota, serum metabolites, immunophenotypes in myocarditis: a mendelian randomization study. Front Genet 2024; 15:1382502. [PMID: 39280093 PMCID: PMC11392795 DOI: 10.3389/fgene.2024.1382502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background The intricate relationship among gut microbiota, serum metabolites, and immunophenotypes may significantly impact myocarditis. However, direct causal links between these domains and myocarditis are not well understood. Methods The study performed Mendelian randomization (MR) analysis using genetic data from public sources. Exposure data included 211 gut microbiota, 486 serum metabolites, and 731 immunophenotypes from Mibiogen, the Metabolomics GWAS server, and GWAS catalog databases. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on established criteria. Myocarditis data from GWAS (427,911 participants, 24, 180, 570 SNPs) were used as the outcome variable. MR analysis was conducted using Inverse Variance Weighting (IVW), with Cochran's Q test for heterogeneity and Egger's intercept to assess horizontal pleiotropy. Results 9 gut microbiota, 10 serum metabolites, and 2 immunophenotypes were negatively associated with myocarditis risk. In contrast, 5 gut microbiota, 12 serum metabolites, and 7 immunophenotypes were positively associated with myocarditis risk (all, P < 0.05). Sensitivity analyses confirmed the stability of these results. Conclusion This MR study suggests that gut microbiota, serum metabolites, and immunophenotypes may causally influence myocarditis risk. These findings provide genetic evidence for myocarditis etiology and could inform future precision prevention and treatment strategies.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuqi Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhipeng Zheng
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Miao Liu
- Department of Cardiovascular Medicine, Center Hospital of Shandong First Medical University, Jinan, China
| | - Jun Ye
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
26
|
Han C, Manners MT, Robinson SA. Sex differences in opioid response: a role for the gut microbiome? Front Pharmacol 2024; 15:1455416. [PMID: 39268474 PMCID: PMC11390522 DOI: 10.3389/fphar.2024.1455416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Opioid drugs have been long known to induce different responses in males compared to females, however, the molecular mechanisms underlying these effects are yet to be fully characterized. Recent studies have established a link between the gut microbiome and behavioral responses to opioids. Chronic opioid use is associated with gut dysbiosis, or microbiome disruptions, which is thought to contribute to altered opioid analgesia and reward processing. Gut microbiome composition and functioning have also been demonstrated to be influenced by sex hormones. Despite this, there is currently very little work investigating whether sex differences in the gut microbiome mediate sex-dependent responses to opioids, highlighting a critical gap in the literature. Here, we briefly review the supporting evidence implicating a potential role for the gut microbiome in regulating sexually dimorphic opioid response and identify areas for future research.
Collapse
Affiliation(s)
- Caitlin Han
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, United States
| | - Shivon A. Robinson
- Department of Psychology, Williams College, Williamstown, MA, United States
| |
Collapse
|
27
|
Li S, Ma X, Zhang X, Bai S, Li X, Huang Y, Yu J, Fan Y, Lu C, Du G, Qin Y. Bisphenol S exposure induces intestinal inflammation via altering gut microbiome. Food Chem Toxicol 2024; 190:114830. [PMID: 38908815 DOI: 10.1016/j.fct.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Bisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.
Collapse
Affiliation(s)
- Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuan Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Feng P, Bai X, Ma X, Kong H, Yang R. Interfacial-engineered living drugs with "ON/OFF" switching for oral delivery. NANOSCALE 2024; 16:13399-13406. [PMID: 38953700 DOI: 10.1039/d4nr01927j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Living drugs offer a new frontier in medicine, paving the way for personalized and potentially curative treatments. A customized living drug generally requires specialized technologies for highly effective and selective delivery to lesion locations. In this study, we explored an interfacial engineering method for living drugs by wrapping them with a "stealth coating", achieving "ON/OFF" switching of the communications between probiotics and the gastrointesinal (GI) tract. This maximized the bioactivity of living drugs following oral administration to exempt acidic insults and then significantly improved the retention through the gastrointestinal tract. With the notable ability to improve oral availability, the interfacial-engineered living drugs represent remarkable effects for enhanced oral delivery and treatment efficacy in the dextran sulfate sodium (DSS)-induced acute colitis model. We believe that this work has the potential to revolutionize medicine by precisely targeting and increasing curative activity in the future of disease treatment.
Collapse
Affiliation(s)
- Pingping Feng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, No. 292 Chengfu Road, Haidian District, Beijing, 100871 P. R. China.
| | - Xuefei Bai
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Xiaofei Ma
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Han Kong
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Rui Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| |
Collapse
|
29
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
30
|
Sun H, Shu J, Tang J, Li Y, Qiu J, Ding Z, Xuan B, Chen M, Gan C, Lin J, Qiu J, Sheng H, Wang C. GLP-1 receptor agonists alleviate colonic inflammation by modulating intestinal microbiota and the function of group 3 innate lymphoid cells. Immunology 2024; 172:451-468. [PMID: 38544428 DOI: 10.1111/imm.13784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 02/08/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), which are drugs used for treating type 2 diabetes, have been reported to exert anti-inflammatory effects on inflammatory bowel disease (IBD), the mechanism of which remains elusive. Here, we report that GLP-1RAs ameliorate dextran sulfate sodium (DSS)-induced colitis in both wild-type and T/B-cell-deficient mice through modulating group 3 innate lymphoid cells (ILC3s), a subset of innate lymphoid cells that regulate intestinal immunity. GLP-1RAs promote IL-22 production by ILC3, and the protective effect of GLP-1RAs on DSS-induced colitis was abrogated in ILC3-deficient RORgtgfp/gfp mice. Furthermore, the treatment effect of GLP-RAs on colitis, as well as the generation of IL-22-producing ILC3s by GLP-RAs, is dependent on the gut microbiota. GLP-1RAs increase the abundance of Firmicutes and Proteobacteria in the gut, particularly beneficial bacteria such as Lactobacillus reuteri, and decrease the abundance of enteropathogenic Staphylococcus bacteria. The untargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) of faecal metabolites further revealed enrichment of N,N-dimethylsphingosine (DMS), an endogenous metabolite derived from sphingosine, in the GLP-1RA-treated group. Strikingly, DMS ameliorates colitis while promoting intestinal IL-22-producing ILC3s. Taken together, our findings show that GLP-1RAs exert a therapeutic effect on colitis possibly by regulating the microbiota-DMS-IL-22+ILC3 axis, highlighting the potential beneficial role of GLP-RAs in inflammatory intestinal disorders with diabetes complications.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shu
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jupei Tang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Li
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyun Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Binbin Xuan
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Chen
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxin Gan
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Hong D, Kim HK, Yang W, Yoon C, Kim M, Yang CS, Yoon S. Integrative analysis of single-cell RNA-seq and gut microbiome metabarcoding data elucidates macrophage dysfunction in mice with DSS-induced ulcerative colitis. Commun Biol 2024; 7:731. [PMID: 38879692 PMCID: PMC11180211 DOI: 10.1038/s42003-024-06409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Ulcerative colitis (UC) is a significant inflammatory bowel disease caused by an abnormal immune response to gut microbes. However, there are still gaps in our understanding of how immune and metabolic changes specifically contribute to this disease. Our research aims to address this gap by examining mouse colons after inducing ulcerative colitis-like symptoms. Employing single-cell RNA-seq and 16 s rRNA amplicon sequencing to analyze distinct cell clusters and microbiomes in the mouse colon at different time points after induction with dextran sodium sulfate. We observe a significant reduction in epithelial populations during acute colitis, indicating tissue damage, with a partial recovery observed in chronic inflammation. Analyses of cell-cell interactions demonstrate shifts in networking patterns among different cell types during disease progression. Notably, macrophage phenotypes exhibit diversity, with a pronounced polarization towards the pro-inflammatory M1 phenotype in chronic conditions, suggesting the role of macrophage heterogeneity in disease severity. Increased expression of Nampt and NOX2 complex subunits in chronic UC macrophages contributes to the inflammatory processes. The chronic UC microbiome exhibits reduced taxonomic diversity compared to healthy conditions and acute UC. The study also highlights the role of T cell differentiation in the context of dysbiosis and its implications in colitis progression, emphasizing the need for targeted interventions to modulate the inflammatory response and immune balance in colitis.
Collapse
Affiliation(s)
- Dawon Hong
- RNA Cell Biology Laboratory, Graduate Department of Bioconvergence Engineering, Dankook University, Yongin, Republic of Korea
| | - Hyo Keun Kim
- Dept of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan-si, Korea
| | - Wonhee Yang
- Department of AI-based Convergence, Dankook University, Yongin, Republic of Korea
| | - Chanjin Yoon
- Dept of Molecular and Life Science and Institute of Natural Science and Technology, Hanyang University, Ansan-si, Korea
| | - Minsoo Kim
- Department of Computer Science, College of SW Convergence, Dankook University, Yongin, Republic of Korea
| | - Chul-Su Yang
- Dept of Medicinal and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan-si, Korea.
| | - Seokhyun Yoon
- Department of Electronics & Electrical Engineering, College of Engineering, Dankook University, Yongin, Republic of Korea.
| |
Collapse
|
32
|
Heinzel S, Jureczek J, Kainulainen V, Nieminen AI, Suenkel U, von Thaler AK, Kaleta C, Eschweiler GW, Brockmann K, Aho VTE, Auvinen P, Maetzler W, Berg D, Scheperjans F. Elevated fecal calprotectin is associated with gut microbial dysbiosis, altered serum markers and clinical outcomes in older individuals. Sci Rep 2024; 14:13513. [PMID: 38866914 PMCID: PMC11169261 DOI: 10.1038/s41598-024-63893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Fecal calprotectin is an established marker of gut inflammation in inflammatory bowel disease (IBD). Elevated levels of fecal calprotectin as well as gut microbial dysbiosis have also been observed in other clinical conditions. However, systemic and multi-omics alterations linked to elevated fecal calprotectin in older individuals remain unclear. This study comprehensively investigated the relationship between fecal calprotectin levels, gut microbiome composition, serum inflammation and targeted metabolomics markers, and relevant lifestyle and medical data in a large sample of older individuals (n = 735; mean age ± SD: 68.7 ± 6.3) from the TREND cohort study. Low (0-50 μg/g; n = 602), moderate (> 50-100 μg/g; n = 64) and high (> 100 μg/g; n = 62) fecal calprotectin groups were stratified. Several pro-inflammatory gut microbial genera were significantly increased and short-chain fatty acid producing genera were decreased in high vs. low calprotectin groups. In serum, IL-17C, CCL19 and the toxic metabolite indoxyl sulfate were increased in high vs. low fecal calprotectin groups. These changes were partially mediated by the gut microbiota. Moreover, the high fecal calprotectin group showed increased BMI and a higher disease prevalence of heart attack and obesity. Our findings contribute to the understanding of fecal calprotectin as a marker of gut dysbiosis and its broader systemic and clinical implications in older individuals.
Collapse
Affiliation(s)
- Sebastian Heinzel
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Department of Neurology, University Medical Centre Schleswig-Holstein, Kiel University, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Jenna Jureczek
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulrike Suenkel
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Gerhard W Eschweiler
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
- Geriatric Center, University Hospital Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Walter Maetzler
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Chi G, Pei J, Li X. Inflammatory bowel disease and risk of autoimmune hepatitis: A univariable and multivariable Mendelian randomization study. PLoS One 2024; 19:e0305220. [PMID: 38848323 PMCID: PMC11161122 DOI: 10.1371/journal.pone.0305220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/25/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE This study aimed to use Mendelian randomization (MR) to investigate the potential causal association between inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH). METHODS Two-sample MR was performed to estimate the causal effect of IBD on AIH. The primary analysis employed the inverse variance weighted (IVW) method in univariable MR analysis, supplemented by additional methods including MR-Egger, weighted median, simple mode, and weighted mode. The p values were adjusted by FDR p-value adjustment. In the replication analysis, the primary IVW analysis was repeated and then pooled by meta-analysis. Sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out, and funnel plot analysis to evaluate the robustness of the MR findings. Additionally, multivariable MR (MVMR) was employed to estimate the direct causal effect of IBD on the risk of AIH. RESULTS In univariable MR analysis, a significant positive causal association was observed between IBD (both Crohn's disease (CD) or ulcerative colitis (UC)) and the risk of AIH (for CD and AIH, the IVW odds ratio (OR) = 1.10, 95% confidence interval (CI) = 1.00-1.16, P = 0.045, FDR P = 0.045; for UC and AIH, the IVW OR = 1.07, 95% CI = 1.00-1.13, P = 0.038, FDR P = 0.076). Furthermore, no significant positive correlation between IBD and the risk of AIH (OR = 1.13, 95% CI = 0.94-1.35, P = 0.194). Sensitivity analysis revealed no pleiotropic bias. MVMR analysis further confirmed the direct causal effect of CD or UC on the risk of AIH after adjusting for the common risk factors (cigarettes per day and osteoporosis). In the replication analysis, the positive causal association between UC and the risk of AIH remain significant (the IVW odds ratio (OR) = 1.32, 95% CI = 1.18-1.48, P = 2.90E-06). While no significant positive association was observed between CD or IBD and the risk of AIH in the replication analysis, a suggestive positive association between the identified risk factors (UC, CD, and IBD) and the risk of AIH was detected in the meta-analysis (OR = 1.09, 95% CI = 1.05-1.13, P<0.0001). CONCLUSION This MR study revealed a positive impact of the identified risk factors (CD, UC and IBD) on the risk of AIH within the European population.
Collapse
Affiliation(s)
- Gang Chi
- Department of Biochemistry, Changzhi Medical College, Changazhi, Shanxi, China
| | - Jinhong Pei
- Department of Biochemistry, Changzhi Medical College, Changazhi, Shanxi, China
| | - Xueqing Li
- Department of Biochemistry, Changzhi Medical College, Changazhi, Shanxi, China
| |
Collapse
|
34
|
Liu Y, Bai X, Wu H, Duan Z, Zhu C, Fu R, Fan D. Ginsenoside CK Alleviates DSS-Induced IBD in Mice by Regulating Tryptophan Metabolism and Activating Aryl Hydrocarbon Receptor via Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9867-9879. [PMID: 38602268 DOI: 10.1021/acs.jafc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Dysbiosis of gut microbiota is believed to be associated with inflammatory bowel disease (IBD). Ginsenoside compound K (CK), the main metabolite of Panax ginseng ginsenoside, has proven effective as an anti-inflammatory agent in IBD. However, the mechanisms by which CK modulates gut microbiota to ameliorate IBD remain poorly understood. Herein, CK demonstrated the potential to suppress the release of proinflammatory cytokines by gut microbiota modulation. Notably, supplementation with CK promoted the restoration of a harmonious balance in gut microbiota, primarily by enhancing the populations of Lactobacillus and Akkermansia. Furthermore, CK considerably elevated the concentrations of tryptophan metabolites derived from Lactobacillus that could activate the aryl hydrocarbon receptor. Overall, the promising alleviative efficacy of CK primarily stemmed from the promotion of Lactobacillus growth and production of tryptophan metabolites, suggesting that CK should be regarded as a prospective prebiotic agent for IBD in the future.
Collapse
Affiliation(s)
- Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huanyan Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
35
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
36
|
San Gabriel PT, O’Neil TR, Au A, Tan JK, Pinget GV, Liu Y, Fong G, Ku J, Glaros E, Macia L, Witting PK, Thomas SR, Chami B. Myeloperoxidase Gene Deletion Causes Drastic Microbiome Shifts in Mice and Does Not Mitigate Dextran Sodium Sulphate-Induced Colitis. Int J Mol Sci 2024; 25:4258. [PMID: 38673843 PMCID: PMC11050303 DOI: 10.3390/ijms25084258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil-myeloperoxidase (MPO) is a heme-containing peroxidase which produces excess amounts of hypochlorous acid during inflammation. While pharmacological MPO inhibition mitigates all indices of experimental colitis, no studies have corroborated the role of MPO using knockout (KO) models. Therefore, we investigated MPO deficient mice in a murine model of colitis. Wild type (Wt) and MPO-deficient mice were treated with dextran sodium sulphate (DSS) in a chronic model of experimental colitis with three acute cycles of DSS-induced colitis over 63 days, emulating IBD relapse and remission cycles. Mice were immunologically profiled at the gut muscoa and the faecal microbiome was assessed via 16S rRNA amplicon sequencing. Contrary to previous pharmacological antagonist studies targeting MPO, MPO-deficient mice showed no protection from experimental colitis during cyclical DSS-challenge. We are the first to report drastic faecal microbiota shifts in MPO-deficient mice, showing a significantly different microbiome profile on Day 1 of treatment, with a similar shift and distinction on Day 29 (half-way point), via qualitative and quantitative descriptions of phylogenetic distances. Herein, we provide the first evidence of substantial microbiome shifts in MPO-deficiency, which may influence disease progression. Our findings have significant implications for the utility of MPO-KO mice in investigating disease models.
Collapse
Affiliation(s)
- Patrick T. San Gabriel
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Thomas R. O’Neil
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Alice Au
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Jian K. Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Gabriela V. Pinget
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Yuyang Liu
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Genevieve Fong
- Rheumatology Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Jacqueline Ku
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Elias Glaros
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Laurence Macia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Paul K. Witting
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Shane R. Thomas
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Belal Chami
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| |
Collapse
|
37
|
Zhang L, Ren J, Yu T, Li Y, Li Y, Lu S, Guo X. Supplementation of citrus pectin with whole-cell pectinase PG5 on Pichia pastoris promotes recovery of colitis and enhances intestinal barrier function in DSS-treated mice. Int J Biol Macromol 2024; 264:130476. [PMID: 38428761 DOI: 10.1016/j.ijbiomac.2024.130476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Yanshun Li
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
38
|
Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol 2024; 86:103073. [PMID: 38335705 DOI: 10.1016/j.copbio.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Although probiotics have been used in food products and supplements for decades, there has been a considerable increase in their use more recently. Recent technological advances have thus led to major advances in knowledge of the gut microbiota, enabling a significant development of biotics. In this review, we discuss the uses of traditional probiotics but also the discovery of next-generation probiotics that could be used as live biotherapeutics. These novel preventive and therapeutic strategies hold promise for the treatment of numerous diseases such as inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Probiotic bacteria can be consumed alone, or in combination with prebiotics as synbiotics, or mixed with other probiotic strains to form a consortium for enhanced effects. We also discuss the benefits of using postbiotics.
Collapse
Affiliation(s)
- Anne-Emmanuelle Roux
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Rebeca Martin
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
39
|
Yu X, Li X, Yang H. Unraveling intestinal microbiota's dominance in polycystic ovary syndrome pathogenesis over vaginal microbiota. Front Cell Infect Microbiol 2024; 14:1364097. [PMID: 38606298 PMCID: PMC11007073 DOI: 10.3389/fcimb.2024.1364097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease in women, intricately linked to hormonal imbalances. The microbiota composition plays a pivotal role in influencing hormonal levels within the body. In this study, we utilized a murine model to investigate how intestinal and vaginal microbiota interact with hormones in the development of PCOS. Methods Twenty female mice were randomly assigned to the normal group (N) and the model group (P), where the latter received daily subcutaneous injections of 0.1 mL DHEA (6 mg/100 g). Throughout the experiment, we evaluated the PCOS mouse model by estrus cycle, serum total testosterone (T), prolactin (PRL) and luteinizing hormone (LH) levels, and ovarian pathological morphology. The microbial composition in both intestinal content and vaginal microbiota were studied by 16S rRNA gene high-throughput sequencing. Results Compared with the N group, the P group showed significant increases in body weight, T, and PRL, with significant decrease in LH. Ovaries exhibited polycystic changes, and the estrous cycle was disrupted. The intestinal microbiota result shows that Chao1, ACE, Shannon and Simpson indexes were decreased, Desulfobacterota and Acidobacteriota were increased, and Muribaculaceae, Limosilactobacillus and Lactobacillus were decreased in the P group. T was significantly positively correlated with Enterorhabdus, and LH was significantly positively correlated with Lactobacillus. The analysis of vaginal microbiota revealed no significant changes in Chao1, ACE, Shannon, and Simpson indices. However, there were increased in Firmicutes, Bacteroidota, Actinobacteriota, Streptococcus, and Muribaculaceae. Particularly, Rodentibacter displayed a robust negative correlation with other components of the vaginal microbiota. Conclusion Therefore, the response of the intestinal microbiota to PCOS is more significant than that of the vaginal microbiota. The intestinal microbiota is likely involved in the development of PCOS through its participation in hormonal regulation.
Collapse
Affiliation(s)
- Xia Yu
- Hunan Women and Children’s Hospital, Changsha, China
| | | | - Hui Yang
- Hunan Women and Children’s Hospital, Changsha, China
| |
Collapse
|
40
|
Xu J, Peng WR, Zhang D, Sun HX, Li L, Sun F, Gu ZC, Lin HW. Marine sponge-derived alkaloid ameliorates DSS-induced IBD via inhibiting IL-6 expression through modulating JAK2-STAT3-SOCS3 pathway. Int Immunopharmacol 2024; 129:111576. [PMID: 38350353 DOI: 10.1016/j.intimp.2024.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Cyanogramide (AC14), a novel alkaloid, isolated from the fermentation broth of the marine-derived Actinoalloteichus cyanogriseus. However, the exact role of AC14 in inflammatory bowel disease (IBD) is poorly understood. Our results demonstrated that AC14 exhibited significant inhibition of IL-6 release in THP-1 cells and a "Caco-2/THP-1" coculture system after stimulation with LPS for 24 h. However, no significant effect on TNF-α production was observed. Furthermore, in 2.5 % DSS-induced colitis mice, AC14 treatment led to improvement in body weight, colon length, and intestine mucosal barrier integrity. AC14 also suppressed serum IL-6 production and modulated dysregulated microbiota in the mice. Mechanistically, AC14 was found to inhibit the phosphorylation of Janus kinase (JAK) 2 and signal transducers and activators of transcription (STAT) 3, while simultaneously elevating the expression of suppressor of cytokine signaling (SOCS) 3, both in vivo and in vitro. These findings suggest that AC14 exerts its suppressive effects on IL-6 production in DSS-induced IBD mice through the JAK2-STAT3-SOCS3 signaling pathway. Our study highlights the potential of AC14 as a therapeutic agent for the treatment of IBD.
Collapse
Affiliation(s)
- Jing Xu
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wen-Rui Peng
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Die Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Hong-Xin Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Lei Li
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Zhi-Chun Gu
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Hou-Wen Lin
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
41
|
Geesala R, Recharla N, Zhang K, Johnson JC, Golovko G, Khanipov K, Brining DL, Shi XZ. Exclusive Enteral Nutrition Beneficially Modulates Gut Microbiome in a Preclinical Model of Crohn's-like Colitis. Nutrients 2024; 16:363. [PMID: 38337648 PMCID: PMC10857303 DOI: 10.3390/nu16030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis. The rat model of CD-like colitis was established by an intracolonic instillation of TNBS at 65 mg/kg in 250 µL of 40% ethanol. Sham control rats were instilled with saline. Rats were fed ad libitum with either regular pellet food or EEN treatment with a clear liquid diet (Ensure). Rats were euthanized at 7 days. Fecal pellets were collected from the distal colon for 16S rRNA sequencing analysis of gut microbiota. In addition, colon tissues were taken for histological and molecular analyses in all the groups of rats. EEN administration to TNBS-induced CD rats significantly improved the body weight change, inflammation scores, and disease activity index. The mRNA expression of IL-17A and interferon-γ was significantly increased in the colonic tissue in TNBS rats when fed with regular food. However, EEN treatment significantly attenuated the increase in IL-17A and interferon-γ in TNBS rats. Our 16S rRNA sequencing analysis found that gut microbiota diversity and compositions were significantly altered in TNBS rats, compared to controls. However, EEN treatment improved alpha diversity and increased certain beneficial bacteria such as Lactobacillus and Dubosiella and decreased bacteria such as Bacteroides and Enterorhabdus in CD-like rats, compared to CD-like rats with the regular pellet diet. In conclusion, EEN treatment increases the diversity of gut microbiota and the composition of certain beneficial bacteria. These effects may contribute to the reduced inflammation by EEN in the rat model of CD-like colitis.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (R.G.); (N.R.); (K.Z.); (J.C.J.)
| | - Neeraja Recharla
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (R.G.); (N.R.); (K.Z.); (J.C.J.)
| | - Ke Zhang
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (R.G.); (N.R.); (K.Z.); (J.C.J.)
| | - John C. Johnson
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (R.G.); (N.R.); (K.Z.); (J.C.J.)
| | - George Golovko
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (G.G.); (K.K.)
| | - Kamil Khanipov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (G.G.); (K.K.)
| | - Douglas L. Brining
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (R.G.); (N.R.); (K.Z.); (J.C.J.)
| |
Collapse
|