1
|
Abdel-Halim M, El-Gamil DS, Hammam MA, El-Shazly M, Wang YH, Kung PH, Chen YC, Korinek M, Abadi AH, Engel M, Hwang TL. Discovery of 1,3-disubstituted prop-2-en-1-one derivatives as inhibitors of neutrophilic inflammation via modulation of MAPK and Akt pathways. J Enzyme Inhib Med Chem 2024; 39:2402988. [PMID: 39297697 PMCID: PMC11413964 DOI: 10.1080/14756366.2024.2402988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound 6a being most effective (IC50 values of 1.23 and 1.37 μM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound 26a (IC50 of 1.56 μM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mennatallah A. Hammam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yu-Cheng Chen
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
2
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
3
|
Haruna NF, Politanska Y, Connelly AR, O'Connor K, Bhattacharya S, Miklaszewski GE, Pérez-Leonor XG, Rerko G, Hentenaar IT, Nguyen DC, Lamothe Molina PA, Bochner BS, Abdala-Valencia H, Gill MA, Lee FEH, Berdnikovs S. scRNA-seq profiling of human granulocytes reveals expansion of developmentally flexible neutrophil precursors with mixed neutrophil and eosinophil properties in asthma. J Leukoc Biol 2024; 116:1184-1197. [PMID: 38814679 DOI: 10.1093/jleuko/qiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils and eosinophils share common hematopoietic precursors and usually diverge into distinct lineages with unique markers before being released from their hematopoietic site, which is the bone marrow (BM). However, previous studies identified an immature Ly6g(+) Il-5Rα(+) neutrophil population in mouse BM, expressing both neutrophil and eosinophil markers suggesting hematopoietic flexibility. Moreover, others have reported neutrophil populations expressing eosinophil-specific cell surface markers in tissues and altered disease states, confusing the field regarding eosinophil origins, function, and classification. Despite these reports, it is still unclear whether hematopoietic flexibility exists in human granulocytes. To answer this, we utilized single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing to profile human BM and circulating neutrophils and eosinophils at different stages of differentiation and determine whether neutrophil plasticity plays role in asthmatic inflammation. We show that immature metamyelocyte neutrophils in humans expand during severe asthmatic inflammation and express both neutrophil and eosinophil markers. We also show an increase in trilobed eosinophils with mixed neutrophil and eosinophil markers in allergic asthma and that interleukin-5 promotes differentiation of immature blood neutrophils into trilobed eosinophilic phenotypes, suggesting a mechanism of emergency granulopoiesis to promote myeloid inflammatory or remodeling response in patients with chronic asthma. By providing insights into unexpectedly flexible granulocyte biology and demonstrating emergency hematopoiesis in asthma, our results highlight the importance of granulocyte plasticity in eosinophil development and allergic diseases.
Collapse
Affiliation(s)
- Nana-Fatima Haruna
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Yuliya Politanska
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Andrew R Connelly
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Kathrine O'Connor
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - Sourav Bhattacharya
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - Grace E Miklaszewski
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Geddy Rerko
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Ian T Hentenaar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Pedro Alberto Lamothe Molina
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Bruce S Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Michelle A Gill
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| |
Collapse
|
4
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
5
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Bratseth V, Nendl A, Raju SC, Holm K, Broch K, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Gut dysbiosis and neutrophil extracellular traps in chronic heart failure. Int J Cardiol 2024:132689. [PMID: 39489348 DOI: 10.1016/j.ijcard.2024.132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chronic heart failure (HF) patients have reduced microbiota diversity. Leakage of microbes and their metabolites into the bloodstream may activate neutrophils. Neutrophil extracellular traps (NETs) consist of chromatin and proteases, and may contribute to HF pathogenesis. We assessed associations between circulating NETs and 1) cardiac function, 2) the degree of gut microbiota diversity and 3) gut leakage and microbial metabolites in HF patients. METHODS A cross-sectional study including 124 patients with chronic HF and left ventricular ejection fraction ≤40 %. Severe HF was defined as N-terminal pro-B-type natriuretic peptide concentrations above median. We measured citrullinated histone H3 (CitH3), myeloperoxidase- and double-stranded-DNA in the blood. Gut leakage markers included bacterial lipopolysaccharides and soluble cluster of differentiation 14. The microbial metabolites included circulating trimethylamine N-oxide and butyrate producing capacity. We used the Shannon diversity-index and a dysbiosis-index based on bacteria with altered relative abundance to characterize the gut microbiota profile. RESULTS Quartile 4 of CitH3 was associated with more severe HF compared to quartiles 1-3, after adjustments for age, gender and hypertension (adjusted odds ratio [95 %CI] 3.21[1.18-8.69], p = 0.022). CitH3 was moderately associated with hypertension (p = 0.04), higher CRP levels (p = 0.016) and lower Shannon diversity index, (p = 0.039). No other NET marker associated with severe HF. CONCLUSIONS In chronic HF patients with reduced LVEF, high levels of CitH3 were associated with disease severity, inflammation and reduced gut microbiota diversity. Our results suggest that enhanced release of NETs could be involved in progressive HF, although the contribution of the gut microbiota seems limited in this context.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.
| | - Andraz Nendl
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sajan C Raju
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Johannes R Hov
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology, and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
7
|
Xie R, Sher KHJ, Tang SYC, Yam IYL, Lee CH, Wu Q, Yap DYH. Dysregulation of neutrophil extracellular traps (NETs)-related genes in the pathogenesis of diabetic kidney disease - Results from bioinformatics analysis and translational studies. Clin Immunol 2024; 268:110379. [PMID: 39396625 DOI: 10.1016/j.clim.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The role of Neutrophil extracellular traps (NETs) in the immunopathogenesis of Diabetic Kidney Disease (DKD) remains elusive. We used a machine learning approach to identify differentially expressed genes (DEGs) associated with NETs in human DKD kidney biopsy datasets and validated the results using single-nucleus RNA sequencing datasets. The expressions of these candidate genes and related cytokines were verified in blood obtained from DKD patients. Three NETs-associated genes (ITGAM, ITGB2 and TLR7) were identified, which all showed significant upregulation in both glomerular and tubulointerstitial compartments in human DKD kidneys. DKD patients showed significantly higher number of activated neutrophils with increased ITGAM and ITGB2 expression, higher serum IL-6 but lower IL-10, compared to healthy controls (p all <0.01). This study suggests that dysregulation of NETs-associated genes ITGAM and ITGB2 are related to the pathogenesis of DKD, and may serve as novel diagnostic markers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Ka Ho Jason Sher
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Sin Yu Cindy Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Irene Ya Lin Yam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - C H Lee
- Division of Endocrinology & Metabolism, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen 518028, HKSAR, China
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, China
| | - Desmond Yat Hin Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China.
| |
Collapse
|
8
|
Biji CA, Balde A, Kim SK, Nazeer RA. Optimization of alginate/carboxymethyl chitosan microbeads for the sustained release of celecoxib and attenuation of intestinal inflammation in vitro. Int J Biol Macromol 2024; 282:137022. [PMID: 39476907 DOI: 10.1016/j.ijbiomac.2024.137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Multiple anti-inflammatory medications have helped treat inflammatory bowel disease (IBD). However, oral administration has minimal absorption and systemic side effects. This study aims to investigate the potential of encapsulating anti-inflammatory drug celecoxib (Cele) within microbeads for the treatment of IBD. Microbeads were formed by cross-linking carboxymethyl chitosan (CMCs) with sodium alginate (Alg) through the ionic gelation method and optimized through response surface methodology. Additionally, the study revealed a mucoadhesivity value of 59.32 ± 0.74 % for the optimized microbead system. The drug release study demonstrated the sustained release of Cele CMCs/Alg microbeads upto 24 h compared to quick release of the free drug. The results of the cell viability assay indicated that the Cele-Alg/CMCs microbeads exhibited a non-toxic nature within the concentration range of 100-250 μM. A significant decrease in nitric oxide (NO) generation (61.14 ± 3.67 %) was seen in HCT-116 cells stimulated with lipopolysaccharide (LPS) upon treatment with Cele-250μM/CMCs/Alg microbeads. The results of the reactive oxygen species and wound healing assay suggest that Cele-250μM/CMCs/Alg microbeads had improved anti-inflammatory characteristics comparable to those of free drug treatment. The western blot analysis demonstrated that the microbeads composed of CMCs/Alg-Cele possess the capacity to inhibit the expression of COX-2 in vitro supressing inflammation.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
9
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2024:00006396-990000000-00754. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
10
|
Xia Q, Wei Y, Hu LJ, Zeng FM, Chen YW, Xu D, Sun Y, Zhao LW, Li YF, Pang GH, Peng W, He M. Inhalation of Microplastics Induces Inflammatory Injuries in Multiple Murine Organs via the Toll-like Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18603-18618. [PMID: 39389766 DOI: 10.1021/acs.est.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Collapse
Affiliation(s)
- Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Long-Ji Hu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Fan-Mei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yu-Wei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Lu-Wei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yi-Fei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Guan-Hua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang 110122, P. R. China
- Ministry of Education, China, Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Shenyang 110122, P. R. China
| |
Collapse
|
11
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01098-2. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
12
|
Khanzadeh M, Babadi S, Ghaedi A, Meidani FZ, Rahmati R, Aminizadeh S, Bazrafshan Drissi H, Yaghoobpoor S, Ghanbari Boroujeni MR, Khanzadeh S. A Systematic Review on the Role of Neutrophil to Lymphocyte Ratio in Limb Ischemia. Ann Vasc Surg 2024:S0890-5096(24)00663-0. [PMID: 39426674 DOI: 10.1016/j.avsg.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Limb ischemia is a severe vascular condition that can lead to critical complications, endangering both limbs and lives. The goal of this research was to explore the role of Neutrophil to lymphocyte ratio (NLR) in limb ischemia. METHODS From inception to June 8, 2022, PubMed/MEDLINE, ISI Web of Science, and Scopus were searched for papers comparing NLR in limb ischemia to healthy individuals. RESULTS Finally, a total of 23 studies were included in the review. There was a direct link between NLR and critical limb ischemia (CLI) development in peripheral arterial disease (PAD) patients. Elevated NLR levels predict a higher risk of CLI among PAD patients. Also, it was concluded that NLR is a dependable predictor of survival in patients with limb ischemia, and higher NLR readings are linked to decreased survival rates. Moreover, the risk of amputation is related to the level of NLR in CLI patients. However, based on the data, NLR is not a reliable indicator of sarcopenia in CLI patients. More research is needed to determine the relationship between NLR and response to treatment in CLI patients. Also, we recommend investigating the effect of each treatment on NLR level in these patients. CONCLUSIONS Our results provide evidence that NLR level is associated with risk of amputation and mortality in patients with limb ischemia. It is a promising biomarker that can be easily incorporated into clinical practice to assist in the prediction and prevention of CLI.
Collapse
Affiliation(s)
- Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Saghar Babadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Arshin Ghaedi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zari Meidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
13
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic characterization of 1,000 human and murine neutrophils freshly isolated from blood and sites of sterile inflammation. Mol Cell Proteomics 2024:100858. [PMID: 39395581 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1,000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6,200 mouse and ∼5,300 human proteins from circulating neutrophils. 4,800 mouse and 3,400 human proteins were recovered from 1,000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Tonyali NV, Sarsmaz K, Bayraktar B, Kahraman NC, Sucu ST, Aktemur G, Cakir BT, Seyhanli Z, Karabay G, Cakir A, Ustun Y. Delta neutrophil index (DNI) as a potential biomarker for fetal growth restriction: insights from maternal hematological changes and neonatal outcomes. BMC Pregnancy Childbirth 2024; 24:655. [PMID: 39375632 PMCID: PMC11460094 DOI: 10.1186/s12884-024-06853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study investigates the role of Delta Neutrophil Index (DNI), an inflammation marker, in late-onset fetal growth restriction (LO-FGR) and its prediction of composite adverse neonatal outcomes. METHODS A retrospective study was conducted on 684 pregnant women (456 with normal fetal development and 228 with LO-FGR) who delivered at Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital between January 1, 2015, and June 30, 2018. Composite adverse neonatal outcomes were defined as at least one of the following: 5th minute APGAR score < 7, respiratory distress syndrome (RDS), or neonatal intensive care unit (NICU) admission. RESULTS The FGR group had significantly higher levels of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), monocyte to lymphocyte ratio (MLR), and DNI compared to controls (p < 0.05, for all). For FGR diagnosis, the DNI demonstrated the highest area under the curve (AUC = 0.677, 95% CI: 0.642-0.711) with a cut-off value of > -2.9, yielding a sensitivity of 78.41%, a specificity of 52.97%, a positive likelihood ratio (+ LR) of 1.68, and a negative likelihood ratio (-LR) of 0.37 (p < 0.001). For predicting composite adverse neonatal outcomes in the FGR group, DNI again demonstrated superior performance with an AUC of 0.635 (95% CI: 0.598-0.670), a cut-off value of > -2.2, a sensitivity of 69.90%, a specificity of 55.36%, a + LR of 1.56, and a -LR of 0.51 (p < 0.001). NLR, PLR, and MLR had AUCs below 0.55, indicating poor discriminative ability, with none reaching statistical significance. CONCLUSION This study highlights the potential role of DNI as a promising biomarker for detecting inflammatory processes associated with LO-FGR and its complications.
Collapse
Affiliation(s)
- Nazan Vanli Tonyali
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey.
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey.
| | - Kemal Sarsmaz
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Faculty of Medicine Celal, Bayar University, Manisa, Turkey
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Neval Cayonu Kahraman
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - Serap Topkara Sucu
- Department of Obstetrics and Gynecology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Gizem Aktemur
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Betul Tokgoz Cakir
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Zeynep Seyhanli
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Gulsan Karabay
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Ayberk Cakir
- Department of Obstetrics and Gynecology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
- Clinic of Obstetrics and Gynecology, Mus State Hospital, Mus, Turkey
| | - Yaprak Ustun
- Department of Obstetrics and Gynecology, Health Sciences University Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
17
|
Ito CNA, dos Santos Procopio E, Balsalobre NDM, Machado LL, Silva-Filho SE, Pedroso TF, de Lourenço CC, Oliveira RJ, Arena AC, Salvador MJ, Kassuya CAL. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals (Basel) 2024; 17:1331. [PMID: 39458972 PMCID: PMC11510468 DOI: 10.3390/ph17101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Annona squamosa is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including A. squamosa leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of A. squamosa (EMAS) and palmatine. Methods: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. Results: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. Conclusions: The present study showed that A. squamosa and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.
Collapse
Affiliation(s)
- Caren Naomi Aguero Ito
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Elisangela dos Santos Procopio
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Natália de Matos Balsalobre
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Taíse Fonseca Pedroso
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Caroline Caramano de Lourenço
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Marcos José Salvador
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Cândida Aparecida Leite Kassuya
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| |
Collapse
|
18
|
Sae-Khow K, Charoensappakit A, Leelahavanichkul A. Neutrophil Diversity (Immature, Aged, and Low-Density Neutrophils) and Functional Plasticity: Possible Impacts of Iron Overload in β-Thalassemia. Int J Mol Sci 2024; 25:10651. [PMID: 39408979 PMCID: PMC11476590 DOI: 10.3390/ijms251910651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Neutrophil dysfunction is a form of immune suppression in patients with β-thalassemia (Beta-thal), although data on this are limited. In this study, blood from patients and healthy volunteers was analyzed. Flow cytometry analysis demonstrated an increase in immature neutrophils (CD16- CD62L+) and aged (senescent) neutrophils (CD16+ CD62L-) in Beta-thal patients compared to healthy volunteers. The Beta-thal neutrophils demonstrated less prominent chemotaxis and phagocytosis than healthy neutrophils at the baseline. With phorbol myristate acetate (PMA) or lipopolysaccharide (LPS) stimulations, some of the indicators, including the flow cytometry markers (CD11b, CD62L, CD66b, CD63, apoptosis, and reactive oxygen species) and neutrophil extracellular traps (NETs; detected by anti-citrullinated histone 3 immunofluorescence), were lower than the control. Additionally, low-density neutrophils (LDNs), which are found in the peripheral blood mononuclear cell (PBMC) fraction, were observed in Beta-thal patients but not in the control group. The expression of CD11b, CD66b, CD63, arginase I, and ROS in LDNs was higher than the regular normal-density neutrophils (NDNs). The proliferation rate of CD3+ T cells isolated from the PBMC fraction of healthy volunteers was higher than that of the cells from patients with Beta-thal. The incubation of red blood cell (RBC) lysate plus ferric ions with healthy NDNs transformed the NDNs into the aged neutrophils (decreased CD62L) and LDNs. In conclusion, iron overload induces neutrophil diversity along with some dysfunctions.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Awirut Charoensappakit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Yang S, Song J, Deng M, Cheng S. Comprehensive analysis of aging-related gene expression patterns and identification of potential intervention targets. Postgrad Med J 2024:qgae131. [PMID: 39357883 DOI: 10.1093/postmj/qgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE This study aims to understand the molecular mechanisms underlying the aging process and identify potential interventions to mitigate age-related decline and diseases. METHODS This study utilized the GSE168753 dataset to conduct comprehensive differential gene expression analysis and co-expression module analysis. Machine learning and Mendelian randomization analyses were employed to identify core aging-associated genes and potential drug targets. Molecular docking simulations and mediation analysis were also performed to explore potential compounds and mediators involved in the aging process. RESULTS The analysis identified 4164 differentially expressed genes, with 1893 upregulated and 2271 downregulated genes. Co-expression analysis revealed 21 modules, including both positively and negatively correlated modules between older age and younger age groups. Further exploration identified 509 aging-related genes with distinct biological functions. Machine learning and Mendelian randomization analyses identified eight core genes associated with aging, including DPP9, GNAZ, and RELL2. Molecular docking simulations suggested resveratrol, folic acid, and ethinyl estradiol as potential compounds capable of attenuating aging through modulation of RELL2 expression. Mediation analysis indicated that eosinophil counts and neutrophil count might act as mediators in the causal relationship between genes and aging-related indicators. CONCLUSION This comprehensive study provides valuable insights into the molecular mechanisms of aging and offers important implications for the development of anti-aging therapeutics. Key Messages What is already known on this topic - Prior research outlines aging's complexity, necessitating precise molecular targets for intervention. What this study adds - This study identifies novel aging-related genes, potential drug targets, and therapeutic compounds, advancing our understanding of aging mechanisms. How this study might affect research, practice, or policy - Findings may inform targeted therapies for age-related conditions, influencing future research and clinical practices.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Jianning Song
- Interventional Department, GuiQian International General Hospital, Guiyang, China
| | - Min Deng
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
20
|
Lv X, Min J, Huang J, Wang H, Wei S, Huang C, Dai J, Chen Z, Zhou H, Xu Y, Zhao H, Liu Z, Wang J. Simultaneously Controlling Inflammation and Infection by Smart Nanomedicine Responding to the Inflammatory Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403934. [PMID: 39225387 PMCID: PMC11497003 DOI: 10.1002/advs.202403934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The overactivated immune cells in the infectious lesion may lead to irreversible organ damages under severe infections. However, clinically used immunosuppressive anti-inflammatory drugs will usually disturb immune homeostasis and conversely increase the risk of infections. Regulating the balance between anti-inflammation and anti-infection is thus critical in treating certain infectious diseases. Herein, considering that hydrogen peroxide (H2O2), myeloperoxidase (MPO), and neutrophils are upregulated in the inflammatory microenvironment and closely related to the severity of appendectomy patients, an inflammatory-microenvironment-responsive nanomedicine is designed by using poly(lactic-co-glycolic) acid (PLGA) nanoparticles to load chlorine E6 (Ce6), a photosensitizer, and luminal (Lum), a chemiluminescent agent. The obtained Lum/Ce6@PLGA nanoparticles, being non-toxic within normal physiological environment, can generate cytotoxic single oxygen via bioluminescence resonance energy transfer (BRET) in the inflammatory microenvironment with upregulated H2O2 and MPO, simultaneously killing pathogens and excessive inflammatory immune cells in the lesion, without disturbing immune homeostasis. As evidenced in various clinically relevant bacterial infection models and virus-induced pneumonia, Lum/Ce6@PLGA nanoparticles appeared to be rather effective in controlling both infection and inflammation, resulting in significantly improved animal survival. Therefore, the BRET-based nanoparticles by simultaneously controlling infections and inflammation may be promising nano-therapeutics for treatment of severe infectious diseases.
Collapse
Affiliation(s)
- Xinjing Lv
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Jie Min
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Jie Huang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Hairong Wang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Song Wei
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Chenxiao Huang
- Institutes of Biology and Medical SciencesJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouJiangsu215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouJiangsu215123China
| | - Zhengrong Chen
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Huiting Zhou
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Yunyun Xu
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - He Zhao
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Jian Wang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
21
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
22
|
Di Serio BF, Muller JDAI, Silva MJD, Figueiredo FDF, Martins DTDO. Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark. BIOLOGY 2024; 13:776. [PMID: 39452085 PMCID: PMC11505066 DOI: 10.3390/biology13100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Previous studies of the hydroethanolic extract of Virola elongata inner stem bark (HEVe) have demonstrated its antioxidant, gastroprotective, and antiulcer properties, but have not evaluated its anti-inflammatory potential. METHODS HEVe was obtained by maceration and phytochemically analyzed. Its systemic anti-inflammatory activity was assessed by its effect on lipopolysaccharide (LPS)-induced peritonitis in mice. HEVe gel (HEgVe) was employed to evaluate topical anti-inflammatory activity by measuring the ear edema resulting from croton-oil-induced dermatitis in mice. A cell viability assay was conducted to determine the non-cytotoxic concentrations of the HEVe. RAW 264.7 cells were stimulated by LPS to determinate cytokine and nitric oxide production. RESULTS A phytochemical analysis of the HEVe revealed the presence of phenolic acids, neolignans, flavonoids, and monomeric catechins. The oral treatment of acute peritonitis with HEVe reduced the total leukocytes, neutrophils, TNF-α, and IL-1β and elevated IL-10 levels. The application of the HEgVe reduced local edema. The HEVe on the RAW 264.7 cells exhibited no cytotoxicity, and the cells with HEVe displayed reduced TNF-α, IL-1β, and NO levels and increased IL-13 levels. CONCLUSIONS HEVe demonstrated systemic and topical multitarget anti-inflammatory activity, likely due to the combined effects of secondary metabolites. HEVe emerges as a promising herbal remedy for inflammation with minimal cytotoxicity, emphasizing its potential therapeutic significance.
Collapse
Affiliation(s)
- Bruna Fioravante Di Serio
- Post-Graduate Program in Health Sciences, School of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil; (J.d.A.I.M.); (F.d.F.F.)
| | - Jessica de Araujo Isaias Muller
- Post-Graduate Program in Health Sciences, School of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil; (J.d.A.I.M.); (F.d.F.F.)
| | - Marcelo José Dias Silva
- Medicinal Plants and Phytotherapeutics Laboratory, Federal University of Alfenas (UNIFAL), Alfenas 37130-001, Brazil;
| | - Fabiana de Freitas Figueiredo
- Post-Graduate Program in Health Sciences, School of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil; (J.d.A.I.M.); (F.d.F.F.)
| | | |
Collapse
|
23
|
Butsyk A, Varava Y, Moskalenko R, Husak Y, Piddubnyi A, Denysenko A, Korniienko V, Ramanaviciute A, Banasiuk R, Pogorielov M, Ramanavicius A, Korniienko V. Copper Nanoparticle Loaded Electrospun Patches for Infected Wound Treatment: From Development to In-Vivo Application. Polymers (Basel) 2024; 16:2733. [PMID: 39408444 PMCID: PMC11479054 DOI: 10.3390/polym16192733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the development and application of electrospun wound dressings based on polylactic acid (PLA) nanofibers, chitosan, and copper nanoparticles (CuNPs) for the treatment of purulent skin wounds. The materials were evaluated for their structural, antibacterial, and wound healing properties using an animal model. PLA/Ch-CuNPs demonstrated the most significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, surpassing the other tested materials. The integration of CuNPs into the nanofiber matrices not only enhanced the antimicrobial efficacy but also maintained the structural integrity and biocompatibility of the dressings. In vivo experiments using a rat model showed that PLA/Ch-CuNPs facilitated faster wound healing with reduced exudative and inflammatory responses compared to PLA alone or PLA-CuNPs. Histological and immunohistochemical assessments revealed that the combination of PLA, chitosan, and CuNPs mitigated the inflammatory processes and promoted tissue regeneration more effectively. However, this study identified potential toxicity related to copper ions, emphasizing the need for careful optimization of CuNP concentrations. These findings suggest that PLA/Ch-CuNPs could serve as a potent, cost-effective wound dressing with broad-spectrum antibacterial properties, addressing the challenge of antibiotic-resistant infections and enhancing wound healing outcomes.
Collapse
Affiliation(s)
- Anna Butsyk
- Ukrainian-Swedish Research Center SUMEYA, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (A.B.); (A.P.)
| | - Yulia Varava
- Biomedical Research Centre, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (Y.V.); (A.D.); (V.K.); (M.P.)
| | - Roman Moskalenko
- Ukrainian-Swedish Research Center SUMEYA, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (A.B.); (A.P.)
| | - Yevheniia Husak
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Artem Piddubnyi
- Ukrainian-Swedish Research Center SUMEYA, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (A.B.); (A.P.)
| | - Anastasiia Denysenko
- Biomedical Research Centre, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (Y.V.); (A.D.); (V.K.); (M.P.)
| | - Valeriia Korniienko
- Biomedical Research Centre, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (Y.V.); (A.D.); (V.K.); (M.P.)
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | | | - Maksym Pogorielov
- Biomedical Research Centre, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (Y.V.); (A.D.); (V.K.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Viktoriia Korniienko
- Biomedical Research Centre, Medical Institute, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine; (Y.V.); (A.D.); (V.K.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
24
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024:10.1007/s12016-024-09004-3. [PMID: 39294505 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
26
|
Masood A, Benabdelkamel H, Joy SS, Alhossan A, Alsuwayni B, Abdeen G, Aldhwayan M, Alfadda NA, Miras AD, Alfadda AA. Label-free quantitative proteomic profiling reveals differential plasma protein expression in patients with obesity after treatment with liraglutide. Front Mol Biosci 2024; 11:1458675. [PMID: 39324112 PMCID: PMC11422103 DOI: 10.3389/fmolb.2024.1458675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Treatment and management of obesity is clinically challenging. The inclusion of GLP-1 receptor agonists (GLP1RA) in the medical management of obesity has proven to be efficacious. However, mechanisms underlying the molecular changes arising from GLP1RA treatment in patients with obesity remain to be elucidated. Methods A single-center, prospective study was undertaken to evaluate the changes in the plasma proteins after liraglutide 3 mg therapy in twenty patients (M/F: 7/13) with obesity (mean BMI 40.65 ± 3.7 kg/m2). Anthropometric and laboratory parameters were measured, and blood samples were collected at two time points: baseline, before initiating treatment (pretreatment group, PT), and after three months of receiving the full dose liraglutide 3 mg (posttreatment group, PoT). An untargeted label-free LC MSMS mass spectrometric approach combined with bioinformatics and network pathway analysis was used to determine changes in the proteomic profiles. Results The mean age of the study participants was 36.0 ± 11.1 years. A statistically significant change was observed in weight, BMI and HbA1c levels between the PT and PoT groups (paired t-test, P < 0.001). A significant dysregulation was noted in the abundances of 151 proteins (31 up and 120 downregulated) between the two groups. The potential biomarkers were evaluated using receiver operating characteristic (ROC) curves. The top ten proteins (area under the curve (AUC) of 0.999 (95% CI)) were identified as potential biomarkers between PT and PoT groups and included Cystatin-B, major vault protein, and plastin-3, which were upregulated, whereas multimerin-2, large ribosomal P2, and proline-rich acidic protein 1 were downregulated in the PoT group compared with the PT group. The top network pathway identified using ingenuity pathway analysis (IPA), centered around dysregulation of MAPK, AKT, and PKc signaling pathways and related to cell-to-cell signaling and interaction, cellular assembly and organization, cellular compromise and a score of 46 with 25 focus proteins. Discussion Through label-free quantitative proteomic analysis, our study revealed significant dysregulation of plasma proteins after liraglutide 3 mg treatment in patients with obesity. The alterations in the proteomic profile between the PT and PoT groups demonstrated a decrease in levels of proteins involved in inflammation and oxidative stress pathways. On the other hand proteins involved in the glycolytic and lipolytic metabolic pathways as well as those participating in cytoskeletal and endothelial reorganization were observed to be increased. Understanding actions of liraglutide at a molecular and proteomic levels provides a holistic look into how liraglutide impacts metabolism, induces weight loss and improves overall metabolic health.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alhossan
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bashayr Alsuwayni
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ghalia Abdeen
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Madhawi Aldhwayan
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A. Alfadda
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alexander Dimitri Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolic Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
- School of Medicine, Ulster University, Derry, United Kingdom
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Qiao Y, Cui Y, Tan Y, Zhuang C, Li X, Yong Y, Zhang X, Ren X, Cai M, Yang J, Lang Y, Wang J, Liang C, Zhang J. Fluoride induces immunotoxicity by regulating riboflavin transport and metabolism partly through IL-17A in the spleen. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135085. [PMID: 38968825 DOI: 10.1016/j.jhazmat.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1β and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.
Collapse
Affiliation(s)
- Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yukun Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yufei Yong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xinying Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Miaomiao Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
28
|
Huang L, Huang Z, Zhang Y, Lin C, Zhao Z, Li R, Saw PE, Xu X. Advances in targeted delivery of mRNA into immune cells for enhanced cancer therapy. Theranostics 2024; 14:5528-5550. [PMID: 39310113 PMCID: PMC11413781 DOI: 10.7150/thno.93745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/06/2024] [Indexed: 09/25/2024] Open
Abstract
Messenger RNA (mRNA) therapy has been applied to the treatment of various human diseases including malignant tumors. Increasing evidences have shown that mRNA can enhance the efficacy of cancer immunotherapy by modulating the functions of immune cells and stimulating their activity. However, mRNA is a type of negatively charged biomacromolecules that are susceptible to serum nucleases and cannot readily cross the cell membrane. In the past few decades, various nanoparticles (NPs)-based delivery systems have been rationally designed and developed to facilitate the intracellular uptake and cytosolic delivery of mRNA. More importantly, by means of the specific recognition between the targeting ligands decorated on NP surface and receptors specifically expressed on immune cells, these mRNA delivery systems could be functionalized to target immune cells to further enhance the mRNA-based cancer immunotherapy. In this review, we briefly introduced the advancements of mRNA in cancer therapy, discussed the challenges faced by mRNA delivery, and systematically summarized the recent development in NPs-based mRNA delivery systems targeting various types of immune cells for cancer immunotherapy. The future development of NPs-mediated targeted mRNA delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
29
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Honan AM, Jacobsen GE, Drum H, Vazquez EN, Quintero MA, Deshpande AR, Sussman DA, Kerman DH, Damas OM, Proksell S, Van der Jeught K, Abreu MT, Chen Z. Stromal-Like Cells Are Found in Peripheral Blood of Patients With Inflammatory Bowel Disease and Correlate With Immune Activation State. Clin Transl Gastroenterol 2024; 15:e1. [PMID: 38829958 PMCID: PMC11421714 DOI: 10.14309/ctg.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION Recent studies have identified a critical role of stromal-immune cell interactions in immunity and immune tolerance. Transcriptomic profiling has implicated stromal cells in immune-mediated disorders including the 2 common forms of inflammatory bowel disease (IBD), Crohn's disease (CD), and ulcerative colitis (UC). Stromal-immune interactions may edify inflammatory state and the development of IBD-related complications such as fibrosis, yet the lack of protein markers has hampered studying stromal-immune perturbation. METHODS In this study, we designed a 40-color spectral flow cytometry assay to characterize hematopoietic and nonhematopoietic cells in intestinal biopsies and matched blood samples from patients with CD or UC. RESULTS We identified circulating stromal-like cells that are significantly more abundant in IBD blood samples than in healthy controls. Those cells expressed podoplanin (PDPN), a commonly used marker for fibroblasts, and they were associated with activated and memory T and B cells and altered natural killer cell, monocyte, and macrophage populations. PDPN + cells in the blood correlated with PDPN + cells in the colon. Principal component analysis distinctly separated healthy blood samples from IBD blood samples, with stromal-like cells and B-cell subtypes dominating the IBD signature; Pearson correlation detected an association between PDPN + stromal-like cells and B-cell populations in IBD blood and gut biopsies. DISCUSSION These observations suggest that PDPN + cells in the blood may serve as a biomarker of IBD. Understanding the relationship between stromal cells and immune cells in the intestine and the blood may provide a window into disease pathogenesis and insight into therapeutic targets for IBD.
Collapse
Affiliation(s)
- Amanda M. Honan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gillian E. Jacobsen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hannah Drum
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Emily N. Vazquez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria A. Quintero
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
| | - Amar R. Deshpande
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
| | - Daniel A. Sussman
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David H. Kerman
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
| | - Oriana M. Damas
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
| | - Siobhan Proksell
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria T. Abreu
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
31
|
Yan Q, Liu S, Sun Y, Chen C, Yang Y, Yang S, Lin M, Long J, Lin Y, Liang J, Ai Q, Chen N. CC chemokines Modulate Immune responses in Pulmonary Hypertension. J Adv Res 2024; 63:171-186. [PMID: 37926143 PMCID: PMC11380027 DOI: 10.1016/j.jare.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
32
|
Samorodnitsky S, Wendt CH, Lock EF. Bayesian Simultaneous Factorization and Prediction Using Multi-Omic Data. Comput Stat Data Anal 2024; 197:107974. [PMID: 38947282 PMCID: PMC11210674 DOI: 10.1016/j.csda.2024.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Integrative factorization methods for multi-omic data estimate factors explaining biological variation. Factors can be treated as covariates to predict an outcome and the factorization can be used to impute missing values. However, no available methods provide a comprehensive framework for statistical inference and uncertainty quantification for these tasks. A novel framework, Bayesian Simultaneous Factorization (BSF), is proposed to decompose multi-omics variation into joint and individual structures simultaneously within a probabilistic framework. BSF uses conjugate normal priors and the posterior mode of this model can be estimated by solving a structured nuclear norm-penalized objective that also achieves rank selection and motivates the choice of hyperparameters. BSF is then extended to simultaneously predict a continuous or binary phenotype while estimating latent factors, termed Bayesian Simultaneous Factorization and Prediction (BSFP). BSF and BSFP accommodate concurrent imputation, i.e., imputation during the model-fitting process, and full posterior inference for missing data, including "blockwise" missingness. It is shown via simulation that BSFP is competitive in recovering latent variation structure, and demonstrate the importance of accounting for uncertainty in the estimated factorization within the predictive model. The imputation performance of BSF is examined via simulation under missing-at-random and missing-not-at-random assumptions. Finally, BSFP is used to predict lung function based on the bronchoalveolar lavage metabolome and proteome from a study of HIV-associated obstructive lung disease, revealing multi-omic patterns related to lung function decline and a cluster of patients with obstructive lung disease driven by shared metabolomic and proteomic abundance patterns.
Collapse
Affiliation(s)
- Sarah Samorodnitsky
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, MN, USA
- Fred Hutch Cancer Center, Seattle, 98109, WA, USA
| | - Chris H. Wendt
- Minneapolis VA Health Care System, Minneapolis, 55417, MN, USA
| | - Eric F. Lock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, MN, USA
| |
Collapse
|
33
|
Wu MM, Yang YC, Cai YX, Jiang S, Xiao H, Miao C, Jin XY, Sun Y, Bi X, Hong Z, Zhu D, Yu M, Mao JJ, Yu CJ, Liang C, Tang LL, Wang QS, Shao Q, Jiang QH, Pan ZW, Zhang ZR. Anti-CTLA-4 m2a Antibody Exacerbates Cardiac Injury in Experimental Autoimmune Myocarditis Mice By Promoting Ccl5-Neutrophil Infiltration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400486. [PMID: 38978328 PMCID: PMC11425905 DOI: 10.1002/advs.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.
Collapse
Affiliation(s)
- Ming-Ming Wu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| | - Yan-Chao Yang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Yong-Xu Cai
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Shuai Jiang
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Han Xiao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chang Miao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Xi-Yun Jin
- School of Interdisciplinary Medicine and Engineering, HMU, Harbin, 150081, China
| | - Yu Sun
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Xin Bi
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Zi Hong
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Di Zhu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Miao Yu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Jian-Jun Mao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Chen Liang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Liang-Liang Tang
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Qiu-Shi Wang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Qun Shao
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Qing-Hua Jiang
- School of Interdisciplinary Medicine and Engineering, HMU, Harbin, 150081, China
| | - Zhen-Wei Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), HMU, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| |
Collapse
|
34
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
35
|
Bai G, Li Y, Gao Y, Yu B, Guo Z, Chen X, Liu T, Li G. Prognosis impact of multiple novel lymphocyte-based inflammatory indices in patients with initially diagnosed coronary artery disease. Immun Inflamm Dis 2024; 12:e1340. [PMID: 39329244 PMCID: PMC11427945 DOI: 10.1002/iid3.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND This study aimed to evaluate six novel lymphocyte-based inflammatory markers (neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio, platelet-lymphocyte ratio [PLR], systemic immune inflammation index [SII], systemic inflammatory response index, and systemic immune inflammation response index [SIIRI]) in patients with newly diagnosed coronary artery disease [CAD]. METHODS A total of 959 patients newly diagnosed with CAD and underwent diagnostic coronary angiography were enrolled in this study and followed for major adverse cardiovascular events (MACEs), including cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke. The best cutoff value was used to compare the six indicators. Cox risk regression analysis evaluated the relationship between novel lymphocyte-based inflammatory markers and MACEs in newly diagnosed CAD patients. RESULTS During a mean follow-up period of 33.3 ± 9.9 months, 229 (23.9%) MACEs were identified. Multivariate Cox regression analysis showed that only SIIRI (hazard ratio [HR]: 5.853; 95% confidence interval [CI]: 4.092-8.371; p < .001) and PLR (HR: 1.725; 95% CI: 1.214-2.452; p = .002) were independent predictors of MACEs. Nevertheless, following the adjustment for covariates, only the SIIRI was found to be a significant predictor MACEs and its corresponding specific endpoint occurrences. The predictive ability of the model was improved when six different inflammatory markers were added to the basic model established by traditional risk factors, namely, the C-index increased, and the SIIRI increased most significantly (AUC: 0.778; 95% CI: 0.743-0.812; p < .001). However, among the six novel inflammatory markers, only SIIRI had improved net reclassification improvement (NRI) and integrated discrimination improvement (IDI) (NRI: 0.187; 95% CI: 0.115-0.259, p < .001. IDI: 0.135; 95% CI: 0.111-0.159, p < .001), which was superior to the basic model established by traditional risk factors. CONCLUSIONS SIIRI is independent predictor of MACEs in newly diagnosed CAD patients. SIIRI was superior to other measures in predicting MACEs. The combination of SIIRI and traditional risk factors can more accurately predict MACEs.
Collapse
Affiliation(s)
- Geng Bai
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuqing Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yi Gao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bo Yu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ziqiang Guo
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Xiaolin Chen
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Guangping Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
36
|
Jin K, Yao Q, Sun B. The phenotypic characteristics of polymorphonuclear neutrophils and their correlation with B cell and CD4+T cell subsets in thyroid-associated ophthalmopathy. Front Immunol 2024; 15:1413849. [PMID: 39234250 PMCID: PMC11371595 DOI: 10.3389/fimmu.2024.1413849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Thyroid-associated ophthalmopathy (TAO) is considered to be an organ-specific autoimmune disease. Polymorphonuclear neutrophils (PMN) have been implicated in the pathogenesis of TAO. However, little is known about the role of PMN in the development of TAO, much less the relationship between PMN with B cells and CD4+T cells in TAO. Objective This study aims to investigate the phenotypic characteristics of PMN and the relationship between PMN with CD4+T cell and B cell subsets in the pathogenesis of TAO. Methods Blood routine information was collected from 135 TAO patients, 95 Grave's disease without TAO (GD) patients, and 116 normal controls (NC), while surface marker expression of PMN and the level of CD4+T cell and B cell subsets in peripheral blood from 40 TAO patients, 17 GD patients, and 45 NC was assessed by flow cytometry. Result The level of PMN, CD62L+PMN, CD54+PMN, CD4+T cells, and Th17 cells displayed an increase in TAO patients than NC, while Treg cells were lower in the TAO group compared to NC. There was no statistical difference in Th1 and plasma cells among the groups. PMN were positively correlated with Th17 cells, but not the Th1, Treg, and plasma cells. Conclusion In the present study, we found that the percentage of PMN and PMN subset cells was significantly higher in TAO than in NC, and PMN were positively correlated with Th17 cells. It suggests that PMN may be involved in the immunopathogenesis of TAO and modulate the Th17 cell response during this process.
Collapse
Affiliation(s)
- Ke Jin
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qian Yao
- Department of Ophthalmology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bin Sun
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Massoud G, Parish M, Hazimeh D, Moukarzel P, Singh B, Cayton Vaught KC, Segars J, Islam MS. Unlocking the potential of tranilast: Targeting fibrotic signaling pathways for therapeutic benefit. Int Immunopharmacol 2024; 137:112423. [PMID: 38861914 PMCID: PMC11245748 DOI: 10.1016/j.intimp.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-β, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.
Collapse
Affiliation(s)
- Gaelle Massoud
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Maclaine Parish
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Pamela Moukarzel
- American University of Beirut Medical Center, Faculty of Medicine, Riad El Solh, Beirut, Lebanon
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Kamaria C Cayton Vaught
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Nefodova A, Rudyk M, Dovhyi R, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Systemic inflammation in Aβ 1-40-induced Alzheimer's disease model: New translational opportunities. Brain Res 2024; 1837:148960. [PMID: 38679313 DOI: 10.1016/j.brainres.2024.148960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia, and the most common neurodegenerative disease, which is characterized by memory impairment, neuronal death, and synaptic loss in the hippocampus. Sporadic late-onset AD, which accounts for over 95 % of disease cases, is a multifactorial pathology with complex etiology and pathogenesis. Nowadays, neuroinflammation is considered the third most important component of AD pathogenesis in addition to amyloid peptide generation and deposition. Neuroinflammation is associated with the impairment of blood-brain barrier and leakage of inflammatory mediators into the periphery with developing systemic inflammatory responses. Systemic inflammation is currently considered one of the therapeutic targets for AD treatment, that necessitates in-depth study of this phenomenon in appropriate non-transgenic animal models. This study was aimed to explore systemic inflammatory manifestations in rats with Aβ1-40-induced AD. The impairment of spatial memory and cognitive flexibility in Aβ1-40-lesioned rats was accompanied by pronounced systemic inflammation, which was confirmed by commonly accepted biomarkers: increased hematological indices of systemic inflammation (NLR, dNLR, LMR, PLR and SII), signs of anemia of inflammation or chronic diseases, and pro-inflammatory polarized activation of circulating phagocytes. In addition, markers of systemic inflammation strongly correlated with disorders of remote cognitive flexibility in Aβ1-40-lesioned rats. These results indicate, that Aβ1-40-induced AD model permits the investigation of specific element of the disease - systemic inflammation in addition to well reproduced neuroinflammation and impairment of spatial memory and cognitive flexibility. It increases translational value of this well-known model.
Collapse
Affiliation(s)
- Anastasiia Nefodova
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Mariia Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine.
| | - Roman Dovhyi
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Taisa Dovbynchuk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| |
Collapse
|
39
|
Alshuweishi Y, Abudawood A, Alfayez D, Almufarrih AA, Alanazi F, Alshuweishi FA, Almuqrin AM. Platelet/High-Density Lipoprotein Ratio (PHR) Predicts Type 2 Diabetes in Obese Patients: A Retrospective Study. Healthcare (Basel) 2024; 12:1540. [PMID: 39120243 PMCID: PMC11311744 DOI: 10.3390/healthcare12151540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Obesity and type 2 diabetes (T2D) pose global health problems that continue to rise. A chronic low-grade inflammation and activation of the immune system are well established in both conditions. The presence of these factors can predict disease development and progression. Emerging evidence suggests that platelet-high density lipoprotein ratio (PHR) is a potential inflammatory marker. The purpose of this study was to investigate the relationship between PHR and T2D among obese patients. Methods: 203 patients with BMI ≥ 30 kg/m2 participated in the study. Patients were categorized into two groups: non-diabetic obese and diabetic obese. Comorbidities, baseline characteristics, laboratory data, as well as PHR levels of the study groups were analyzed. Medians, risk assessment, and the diagnostic performance of PHR values were examined in both groups. Results: In obese patients, the median PHR were significantly increased in obese patients with T2D compared to non-diabetic obese (p < 0.0001). Furthermore, T2D obese with high PHR had a significantly higher FBG and HbA1c (p < 0.05). Although PHR was weakly yet significantly correlated with glycemic markers, ROC curve analysis of the PHR indicated an AUC of 0.700 (p < 0.0001) in predicting T2D in obese patients, and the cutoff value was 6.96, with a sensitivity and specificity of 53.4% and 76.1%, respectively. Moreover, increased PHR (OR = 4.77, p < 0.0001) carried a significantly higher risk for developing T2D in obese individuals. Conclusions: The PHR is a convenient and cost-effective marker that can reliably predict the presence of T2D in high-risk obese population.
Collapse
Affiliation(s)
- Yazeed Alshuweishi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| | - Arwa Abudawood
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Dalal Alfayez
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Abdulmalik A. Almufarrih
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Fuad Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| | - Fahd A. Alshuweishi
- King Fahad Kidney Center, King Saud Medical City, Riyadh 12746, Saudi Arabia;
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| |
Collapse
|
40
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
41
|
Onuma K, Watanabe K, Isayama K, Ogi S, Tokunaga Y, Mizukami Y. Bardoxolone methyl prevents metabolic dysfunction-associated steatohepatitis by inhibiting macrophage infiltration. Br J Pharmacol 2024; 181:2545-2565. [PMID: 38599607 DOI: 10.1111/bph.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Bardoxolone methyl (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester, CDDO-Me) is a potent activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which induces the expression of antioxidative-associated genes. CDDO-Me exerts protective effects against chronic inflammatory diseases in the kidneys and lungs. However, its pharmacological effects on metabolic dysfunction-associated steatohepatitis (MASH) caused by fat accumulation remain unknown. In this study, we examined the hepatoprotective effects of CDDO-Me in a diet-induced MASH mouse model and elucidated its pharmacological mechanisms using RNA-seq analysis. EXPERIMENTAL APPROACH CDDO-Me was orally administered to mice fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), and histological, biochemical, and transcriptomic analyses were performed on livers of mice that developed MASH. KEY RESULTS CDDO-Me administration induced the expression of antioxidant genes and cholesterol transporters downstream of Nrf2 and significantly prevented the symptoms of MASH. Whole-transcriptome analysis revealed that CDDO-Me inhibited the inflammatory pathway that led to phagocyte recruitment, in addition to activating the Nrf2-dependent pathway. Among inflammatory pathways, CC chemokine ligands (CCL)3 and CCL4, which are downstream of NF-κB and are associated with the recruitment of macrophages expressing CC chemokine receptors (CCR)1 and CCR5, were released into the blood in MASH mice. However, CDDO-Me directly inhibited the expression of CCL3-CCR1 and CCL4-CCR5 in macrophages. CONCLUSIONS AND IMPLICATIONS Overall, we revealed the potent hepatoprotective effect of CDDO-Me in a MASH mouse model and demonstrated that its pharmacological effects were closely associated with a reduction of macrophage infiltration, through CCL3-CCR1 and CCL4-CCR5 inhibition, in addition to Nrf2-mediated hepatoprotective effects.
Collapse
Affiliation(s)
- Kazuhiro Onuma
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Keishiro Isayama
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Sayaka Ogi
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Yasunori Tokunaga
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| |
Collapse
|
42
|
Wang Y, Miao Y, Wan Q. Association of white blood cell count to mean platelet volume ratio with type 2 diabetic peripheral neuropathy in a Chinese population: a cross-sectional study. BMC Endocr Disord 2024; 24:129. [PMID: 39075499 PMCID: PMC11285436 DOI: 10.1186/s12902-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The white blood cell count to mean platelet volume ratio (WMR) is considered a promising inflammatory marker, and its recognition is increasing. Inflammation is closely related to metabolic diseases such as diabetes and its complications. However, there are currently no reports on the correlation between WMR and type 2 diabetic peripheral neuropathy (DPN). This study aims to explore the correlation between WMR and DPN in type 2 diabetes patients. By understanding this association, we hope to provide a theoretical basis for preventing DPN through the improvement of inflammatory responses. METHODS This was a cross-sectional study involving 2515 patients with T2DM. Logistic regression analysis was conducted to assess the associations between WMR and DPN. Finally, the receiver operating characteristic curve (ROC curve) was employed to evaluate the predictive efficacy of WMR for DPN. RESULTS Patients in higher WMR quartiles exhibited increased presence of DPN. Additionally, WMR remained significantly associated with a higher odds ratio (OR) of DPN (OR 4.777, 95% confidence interval [CI] 1.296-17.610, P < 0.05) after multivariate adjustment. Moreover, receiver operating characteristic curve analysis indicated that the optimal cutoff value for WMR in predicting DPN presence was 0.5395 (sensitivity: 65.40%; specificity: 41.80%; and area under the curve [AUC]: 0.540). CONCLUSIONS In patients with T2DM, WMR was significantly increased in DPN and independently associated with an increased risk of DPN presence in Chinese patients. This suggests that WMR may serve as a useful and reliable biomarker of DPN, highlighting the importance of paying more attention to T2DM patients with high WMR to further prevent and reduce the development of DPN and related unfavorable health outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Luzhou People's Hospital, Luzhou, China.
| | - Ying Miao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Southwest Medical University, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Yang Z, Li J, Song H, Mei Z, Zhang S, Wu H, Liu J, Yan C, Han Y. Unraveling shared molecular signatures and potential therapeutic targets linking psoriasis and acute myocardial infarction. Sci Rep 2024; 14:16471. [PMID: 39014096 PMCID: PMC11252138 DOI: 10.1038/s41598-024-67350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Psoriasis, a chronic inflammatory skin disorder, is associated with comorbidities such as acute myocardial infarction (AMI). However, the molecular mechanisms connecting these conditions are unclear. In this study, we conducted bioinformatics analyses using gene expression datasets to identify differentially expressed genes and hub genes associated with both psoriasis and AMI. Our findings emphasize the involvement of immune-related pathways in the pathogenesis of both conditions. Furthermore, we investigated the expression levels of hub genes in AMI patients and myocardial infarction (MI) mice. ELISA measurements revealed significantly higher levels of CXCL8, IL1B, S100A9, and S100A12 in the serum of AMI patients compared to normal individuals. Immunohistochemical staining of heart tissue from MI mice showed a progressive increase in the expression of CXCL8 and IL-1B as MI advanced, while S100A9 exhibited high expression at day 3 post-MI. mRNA expression analysis validated these findings. Additionally, we explored the skin lesions of psoriasis patients and found significantly higher expression of CXCL8, IL-1B, S100A9, and S100A12 in the affected skin areas compared to unaffected regions. These results highlight the consistent upregulation of hub genes in both AMI and psoriasis patients, as well as in myocardial infarction mice, underscoring their potential as reliable markers for disease diagnosis. Moreover, molecular docking simulations revealed potential interactions between simvastatin and key target proteins, suggesting a potential therapeutic avenue. Overall, our study uncovers shared molecular signatures and potential therapeutic targets, providing a foundation for future investigations targeting common pathways in psoriasis and AMI.
Collapse
Affiliation(s)
- Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Shuli Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jing Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
44
|
Cucoreanu C, Tigu AB, Nistor M, Moldovan RC, Pralea IE, Iacobescu M, Iuga CA, Szabo R, Dindelegan GC, Ciuce C. Epigenetic and Molecular Alterations in Obesity: Linking CRP and DNA Methylation to Systemic Inflammation. Curr Issues Mol Biol 2024; 46:7430-7446. [PMID: 39057082 PMCID: PMC11275580 DOI: 10.3390/cimb46070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is marked by excessive fat accumulation in the adipose tissue, which disrupts metabolic processes and causes chronic systemic inflammation. Commonly, body mass index (BMI) is used to assess obesity-related risks, predicting potential metabolic disorders. However, for a better clustering of obese patients, we must consider molecular and epigenetic changes which may be responsible for inflammation and metabolic changes. Our study involved two groups of patients, obese and healthy donors, on which routine analysis were performed, focused on BMI, leukocytes count, and C-reactive protein (CRP) and completed with global DNA methylation and gene expression analysis for genes involved in inflammation and adipogenesis. Our results indicate that obese patients exhibited elevated leukocytes levels, along with increased BMI and CRP. The obese group revealed a global hypomethylation and upregulation of proinflammatory genes, with adipogenesis genes following the same trend of being overexpressed. The study confirms that obesity is linked to systematic inflammation and metabolic dysfunction through epigenetic and molecular alterations. The CRP was correlated with the hypomethylation status in obese patients, and this fact may contribute to a better understanding of the roles of specific genes in adipogenesis and inflammation, leading to a better personalized therapy.
Collapse
Affiliation(s)
- Ciprian Cucoreanu
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Robert Szabo
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - George-Calin Dindelegan
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Constatin Ciuce
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Zhou P, Lu K, Li C, Xu MZ, Ye YW, Shan HQ, Yin Y. Association between systemic inflammatory response index and bone turnover markers in Chinese patients with osteoporotic fractures: a retrospective cross-sectional study. Front Med (Lausanne) 2024; 11:1404152. [PMID: 39055700 PMCID: PMC11269153 DOI: 10.3389/fmed.2024.1404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background The systemic inflammatory response index (SIRI) is a novel composite biomarker of inflammation. However, there is limited information on its use in the context of osteoporotic fractures. Hence, this study aimed to investigate the association between baseline SIRI values and bone turnover markers (BTMs) in Chinese patients diagnosed with osteoporotic fractures (OPFs), to offer a more precise method for assessing bone health and inflammation in clinical settings. Methods A retrospective cross-sectional study was conducted on 3,558 hospitalized patients with OPFs who required surgery or hospitalization at the First People's Hospital of Kunshan City from January 2017 to July 2022. Baseline measurements of SIRI, β-CTX (beta-C-terminal telopeptide of type I collagen), and P1NP (procollagen type I N-terminal propeptide) were obtained. The analyses were adjusted for variables, including age, sex, body mass index (BMI), and other initial laboratory and clinical findings. Furthermore, multivariable logistic regression, smooth curve fitting, and threshold analysis were also performed. Results The results revealed a negative correlation between baseline SIRI values and both β-CTX and P1NP levels. After adjusting for covariates in the regression analysis, each unit increase in SIRI was found to be inked to a reduction of 0.04 (β = -0.04; 95% confidence interval [CI], -0.05 to -0.03; with p-value <0.001) in β-CTX levels and a decrease of 3.77 (β = 3.77; 95% CI, 5.07 to 2.47; with p-value <0.001) in P1NP levels. Furthermore, a curvilinear relationship and threshold effect were also identified. Turning points were identified at SIRI values of 1.41 and 1.63 on the adjusted smooth curve. Conclusion The results showed a negative correlation between the baseline SIRI value and β-CTX level, as well as the level of P1NP. This suggests a possible link between the systemic inflammatory response and reduced bone metabolism. If these findings are verified, SIRI has the potential to function as a predictive indicator for BTMs. Nevertheless, additional research is necessary to verify these findings.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yao-wei Ye
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Hui-qiang Shan
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yi Yin
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Fu Y, Xu T, Guo M, Lv W, Ma N, Zhang L. Identification of disulfidptosis- and ferroptosis-related transcripts in periodontitis by bioinformatics analysis and experimental validation. Front Genet 2024; 15:1402663. [PMID: 39045324 PMCID: PMC11263038 DOI: 10.3389/fgene.2024.1402663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Disulfidptosis and ferroptosis are forms of programmed cell death that may be associated with the pathogenesis of periodontitis. Our study developed periodontitis-associated biomarkers combining disulfidptosis and ferroptosis, which provides a new perspective on the pathogenesis of periodontitis. Methods Firstly, we obtained the periodontitis dataset from public databases and found disulfidptosis- and ferroptosis-related differentially expressed transcripts based on the disulfidptosis and ferroptosis transcript sets. After that, transcripts that are tissue biomarkers for periodontitis were found using three machine learning methods. We also generated transcript subclusters from two periodontitis microarray datasets: GSE16134 and GSE23586. Furthermore, three transcripts with the best classification efficiency were further screened. Their expression and classification efficacy were validated using qRT-PCR. Finally, periodontal clinical indicators of 32 clinical patients were collected, and the correlation between three transcripts above and periodontal clinical indicators was analyzed. Results We identified six transcripts that are tissue biomarkers for periodontitis, the top three transcripts with the best classification, and delineated two expression patterns in periodontitis. Conclusions Our study found that disulfidptosis and ferroptosis were associated with immune responses and may involve periodontitis genesis.
Collapse
Affiliation(s)
| | | | | | | | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
47
|
Ledderose C, Valsami EA, Elevado M, Liu Q, Giva B, Curatolo J, Delfin J, Abutabikh R, Junger WG. Impaired ATP hydrolysis in blood plasma contributes to age-related neutrophil dysfunction. Immun Ageing 2024; 21:45. [PMID: 38961477 PMCID: PMC11221114 DOI: 10.1186/s12979-024-00441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The function of polymorphonuclear neutrophils (PMNs) decreases with age, which results in infectious and inflammatory complications in older individuals. The underlying causes are not fully understood. ATP release and autocrine stimulation of purinergic receptors help PMNs combat microbial invaders. Excessive extracellular ATP interferes with these mechanisms and promotes inflammatory PMN responses. Here, we studied whether dysregulated purinergic signaling in PMNs contributes to their dysfunction in older individuals. RESULTS Bacterial infection of C57BL/6 mice resulted in exaggerated PMN activation that was significantly greater in old mice (64 weeks) than in young animals (10 weeks). In contrast to young animals, old mice were unable to prevent the systemic spread of bacteria, resulting in lethal sepsis and significantly greater mortality in old mice than in their younger counterparts. We found that the ATP levels in the plasma of mice increased with age and that, along with the extracellular accumulation of ATP, the PMNs of old mice became increasingly primed. Stimulation of the formyl peptide receptors of those primed PMNs triggered inflammatory responses that were significantly more pronounced in old mice than in young animals. However, bacterial phagocytosis and killing by PMNs of old mice were significantly lower than that of young mice. These age-dependent PMN dysfunctions correlated with a decrease in the enzymatic activity of plasma ATPases that convert extracellular ATP to adenosine. ATPases depend on divalent metal ions, including Ca2+, Mg2+, and Zn2+, and we found that depletion of these ions blocked the hydrolysis of ATP and the formation of adenosine in human blood, resulting in ATP accumulation and dysregulation of PMN functions equivalent to those observed in response to aging. CONCLUSIONS Our findings suggest that impaired hydrolysis of plasma ATP dysregulates PMN function in older individuals. We conclude that strategies aimed at restoring plasma ATPase activity may offer novel therapeutic opportunities to reduce immune dysfunction, inflammation, and infectious complications in older patients.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qing Liu
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Brennan Giva
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Julian Curatolo
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Joshua Delfin
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Reem Abutabikh
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Owczarzak EJ, Abuelo A. Effect of F-isoprostane class on cow peripheral blood neutrophil microbicidal function in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105180. [PMID: 38641186 DOI: 10.1016/j.dci.2024.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils' functional capacity during OS conditions. This should be tested in vivo.
Collapse
Affiliation(s)
- Eric J Owczarzak
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
49
|
Zhou Y, Zhang Y, Li L. Identification of immune subtypes associated with neutrophils in tuberculosis infection based on weighted gene co-expression network analysis. Diagn Microbiol Infect Dis 2024; 109:116322. [PMID: 38677053 DOI: 10.1016/j.diagmicrobio.2024.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is a major global health concern. Neutrophils play a significant role in TB infection and patient outcomes. This study aimed to identify gene modules associated with neutrophil infiltration in TB samples using WGCNA. Gene ontology and enrichment analyses were performed, and a random forest model was constructed to identify differentially expressed genes. K-means clustering was used to classify samples into subtypes, and immune-related scores, PD-L1 expression, HLA expression, and gene enrichment analysis were evaluated. The blue module showed significant correlation with neutrophils and enrichment in immune-related processes. The model exhibited good classification performance, and subtype 1 demonstrated higher immune-related scores, PD-L1 expression, HLA class I molecule expression, and immune-related pathway enrichment. These findings enhance our understanding of TB pathogenesis and provide potential targets for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yingying Zhou
- Respiratory Medicine, Daqing Oilfield General Hospital, Daqing City, 163000, PR China
| | - Yanli Zhang
- General Practice, Da Qing Long Nan Hospital, Daqing City, 163000, PR China
| | - Li Li
- Respiratory Medicine, Daqing Oilfield General Hospital, Daqing City, 163000, PR China.
| |
Collapse
|
50
|
Chen H, Zhang JH, Hao Q, Wu XL, Guo JX, Huang CX, Zhang J, Xing GS, An ZL, Ling Y, Zhao JG, Bao YN. Analysis of tumor microenvironment alterations in partially responsive rectal cancer patients treated with neoadjuvant chemoradiotherapy. Int J Colorectal Dis 2024; 39:99. [PMID: 38926205 PMCID: PMC11208236 DOI: 10.1007/s00384-024-04672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Achieving a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) remains a challenge for most patients with rectal cancer. Exploring the potential of combining NCRT with immunotherapy or targeted therapy for those achieving a partial response (PR) offers a promising avenue to enhance treatment efficacy. This study investigated the impact of NCRT on the tumor microenvironment in locally advanced rectal cancer (LARC) patients who exhibited a PR. METHODS This was a retrospective, observational study. Five patients demonstrating a PR after neoadjuvant treatment for LARC were enrolled in the study. Biopsy samples before treatment and resected specimens after treatment were stained with a panel of 26 antibodies targeting various immune and tumor-related markers, each labeled with distinct metal tags. The labeled samples were then analyzed using the Hyperion imaging system. RESULTS Heterogeneity within the tumor microenvironment was observed both before and after NCRT. Notably, tumor-associated macrophages, CD4 + T cells, CD8 + T cells, CD56 + natural killer cells, tumor-associated neutrophils, cytokeratin, and E-cadherin exhibited slight increase in abundance within the tumor microenvironment following treatment (change ratios = 0.78, 0.2, 0.27, 0.32, 0.17, 0.46, 0.32, respectively). Conversely, the number of CD14 + monocytes, CD19 + B cells, CD45 + CD4 + T cells, collagen I, α-smooth muscle actin, vimentin, and β-catenin proteins displayed significant decreases post-treatment (change ratios = 1.73, 1.92, 1.52, 1.25, 1.52, 1.12, 2.66, respectively). Meanwhile, Foxp3 + regulatory cells demonstrated no significant change (change ratio = 0.001). CONCLUSIONS NCRT has diverse effects on various components of the tumor microenvironment in LARC patients who achieve a PR after treatment. Leveraging combination therapies may optimize treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Hong Chen
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Ji-Hong Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Qin Hao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Lin Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jia-Xing Guo
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Cong-Xiu Huang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jun Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Guo-Sheng Xing
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Zhi-Lin An
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yu Ling
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jian-Guo Zhao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Ying-Na Bao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|