1
|
Dia KKH, Escobar AR, Qin H, Ye F, Jimenez A, Hasan MA, Hajiaghajani A, Dautta M, Li L, Tseng P. Passive Wireless Porous Biopolymer Sensors for At-Home Monitoring of Oil and Fatty Acid Nutrition. ACS APPLIED BIO MATERIALS 2024; 7:5452-5460. [PMID: 39031088 DOI: 10.1021/acsabm.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.
Collapse
Affiliation(s)
- Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Huiting Qin
- Material and Manufacturing Technology Program, University of California, Irvine, California 92617, United States
| | - Fan Ye
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Md Abeed Hasan
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Lei Li
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| |
Collapse
|
2
|
Wu S, Luo H, Zhong J, Su M, Lai X, Zhang Z, Zhou Q. Differential Associations of Erythrocyte Membrane Saturated Fatty Acids with Glycemic and Lipid Metabolic Markers in a Chinese Population: A Cross-Sectional Study. Nutrients 2024; 16:1507. [PMID: 38794744 PMCID: PMC11123842 DOI: 10.3390/nu16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Mounting evidence indicates a complex link between circulating saturated fatty acids (SFAs) and cardiovascular disease (CVD) risk factors, but research on erythrocyte membrane SFA associations with metabolic markers remains limited. Our study sought to investigate the correlations between erythrocyte membrane SFAs and key metabolic markers within glycemic and lipid metabolism in a Chinese population of 798 residents aged 41 to 71 from Guangzhou. Using gas chromatography-mass spectrometry, we assessed the erythrocyte membrane saturated fatty acid profile and performed multiple linear regression to evaluate the relationship between different SFA subtypes and metabolic markers. Our findings revealed that the odd-chain SFA group (C15:0 + C17:0) exhibited negative associations with fasting blood glucose (FBG), homeostatic model assessment for insulin resistance (HOMA-IR), and triglycerides (TG). Conversely, the very-long-chain SFA group (C20:0 + C22:0 + C23:0 + C24:0) exhibited positive associations with fasting insulins (FINS), HOMA-IR, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Furthermore, there was no evidence supporting an association between the even-chain group (C14:0 + C16:0 + C18:0) and metabolic markers. Our findings suggest that different subtypes of SFAs have diverse effects on glycemic and lipid metabolic markers, with odd-chain SFAs associated with a lower metabolic risk. However, the results concerning the correlations between even-chain SFAs and very-long-chain SFAs with markers of glycemic and lipid metabolism pathways are confusing, highlighting the necessity for further exploration and investigation.
Collapse
Affiliation(s)
- Shixin Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, China; (S.W.); (H.L.)
| | - Huiru Luo
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, China; (S.W.); (H.L.)
| | - Juncheng Zhong
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, China; (S.W.); (H.L.)
| | - Mengyang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Xiaoying Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Quan Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, China; (S.W.); (H.L.)
| |
Collapse
|
3
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15061358. [PMID: 36986086 PMCID: PMC10058927 DOI: 10.3390/nu15061358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Soy is rich in plant protein, isoflavones, and polyunsaturated fatty acids. To clarify the associations between soy intake and type 2 diabetes (T2D) and cardiovascular diseases (CVDs) events, we performed a meta-analysis and review. A total of 1963 studies met the inclusion criteria, and 29 articles with 16,521 T2D and 54,213 CVDs events were identified by the eligibility criteria. During a follow-up of 2.5–24 years, the risk of T2D, CVDs, coronary heart disease, and stroke in participants with the highest soy consumption decreased by 17% (total relative risk (TRR) = 0.83, 95% CI: 0.74–0.93), 13% (TRR = 0.87, 95% CI: 0.81–0.94), 21% (TRR = 0.79, 95% CI: 0.71–0.88), and 12% (TRR = 0.88, 95% CI: 0.79–0.99), respectively, compared to the lowest sot consumption. A daily intake of 26.7 g of tofu reduced CVDs risk by 18% (TRR = 0.82, 95% CI: 0.74–0.92) and 11.1 g of natto lowered the risk of CVDs by 17% (TRR = 0.83, 95% CI: 0.78–0.89), especially stroke. This meta-analysis demonstrated that soy consumption was negatively associated with the risks of T2D and CVDs and a specific quantity of soy products was the most beneficial for the prevention of T2D and CVDs. This study has been registered on PROSPERO (registration number: CRD42022360504).
Collapse
|
5
|
Revealing the heat-induced cis-trans isomerization of unsaturated fatty acids in camellia oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Sun Z, Deng Z, Wei X, Wang N, Yang J, Li W, Wu M, Liu Y, He G. Circulating saturated fatty acids and risk of gestational diabetes mellitus: A cross-sectional study and meta-analysis. Front Nutr 2022; 9:903689. [PMID: 35978962 PMCID: PMC9376316 DOI: 10.3389/fnut.2022.903689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have analyzed the associations between the circulating saturated fatty acids (SFAs) and gestational diabetes mellitus (GDM), but no consistent conclusions have been reached. The aim of this study was to evaluate whether plasma SFAs were in correlation with GDM risks in our in-house women cross-sectional study and to better define their associations on the clinical evidence available to date by a dose-response meta-analysis. Methods We carried out a cross-sectional study of 807 pregnant women in 2018–2019 (Shanghai, China). GDM was defined according to the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Gas chromatography was used to determine the plasma fatty acids (FAs) in the 24–28 gestational weeks. The SFAs levels of non-GDM and GDM participants were compared by Mann–Whitney test, and the association between SFAs and GDM was explored by multivariate logistic models. Further, the potential diagnostic value of plasma SFAs was evaluated using the method of receiver operating characteristic (ROC) analysis. For meta-analysis, five databases were systematically searched from inception to March 2022, and we included 25 relevant studies for calculating pooled standard mean differences (SMDs) and 95% CI to describe the differences in SFAs profiles between non-GDM and GDM women. Study-specific, multivariable-adjusted ORs and 95% CI were also pooled using a fixed-effect model or random-effects model according to the heterogeneity to evaluate the associations between circulating SFAs and GDM prevalence. Results In our cross-sectional study, we found plasma proportion of palmitic acid (C16:0) was positively associated (aOR: 1.10 per 1% increase; 95% CI: 1.04, 1.17), while plasma stearic acid (C18:0) (aOR: 0.76 per 1% increase; 95% CI: 0.66, 0.89), arachidic acid (C20:0) (aOR: 0.92 per 0.1% increase; 95% CI: 0.87, 0.97), behenic acid (C22:0) (aOR: 0.94 per 0.1% increase; 95% CI: 0.92, 0.97), and lignoceric acid (C24:0) (aOR: 0.94 per 0.1% increase; 95% CI: 0.92, 0.97) were inversely associated with GDM. The area under the receiver operative characteristic curve increased from 0.7503 (the basic diagnostic model) to 0.8178 (p = 0.002) after adding total very-long-chain SFAs (VLcSFAs). A meta-analysis from 25 studies showed the circulating levels of three individual SFAs of GDM women were different from those of normal pregnant women. The summarized ORs for GDM was 1.593 (95% CI: 1.125, 2.255, p = 0.009), 0.652 (95% CI: 0.472, 0.901, p = 0.010) and 0.613 (95% CI: 0.449, 0.838, p = 0.002), respectively, comparing the highest vs. lowest quantile of the concentrations of C16:0, C22:0, and C24:0. Conclusion Our results, combined with the findings from meta-analysis, showed that women with GDM had a particular circulating SFA profile, characterized by higher levels of palmitic acid, and lower levels of VLcSFAs. Alterations in the chain lengths of blood SFA profile were shown to be associated with the occurrence of GDM.
Collapse
Affiliation(s)
- Zhuo Sun
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Zequn Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Wei
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Na Wang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Nursing Department, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Jiaqi Yang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Min Wu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yuwei Liu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Liu H, Wang F, Liu X, Xie Y, Xia H, Wang S, Sun G. Effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acids on erythrocyte fatty acid composition in type 2 diabetic patients. Lipids Health Dis 2022; 21:20. [PMID: 35144649 PMCID: PMC8832668 DOI: 10.1186/s12944-022-01630-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Dietary fatty acids intake affects the composition of erythrocyte fatty acids, which is strongly correlated with glycolipid metabolism disorders. This study aimed at investigating the different effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acid (n-3 PUFA) on the fatty acids of erythrocytes and glycolipid metabolism in patients with type 2 diabetes mellitus (T2DM). Methods The randomized double-blinded trial that was performed on 180 T2DM patients. The participants were randomly assigned to three groups for the six-month intervention. The participants were randomly assigned to three groups for the six-month intervention. The fish oil (FO) group was administered with FO at a dose of 3 g/day containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the perilla oil (PO) group was administered with PO at a dose of 3 g/day containing α-linolenic (ALA), the linseed and fish oil (LFO) group was administered with mixed linseed and fish oil at a dose of 3 g/day containing EPA, DHA and ALA. Demographic information were collected and anthropometric indices, glucose and lipid metabolism indexes, erythrocyte fatty acid composition were measured. Statistical analyses were performed using two-way ANOVA. Results A total of 150 patients finished the trial, with 52 of them in the FO group, 50 in the PO group and 48 in the LFO group. There were significant effects of time × treatment interaction on fast blood glucose (FBG), insulin, HOMA-IR and C-peptide, TC and triglyceride (TG) levels (P < 0.001). Glucose and C-peptide in PO and LFO groups decreased significantly and serum TG in FO group significantly decreased (P < 0.001) after the intervention. Erythrocyte C22: 5 n-6, ALA, DPA, n-6/n-3 PUFA, AA/EPA levels in the PO group were significantly higher than FO and LFO groups, while EPA, total n-3 PUFA and Omega-3 index were significantly higher in the FO and LFO groups compared to PO group. Conclusion Supplementation with perilla oil decreased FBG while fish oil supplementation decreased the TG level. Marine-based and plant-based n-3 PUFAs exhibit different effects on fatty acid compositions of erythrocytes and regulated glycolipid metabolism. Trial registration This trial was recorded under Chinese Clinical Trial Registry Center (NO: ChiCTR-IOR-16008435) on May 28 2016.
Collapse
Affiliation(s)
- Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Feng Wang
- Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, China
| | - Xiaosong Liu
- Guanlin Hospital, 17 Wenwei Road, Yixing, 214251, China
| | - Yulan Xie
- Zhongda Hospital Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China.
| |
Collapse
|
8
|
Decreased Iron Ion Concentrations in the Peripheral Blood Correlate with Coronary Atherosclerosis. Nutrients 2022; 14:nu14020319. [PMID: 35057500 PMCID: PMC8781549 DOI: 10.3390/nu14020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Obesity and diabetes continue to reach epidemic levels in the population with major health impacts that include a significantly increased risk of coronary atherosclerosis. The imbalance of trace elements in the body caused by nutritional factors can lead to the progression of coronary atherosclerosis. (2) Methods: We measured the concentrations of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), Zinc (Zn), and iron (Fe) in peripheral blood samples from 4243 patients and performed baseline analysis and propensity matching of the patient datasets. The patients were grouped into acute myocardial infarction (AMI, 702 patients) and stable coronary heart disease (SCAD1, 253 patients) groups. Both of these groups were included in the AS that had a total of 1955 patients. The control group consisted of 2288 patients. The plasma concentrations of calcium, magnesium, and iron were measured using a colorimetric method. For comparison, 15 external quality assessment (EQA) samples were selected from the Clinical Laboratory Center of the Ministry of Health of China. SPSS software was used for statistical analysis. The average values and deviations of all of the indicators in each group were calculated, and a p-value threshold of <0.05 was used to indicate statistical significance. (3) Results: The iron ion concentrations of the acute myocardial infarction (AMI) group were significantly lower than the control group (p < 0.05, AUC = 0.724, AUC = 0.702), irrespective of tendency matching. Compared to the data from the stable coronary artery disease (SCAD) group, the concentration of iron ions in the acute myocardial infarction group was significantly lower (p < 0.05, AUC = 0.710, AUC = 0.682). Furthermore, the iron ion concentrations in the (AMI + SCAD) group were significantly lower (p < 0.05) than in the control group. (4) Conclusions: The data presented in this study strongly indicate that the concentration of iron ions in the peripheral blood is related to coronary atherosclerosis. Decreases in the levels of iron ions in the peripheral blood can be used as a predictive biomarker of coronary atherosclerosis.
Collapse
|
9
|
Yu Y, Jin C, Zhao C, Zhu S, Meng S, Ma H, Wang J, Xiang M. Serum Free Fatty Acids Independently Predict Adverse Outcomes in Acute Heart Failure Patients. Front Cardiovasc Med 2022; 8:761537. [PMID: 35004879 PMCID: PMC8727366 DOI: 10.3389/fcvm.2021.761537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Perturbation of energy metabolism exacerbates cardiac dysfunction, serving as a potential therapeutic target in congestive heart failure. Although circulating free fatty acids (FFAs) are linked to insulin resistance and risk of coronary heart disease, it still remains unclear whether circulating FFAs are associated with the prognosis of patients with acute heart failure (AHF). Methods: This single-center, observational cohort study enrolled 183 AHF patients (de novo heart failure or decompensated chronic heart failure) in the Second Affiliated Hospital, Zhejiang University School of Medicine. All-cause mortality and heart failure (HF) rehospitalization within 1 year after discharge were investigated. Serum FFAs were modeled as quartiles as well as a continuous variable (per SD of FFAs). The restricted cubic splines and cox proportional hazards models were applied to evaluate the association between the serum FFAs level and all-cause mortality or HF rehospitalization. Results: During a 1-year follow-up, a total of 71 (38.8%) patients had all-cause mortality or HF rehospitalization. The levels of serum FFAs positively contributed to the risk of death or HF rehospitalization, which was not associated with the status of insulin resistance. When modeled with restricted cubic splines, the serum FFAs increased linearly for the incidence of death or HF rehospitalization. In a multivariable analysis adjusting for sex, age, body-mass index, coronary artery disease, diabetes mellitus, hypertension, left ventricular ejection fraction and N-terminal pro-brain natriuretic peptid, each SD (303.07 μmol/L) higher FFAs were associated with 26% higher risk of death or HF rehospitalization (95% confidence interval, 2–55%). Each increasing quartile of FFAs was associated with differentially elevated hazard ratios for death or HF rehospitalization of 1 (reference), 1.71 (95% confidence interval, [0.81, 3.62]), 1.41 (95% confidence interval, [0.64, 3.09]), and 3.18 (95% confidence interval, [1.53, 6.63]), respectively. Conclusion: Serum FFA levels at admission among patients with AHF were associated with an increased risk of adverse outcomes. Additional studies are needed to determine the causal-effect relationship between FFAs and acute cardiac dysfunction and whether FFAs could be a potential target for AHF management.
Collapse
Affiliation(s)
- Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunna Jin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchen Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|