1
|
Vorstman J, Sebat J, Bourque VR, Jacquemont S. Integrative genetic analysis: cornerstone of precision psychiatry. Mol Psychiatry 2025; 30:229-236. [PMID: 39215185 DOI: 10.1038/s41380-024-02706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The role of genetic testing in the domain of neurodevelopmental and psychiatric disorders (NPDs) is gradually changing from providing etiological explanation for the presence of NPD phenotypes to also identifying young individuals at high risk of developing NPDs before their clinical manifestation. In clinical practice, the latter implies a shift towards the availability of individual genetic information predicting a certain liability to develop an NPD (e.g., autism, intellectual disability, psychosis etc.). The shift from mostly a posteriori explanation to increasingly a priori risk prediction is the by-product of the systematic implementation of whole exome or genome sequencing as part of routine diagnostic work-ups during the neonatal and prenatal periods. This rapid uptake of genetic testing early in development has far-reaching consequences for psychiatry: Whereas until recently individuals would come to medical attention because of signs of abnormal developmental and/or behavioral symptoms, increasingly, individuals are presented based on genetic liability for NPD outcomes before NPD symptoms emerge. This novel clinical scenario, while challenging, also creates opportunities for research on prevention interventions and precision medicine approaches. Here, we review why optimization of individual risk prediction is a key prerequisite for precision medicine in the sphere of NPDs, as well as the technological and statistical methods required to achieve this ambition.
Collapse
Affiliation(s)
- Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jonathan Sebat
- Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, University of California San Diego, San Diego, CA, USA
| | - Vincent-Raphaël Bourque
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Friligkou E, Løkhammer S, Cabrera-Mendoza B, Shen J, He J, Deiana G, Zanoaga MD, Asgel Z, Pilcher A, Di Lascio L, Makharashvili A, Koller D, Tylee DS, Pathak GA, Polimanti R. Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study. Nat Genet 2024; 56:2036-2045. [PMID: 39294497 DOI: 10.1038/s41588-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
We leveraged information from more than 1.2 million participants, including 97,383 cases, to investigate the genetics of anxiety disorders across five continental groups. Through ancestry-specific and cross-ancestry genome-wide association studies, we identified 51 anxiety-associated loci, 39 of which were novel. In addition, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, admixed American and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, cerebral cortex, cerebellum, metencephalon, entorhinal cortex and brain stem. Transcriptome-wide and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. Anxiety also showed global and local genetic correlations with depression, schizophrenia and bipolar disorder and widespread pleiotropy with several physical health domains. Overall, this study expands our knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.
Collapse
Affiliation(s)
- Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jie Shen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun He
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Giovanni Deiana
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Mihaela Diana Zanoaga
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Zeynep Asgel
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York Metropolitan Area, New York, NY, USA
| | - Abigail Pilcher
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Luciana Di Lascio
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy; Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ana Makharashvili
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
4
|
Ansari MA, Naqvi HA, Khidri FF, Rajput AH, Mahmood A, Waryah AM. Gene-gene and gene-environmental interaction of dopaminergic system genes in Pakistani children with attention deficit hyperactivity disorder. Saudi J Biol Sci 2024; 31:104045. [PMID: 39050560 PMCID: PMC11268355 DOI: 10.1016/j.sjbs.2024.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder influenced by genetic and environmental factors. This study examined the specific gene variants, dopamine transporter 1 (DAT1) rs6350, dopamine receptor D3 (DRD3) rs6280, dopamine receptor D2 (DRD2) rs6277, and catechol-O-methyltransferase (COMT) rs4633, in relation to ADHD among Pakistani children by exploring the potential gene-gene and gene-environment interactions. Methods A total of 100 cases of ADHD and 100 healthy children were recruited. The tetra-primer amplification refractory mutation system (ARMS) assays were designed for genotyping the selected variants in both groups, and their association with ADHD was determined in different genetic models. Gene-gene and gene-environmental interactions were determined by the multifactor dimensionality reduction (MDR) method. Results The DAT1 rs6350 SNV AA genotype showed a significantly increased risk for ADHD in the codominant and recessive models. Conversely, the AG genotype demonstrated a protective factor for ADHD in the codominant and overdominant models. The DRD3 rs6280 T allele exhibited a decreased risk for ADHD, and the TT genotype showed a reduced risk in the recessive and log-additive models. No association between the DRD2 rs6277 and COMT rs4633 SNVs with ADHD was found in our population. The MDR analysis of the best three-fold interaction model showed redundancy between DAT1 rs6350 and DRD3 rs6280; however, the risk was increased with the gender variable, which showed a weak synergistic interaction with these SNVs. Conclusion Genes associated with dopaminergic neurotransmission may contribute to the occurrence of ADHD. Furthermore, gene-gene and gene-environmental interactions may increase ADHD susceptibility.
Collapse
Affiliation(s)
- Moin Ahmed Ansari
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Habib Ahmed Naqvi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Feriha Fatima Khidri
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Aatir Hanif Rajput
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ambar Mahmood
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Muhammad Waryah
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
5
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Friligkou E, Løkhammer S, Cabrera-Mendoza B, Shen J, He J, Deiana G, Zanoaga MD, Asgel Z, Pilcher A, Di Lascio L, Makharashvili A, Koller D, Tylee DS, Pathak GA, Polimanti R. Gene Discovery and Biological Insights into Anxiety Disorders from a Multi-Ancestry Genome-wide Association Study of >1.2 Million Participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302836. [PMID: 38405718 PMCID: PMC10889004 DOI: 10.1101/2024.02.14.24302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We leveraged information from more than 1.2 million participants to investigate the genetics of anxiety disorders across five continental ancestral groups. Ancestry-specific and cross-ancestry genome-wide association studies identified 51 anxiety-associated loci, 39 of which are novel. Additionally, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, Admixed-American, and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, the cerebral cortex, the cerebellum, the metencephalon, the entorhinal cortex, and the brain stem. Transcriptome- and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. We also observed global and local genetic correlations with depression, schizophrenia, and bipolar disorder and putative causal relationships with several physical health conditions. Overall, this study expands the knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.
Collapse
|
7
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
8
|
Ribasés M, Mitjans M, Hartman CA, Soler Artigas M, Demontis D, Larsson H, Ramos-Quiroga JA, Kuntsi J, Faraone SV, Børglum AD, Reif A, Franke B, Cormand B. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes. Neurosci Biobehav Rev 2023; 153:105313. [PMID: 37451654 PMCID: PMC10789879 DOI: 10.1016/j.neubiorev.2023.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
Collapse
Affiliation(s)
- M Ribasés
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Mitjans
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain
| | - C A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Soler Artigas
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - D Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - H Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J A Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - A D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - B Franke
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - B Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Kuś J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpędek-Kamińska W, Kucharska-Lusina A, Strzelecki D, Majsterek I. Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis. Int J Mol Sci 2023; 24:12983. [PMID: 37629164 PMCID: PMC10454781 DOI: 10.3390/ijms241612983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.
Collapse
Affiliation(s)
- Justyna Kuś
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Maria Czerniawska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| |
Collapse
|
10
|
Kranz TM, Grimm O. Update on genetics of attention deficit/hyperactivity disorder: current status 2023. Curr Opin Psychiatry 2023; 36:257-262. [PMID: 36728054 DOI: 10.1097/yco.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Attention deficit/hyperactivity disorder (ADHD) shows consistently high heritability in genetic research. In this review article, we give an overview of the analysis of common and rare variants and some insight into current genetic methodology and their link to clinical practice. RECENT FINDINGS The heritability of about 80% is also high in comparison to other psychiatric diseases. However, recent studies estimate the proportion of heritability based on single nucleotide variants at 22%. The hidden heritability is an ongoing question in ADHD genetics. Common variants derived from mega genome-wide association analyses (GWAS) and subsequent meta-analyses usually display small effect sizes and explain only a small fraction of phenotypic variance. Rare variants, on the contrary, not only display large effect sizes but also rather explain, due to their rareness, a small fraction on phenotypic variance. Applying polygenic risk score (PRS) analysis is an improved approach of combining effect sizes of many common variants with clinically relevant measures in ADHD. SUMMARY We provide a concise overview on how genetic analysis, with a focus on GWAS and PRS, can help explain different behavioural phenotypes in ADHD and how they can be used for diagnosis and therapy prediction. Increased sample sizes of GWAS, meta-analyses and use of PRS is increasingly informative and sets the course for a new era in genetics of ADHD.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | | |
Collapse
|
11
|
Nguyen K, Boehling J, Tran MN, Cheng T, Rivera A, Collins-Burow BM, Lee SB, Drewry DH, Burow ME. NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types. Cancers (Basel) 2023; 15:2067. [PMID: 37046733 PMCID: PMC10093199 DOI: 10.3390/cancers15072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The Never in Mitosis Gene A (NIMA)-related kinases (NEKs) are a group of serine/threonine kinases that are involved in a wide array of cellular processes including cell cycle regulation, DNA damage repair response (DDR), apoptosis, and microtubule organization. Recent studies have identified the involvement of NEK family members in various diseases such as autoimmune disorders, malignancies, and developmental defects. Despite the existing literature exemplifying the importance of the NEK family of kinases, this family of protein kinases remains understudied. This report seeks to provide a foundation for investigating the role of different NEKs in malignancies. We do this by evaluating the 11 NEK family kinase gene expression associations with patients' overall survival (OS) from various cancers using the Kaplan-Meier Online Tool (KMPlotter) to correlate the relationship between mRNA expression of NEK1-11 in various cancers and patient survival. Furthermore, we use the Catalog of Somatic Mutations in Cancer (COSMIC) database to identify NEK family mutations in cancers of different tissues. Overall, the data suggest that the NEK family has varying associations with patient survival in different cancers with tumor-suppressive and tumor-promoting effects being tissue-dependent.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Julia Boehling
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Minh N. Tran
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas Cheng
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew Rivera
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David H. Drewry
- UNC Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Haavik J. Genome Guided Personalized Drug Therapy in Attention Deficit Hyperactivity Disorder. Front Psychiatry 2022; 13:925442. [PMID: 35832601 PMCID: PMC9271625 DOI: 10.3389/fpsyt.2022.925442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
ADHD is a common behavioral syndrome with a heritability of 70-80%. Genome wide sequencing and association studies indicate that ADHD risk variants are distributed across a wide range of allele frequencies and relative risks. Several common single nucleotide variants (SNPs) have been identified that increase the risk of ADHD with a few percent. Many of the reported risk genes and copy number variants are shared with other neuropsychiatric disorders. Moreover, ADHD often coexists with common or rare somatic diseases, including rare Mendelian neurometabolic diseases that can affect normal brain development and function. Some genetic/metabolic syndromes masquerading as common ADHD may lead to irreversible brain damage if not properly identified and treated during early childhood. As ADHD is such a heterogeneous condition in terms of severity, clinical features and most probably also underlying biology, it is crucial to offer individualized treatments. Recent progress in ADHD genetics is reviewed, prospects of using this information for targeted pharmacotherapy are discussed and critical knowledge gaps are identified. It is suggested that genome guided therapies could be introduced gradually, starting with rare ADHD syndromes with highly penetrant risk genes. Routine diagnostic application of whole exome or whole genome sequencing combined with metabolomic screening, and brain imaging may be needed in cases with suspected neurometabolic disorders. Identification and treatment of ADHD patients with defined neurometabolic aberrations could be a first step toward genome guided personalized treatment of ADHD. Possibly, screening for relevant biomarkers may gradually be implemented to guide treatment choices in larger patient groups.
Collapse
Affiliation(s)
- Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Borgio JF. Heterogeneity in biomarkers, mitogenome and genetic disorders of the Arab population with special emphasis on large-scale whole-exome sequencing. Arch Med Sci 2021; 19:765-783. [PMID: 37313193 PMCID: PMC10259412 DOI: 10.5114/aoms/145370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 09/20/2024] Open
Abstract
More than 25 million DNA variations have been discovered as novel including major alleles from the Arab population. Exome studies on the Saudi genome discovered > 3000 novel nucleotide variants associated with > 1200 rare genetic disorders. Reclassification of many pathogenic variants in the Human Gene Mutation Database and ClinVar Database as benign through the Arab database facilitates building a detailed and comprehensive map of the human morbid genome. Intellectual disability comes first with the combined and observed carrier frequency of 0.06779 among Saudi Arabians; retinal dystrophy is the next highest. Genome studies have discovered interesting novel candidate disease marker variations in many genes from consanguineous families. More than 7 pathogenic variants in the C12orf57 gene are prominently associated with the etiology of developmental delay/intellectual impairment in Arab ancestries. Advances in large-scale genome studies open a new outlook on Mendelian genes and disorders. In the past half-dozen years, candidate genes of intellectual disability, neurogenetic disorders, blood and bleeding disorders and rare genetic diseases have been well documented through genomic medicine studies in combination with advanced computational biology applications. The Arab mitogenome exposed hundreds of variations in the mtDNA genome and ancestral sharing with Africa, the Near East and East Asia and its association with obesity. These recent discoveries in disease markers and molecular genetics of the Arab population will have a positive impact towards supporting genetic counsellors on reaching consanguineous families to manage stress linked to genetics and precision medicine. This narrative review summarizes the advances in molecular medical genetics and recent discoveries on pathogenic variants. Despite the fact that these initiatives are targeting the genetics and genomics of disorders prevalent in Arab populations, a lack of complete cooperation across the projects needed to be revisited to uncover the Arab population's prominent disease markers. This shows that further study is needed in genomics to fully comprehend the molecular abnormalities and associated pathogenesis that cause inherited disorders in Arab ancestries.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Dahawi M, Elmagzoub MS, A. Ahmed E, Baldassari S, Achaz G, Elmugadam FA, Abdelgadir WA, Baulac S, Buratti J, Abdalla O, Gamil S, Alzubeir M, Abubaker R, Noé E, Elsayed L, Ahmed AE, Leguern E. Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy. Front Neurol 2021; 12:738272. [PMID: 34744978 PMCID: PMC8567843 DOI: 10.3389/fneur.2021.738272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed S. Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Elhami A. Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- SMILE Group, CIRB, Collège de France, CNRS, INSERM, Paris, France
- Éco-anthropologie, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | | | - Wasma A. Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Julien Buratti
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| | - Omer Abdalla
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sahar Gamil
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Alzubeir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Rayan Abubaker
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, Paris, France
| | - Liena Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar E. Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, Adhikari K, De Angelis F, Tylee DS, Goswami A, Krystal JH, Abdallah CG, Stein MB, Kranzler HR, Gelernter J, Polimanti R. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol Stress 2021; 14:100309. [PMID: 33665242 PMCID: PMC7905234 DOI: 10.1016/j.ynstr.2021.100309] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Epidemiologic studies recognize that trauma and posttraumatic stress are associated with heightened suicidal behavior severity, yet examination of these associations from a genetic perspective is limited. We performed a multivariate gene-by-environment genome-wide interaction study (GEWIS) of suicidality in 123,633 individuals using a covariance matrix based on 26 environments related to traumatic experiences, posttraumatic stress, social support, and socioeconomic status. We discovered five suicidality risk loci, including the male-associated rs2367967 (CWC22), which replicated in an independent cohort. All GEWIS-significant loci exhibited interaction effects where at least 5% of the sample had environmental profiles conferring opposite SNP effects from the majority. We identified PTSD as a primary driving environment for GxE at suicidality risk loci. The male suicidality GEWIS was enriched for three middle-temporal-gyrus inhibitory neuron transcriptomic profiles: SCUBE- and PVALB-expressing cells (β = 0.028, p = 3.74 × 10-4), OPRM1-expressing cells (β = 0.030, p = 0.001), and SPAG17-expressing cells (β = 0.029, p = 9.80 × 10-4). Combined with gene-based analyses (CNTN5 p association = 2.38 × 10-9, p interaction = 1.51 × 10-3; PSMD14 p association = 2.04 × 10-7, p interaction = 7.76 × 10-6; HEPACAM p association = 2.43 × 10-6, p interaction = 3.82 × 10-7) including information about brain chromatin interaction profiles (UBE2E3 in male neuron p = 1.07 × 10-5), our GEWIS points to extracellular matrix biology and synaptic plasticity as biological interactors with the effects of potentially modifiable lifetime traumatic experiences on genetic risk for suicidality. Characterization of molecular basis for the effects of traumatic experience and posttraumatic stress on risk of suicidal behaviors may help to identify novel targets for which more effective treatments can be developed for use in high-risk populations.
Collapse
Affiliation(s)
- Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Yaira Z. Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven CT, 06520, USA
| | - Chelsea Tyrrell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel S. Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| |
Collapse
|