1
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2024:1-18. [PMID: 39686770 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
2
|
Sher EK, Kalić A, Džidić-Krivić A, Zećo MB, Pinjić E, Sher F. Cellular therapeutic potential of genetically engineered stem cells in cancer treatment. Biotechnol Genet Eng Rev 2024; 40:4062-4097. [PMID: 37132363 DOI: 10.1080/02648725.2023.2204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Traditional therapeutic approaches in the treatment of cancer have many side effects and are often ineffective and non-specific, leading to the development of therapy-resistant tumour cells. Recently, numerous discoveries about stem cells have given a new outlook on their application in oncology. Stem cells are unique because of their biological attributes, including self-renewal, differentiation in different types of specialized cells and synthesis of molecules that interplay with tumour niche. They are already used as an effective therapeutic option for haematological malignancies, such as multiple myeloma and leukaemia. The main goal of this study is to investigate the possible applications of different types of stem cells in cancer treatment and to summarize novel advances, as well as the limitations of their application in cancer treatment. Research and clinical trials that are underway revealed and confirmed the enormous potential of regenerative medicine in the treatment of cancer, especially when combined with different nanomaterials. Nanoengineering of stem cells has been the focus of novel studies in the area of regenerative medicine, such as the production of nanoshells and nanocarriers that enhance the transport and uptake of stem cells in their targeted tumour niche and enable the effective monitoring of stem cell effects on tumour cells. Although nanotechnology has a lot of limitations, it provides new opportunities for the development of effective and innovative stem cell therapies.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Azra Kalić
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, UK
- Department of Neurology, Cantonal Hospital Zenica, Zenica, Bosnia and Herzegovina
| | - Merima Beća- Zećo
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Emma Pinjić
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
3
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
4
|
Shamsul Kamal AA, Fakiruddin KS, Bobbo KA, Ling KH, Vidyadaran S, Abdullah S. Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges. Malays J Med Sci 2024; 31:56-82. [PMID: 39416732 PMCID: PMC11477465 DOI: 10.21315/mjms2024.31.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
The insufficient and unspecific target of classical chemotherapies often leads to therapy resistance and cancer recurrence. Over the past decades, discoveries about mesenchymal stem cell (MSC) biology have provided new potential approaches to improve cancer therapy. Researchers have utilised the multipotent, regenerative and immunosuppressive qualities of MSCs and tropisms towards inflammatory, hypoxic and malignant sites in various therapeutic applications. Although MSC-based therapies have generally been demonstrated safe, their effectiveness remains limited when these cells are used alone. However, through genetic engineering, researchers have proven that MSCs can be modified to have specialised delivery roles to increase their therapeutic efficacy in cancer treatment. They can be made to overexpress therapeutic proteins through viral or non-viral genetic modification, which enhances their innate properties. Nevertheless, these engineering strategies must be optimised to increase therapeutic efficacy and targeting effectiveness while minimising any loss of MSC function. This review underscores the cutting-edge methods for engineering MSCs, discusses their promise and the difficulties in translating them into clinical settings, and offers some prospective suggestions for the future on achieving their full therapeutic potential.
Collapse
Affiliation(s)
- Aishah Amirah Shamsul Kamal
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Khadijat Abubakar Bobbo
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - King Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Caicedo A, Morales E, Moyano A, Peñaherrera S, Peña-Cisneros J, Benavides-Almeida A, Pérez-Meza ÁA, Haro-Vinueza A, Ruiz C, Robayo P, Tenesaca D, Barba D, Zambrano K, Castañeda V, Singh KK. Powering prescription: Mitochondria as "Living Drugs" - Definition, clinical applications, and industry advancements. Pharmacol Res 2024; 199:107018. [PMID: 38013162 DOI: 10.1016/j.phrs.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria's role as engines and beacons of metabolism and determinants of cellular health is being redefined through their therapeutic application as "Living Drugs" (LDs). Artificial mitochondrial transfer/transplant (AMT/T), encompassing various techniques to modify, enrich, or restore mitochondria in cells and tissues, is revolutionizing acellular therapies and the future of medicine. This article proposes a necessary definition for LDs within the Advanced Therapeutic Medicinal Products (ATMPs) framework. While recognizing different types of LDs as ATMPs, such as mesenchymal stem cells (MSCs) and chimeric antigen receptor T (CAR T) cells, we focus on mitochondria due to their unique attributes that distinguish them from traditional cell therapies. These attributes include their inherent living nature, diverse sources, industry applicability, validation, customizability for therapeutic needs, and their capability to adapt and respond within recipient cells. We trace the journey from initial breakthroughs in AMT/T to the current state-of-the-art applications by emerging innovative companies, highlighting the need for manufacturing standards to navigate the transition of mitochondrial therapies from concept to clinical practice. By providing a comprehensive overview of the scientific, clinical, and commercial landscape of mitochondria as LDs, this article contributes to the essential dialogue among regulatory agencies, academia, and industry to shape their future in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Emilia Morales
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Aldana Moyano
- Mito-Act Research Consortium, Quito, Ecuador; Instituto de investigaciones biotecnológicas IIB, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sebastian Peñaherrera
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - José Peña-Cisneros
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Abigail Benavides-Almeida
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Álvaro A Pérez-Meza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | | | - Doménica Tenesaca
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Han P, Moran CS, Liu C, Griffiths R, Zhou Y, Ivanovski S. Engineered adult stem cells: Current clinical trials status of disease treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:33-62. [PMID: 37678978 DOI: 10.1016/bs.pmbts.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Regenerative medicine is an interdisciplinary field involving the process of replacing and regenerating cells/tissues or organs by integrating medicine, science, and engineering principles to enhance the intrinsic regenerative capacity of the host. Recently, engineered adult stem cells have gained attention for their potential use in regenerative medicine by reducing inflammation and modulating the immune system. This chapter introduces adult stem cell engineering and chimeric antigen receptor T cells (CAR T) gene therapy and summarises current engineered stem cell- and extracellular vesicles (EVs)-focused clinical trial studies that provide the basis for the proposal of a personalised medicine approach to diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Corey Stephan Moran
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Chun Liu
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | | | - Yinghong Zhou
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Sašo Ivanovski
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Go YY, Lee CM, Chae SW, Song JJ. Regenerative capacity of trophoblast stem cell-derived extracellular vesicles on mesenchymal stem cells. Biomater Res 2023; 27:62. [PMID: 37370189 DOI: 10.1186/s40824-023-00396-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) are therapeutic for clinical applications because of their excellent immunomodulatory and multiple lineage differentiation abilities at tissue injury sites. However, insufficient number of cells and lack of regenerative properties during in vitro expansion still limit the clinical applicability of MSC therapies. Here, we demonstrated a preconditioning strategy with trophoblast stem cell-derived extracellular vesicles (TSC-EVs) to boost the proliferation and regenerative capacity of MSCs. METHODS We employed cell proliferation analyses such as CCK8 and BrdU assays to determine the proliferation-promoting role of TSC-EVs on MSCs. Osteogenic effects of TSC-EVs on MSCs were assessed by alkaline phosphatase (ALP) activity, calcium assays, and calvarial bone defect animal models. For skin regenerative effects, skin wound mice model was exploited to analyze wound-healing rate in this study, as well as immunofluorescence and histological staining evaluates. We also performed the small RNA profiling and RNA-sequencing analyzes to understand the cellular mechanism of TSC-EVs on MSCs. RESULTS TSC-EVs significantly promoted MSC proliferation under xeno-free conditions and facilitated the therapeutic effects of MSCs, including osteogenesis, anti-senescence, and wound healing. Transcriptomic analysis also provided evidence that specific microRNAs in TSC-EVs and differentially expressed genes (DEGs) in TSC-EV-treated MSCs showed the possibility of TSC-EVs triggering the regenerative abilities of MSCs with cytokine interaction. Hence, we found that NGF/Akt signaling mediated the regenerative effects of TSC-EVs on MSCs as a particular cellular signaling pathway. CONCLUSION The results of this study demonstrated the functional properties of TSC-EVs on MSCs for MSC-based therapeutic applications, suggesting that TSC-EVs may serve as a potential preconditioning source for MSC therapy in the clinical field of regenerative medicine.
Collapse
Affiliation(s)
- Yoon-Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Chan-Mi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea.
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
8
|
Kushioka J, Toya M, Shen H, Hirata H, Zhang N, Huang E, Tsubosaka M, Gao Q, Teissier V, Li X, Utsunomiya T, Goodman SB. Therapeutic effects of MSCs, genetically modified MSCs, and NFĸB-inhibitor on chronic inflammatory osteolysis in aged mice. J Orthop Res 2023; 41:1004-1013. [PMID: 36031590 PMCID: PMC9971358 DOI: 10.1002/jor.25434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-ĸB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-ĸB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17 months old) for 6 weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared with the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Lopez-Yus M, García-Sobreviela MP, del Moral-Bergos R, Arbones-Mainar JM. Gene Therapy Based on Mesenchymal Stem Cells Derived from Adipose Tissue for the Treatment of Obesity and Its Metabolic Complications. Int J Mol Sci 2023; 24:7468. [PMID: 37108631 PMCID: PMC10138576 DOI: 10.3390/ijms24087468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a highly prevalent condition often associated with dysfunctional adipose tissue. Stem cell-based therapies have become a promising tool for therapeutic intervention in the context of regenerative medicine. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are the most easily obtained, have immunomodulatory properties, show great ex vivo expansion capacity and differentiation to other cell types, and release a wide variety of angiogenic factors and bioactive molecules, such as growth factors and adipokines. However, despite the positive results obtained in some pre-clinical studies, the actual clinical efficacy of ADMSCs still remains controversial. Transplanted ADMSCs present a meager rate of survival and proliferation, possibly because of the damaged microenvironment of the affected tissues. Therefore, there is a need for novel approaches to generate more functional ADMSCs with enhanced therapeutic potential. In this context, genetic manipulation has emerged as a promising strategy. In the current review, we aim to summarize several adipose-focused treatments of obesity, including cell therapy and gene therapy. Particular emphasis will be given to the continuum from obesity to metabolic syndrome, diabetes, and underlying non-alcoholic fatty liver disease (NAFLD). Furthermore, we will provide insights into the potential shared adipocentric mechanisms involved in these pathophysiological processes and their remediation using ADMSCs.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Maria Pilar García-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Raquel del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Nistor-Cseppentö DC, Jurcău MC, Jurcău A, Andronie-Cioară FL, Marcu F. Stem Cell- and Cell-Based Therapies for Ischemic Stroke. Bioengineering (Basel) 2022; 9:717. [PMID: 36421118 PMCID: PMC9687728 DOI: 10.3390/bioengineering9110717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2023] Open
Abstract
Stroke is the second cause of disability worldwide as it is expected to increase its incidence and prevalence. Despite efforts to increase the number of patients eligible for recanalization therapies, a significant proportion of stroke survivors remain permanently disabled. This outcome boosted the search for efficient neurorestorative methods. Stem cells act through multiple pathways: cell replacement, the secretion of growth factors, promoting endogenous reparative pathways, angiogenesis, and the modulation of neuroinflammation. Although neural stem cells are difficult to obtain, pose a series of ethical issues, and require intracerebral delivery, mesenchymal stem cells are less immunogenic, are easy to obtain, and can be transplanted via intravenous, intra-arterial, or intranasal routes. Extracellular vesicles and exosomes have similar actions and are easier to obtain, also allowing for engineering to deliver specific molecules or RNAs and to promote the desired effects. Appropriate timing, dosing, and delivery protocols must be established, and the possibility of tumorigenesis must be settled. Nonetheless, stem cell- and cell-based therapies for stroke have already entered clinical trials. Although safe, the evidence for efficacy is less impressive so far. Hopefully, the STEP guidelines and the SPAN program will improve the success rate. As such, stem cell- and cell-based therapy for ischemic stroke holds great promise.
Collapse
Affiliation(s)
- Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | - Anamaria Jurcău
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Felicia Liana Andronie-Cioară
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Shen N, Qi X, Bagrov DV, Krechetov SP, Sharapov MG, Durymanov MO. Surface modification of fibroblasts with peroxiredoxin-1-loaded polymeric microparticles increases cell mobility, resistance to oxidative stress and collagen I production. Colloids Surf B Biointerfaces 2022; 219:112834. [PMID: 36152599 DOI: 10.1016/j.colsurfb.2022.112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Modification of the cell surface with artificial nano- and microparticles (also termed "cellular backpacks") containing biologically active payloads usually enables drug targeting via harnessing intrinsic cell tropism to the sites of injury. In some cases, using cells as delivery vehicles leads to improved pharmacokinetics due to extended circulation time of cell-immobilized formulations. Another rationale for particle attachment to cells is augmentation of desirable cellular functions and cell proliferation in response to release of the particle contents. In this study, we conjugated poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with multifunctional antioxidant enzyme peroxiredoxin-1 (Prx1) to the surface of fibroblasts. The obtained microparticles were uniform in size and demonstrated sustained protein release. We found that the released Prx1 maintains its signaling activity resulting in macrophage activation, as indicated by TNFα upregulation and increase in ROS generation. Functionalization of fibroblasts with PLGA/Prx1 microparticles via EDC/sulfo-NHS coupling reaction did not affect cell viability but increased cell migratory properties and collagen I production. Moreover, PLGA/Prx1 backpacks increased resistance of fibroblasts to oxidative stress and attenuated cell senescence. In summary, we have developed a novel approach of fibroblast modification to augment their biological properties, which can be desirable for wound repair, cosmetic dermatology, and tissue engineering.
Collapse
Affiliation(s)
- Ningfei Shen
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Xiaoli Qi
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitry V Bagrov
- Faculty of Biology, Moscow State University, Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sergey P Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Mikhail O Durymanov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| |
Collapse
|
12
|
Shi L, Zhang Z, Deng M, Zheng F, Liu W, Ye S. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure. Medicine (Baltimore) 2022; 101:e30013. [PMID: 35960112 PMCID: PMC9371578 DOI: 10.1097/md.0000000000030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Premature ovarian failure (POF), also known as primary ovarian insufficiency (POI), refers to the loss of ovarian function in women after puberty and before the age of 40 characterized by high serum gonadotropins and low estrogen, irregular menstruation, amenorrhea, and decreased fertility. However, the specific pathogenesis of POF is unexplained, and there is no effective therapy for its damaged ovarian tissue structure and reduced reserve function. Mesenchymal stem cells (MSCs), with multidirectional differentiation potential and self-renewal ability, as well as the cytokines and exosomes they secrete, have been studied and tested to play an active therapeutic role in a variety of degenerative pathologies, and MSCs are the most widely used stem cells in regenerative medicine. MSCs can reverse POI and enhance ovarian reserve function through differentiation into granulosa cells (GCs), immune regulation, secretion of cytokines and other nutritional factors, reduction of GCs apoptosis, and promotion of GCs regeneration. Many studies have proved that MSCs may have a restorative effect on the structure and fertility of injured ovarian tissues and turn to be a useful clinical approach to the treatment of patients with POF in recent years. We intend to use MSCs-based therapy to completely reverse POI in the future.
Collapse
Affiliation(s)
- Lan Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Miao Deng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fangyuan Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenhua Liu
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Shujin Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Wang L, Gao T, Li Y, Xie Y, Zeng S, Tai C, Feng Y, Shen P, Wang B. A long-term anti-inflammation markedly alleviated high-fat diet-induced obesity by repeated administrations of overexpressing IL10 human umbilical cord-derived mesenchymal stromal cells. Stem Cell Res Ther 2022; 13:259. [PMID: 35715850 PMCID: PMC9204983 DOI: 10.1186/s13287-022-02935-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Obesity is a chronic process and could activate various inflammatory responses, which in turn aggravates obesity and related metabolic syndrome. Here we explored whether long-term inhibition of inflammation could successfully alleviate high-fat diet (HFD)-induced obesity. Methods We constructed stable overexpressing interleukin 10 (IL10) human umbilical cord-derived mesenchymal stromal cells (HUCMSCs) which repeatedly were applied to obesity mice with HFD feeding to obtain a long-term anti-inflammation based on the prominent anti-inflammation effects of IL10 and immunomodulatery effects of HUCMSCs. Then we monitored the features of obesity including body weight, serum ALT, AST, and lipids. In addition, glucose homeostasis was determined by glucose tolerance and insulin sensitivity tests. The infiltrated macrophages in adipose tissues and hepatic lipid accumulation were detected, and the expressions of adipogenesis and inflammatory genes in adipose tissues were examined by real-time (RT) PCR and western blot analysis. Results Compared with HUCMSCs, IL10-HUCMSCs treatment had much better anti-obesity effects including body weight reduction, less hepatic lipids accumulation, lower amount and size of adipocyte, greater glucose tolerance, less systemic insulin resistance, and less adipose tissue inflammation in HFD feeding mice. Finally, IL10-HUCMSCs could decrease the activation of MAPK JNK of adipose tissue induced by HFD. The inhibition of MAPK JNK signal pathway by a small chemical molecule SP600125 in 3T3-L1 cells, a preadipocyte line, reduced the differentiation of adipocytes and lipid droplet accumulation. Conclusion A lasting anti-inflammation based on gene modified stem cell therapy is an effective strategy in preventing diet-induced obesity and obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Sheng Zeng
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yirui Feng
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China. .,College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Wang L, Gu S, Gan J, Tian Y, Zhang F, Zhao H, Lei D. Neural Stem Cells Overexpressing Nerve Growth Factor Improve Functional Recovery in Rats Following Spinal Cord Injury via Modulating Microenvironment and Enhancing Endogenous Neurogenesis. Front Cell Neurosci 2021; 15:773375. [PMID: 34924958 PMCID: PMC8675903 DOI: 10.3389/fncel.2021.773375] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event characterized by severe motor, sensory, and autonomic dysfunction. Currently, there is no effective treatment. Previous studies showed neural growth factor (NGF) administration was a potential treatment for SCI. However, its targeted delivery is still challenging. In this study, neural stem cells (NSCs) were genetically modified to overexpress NGF, and we evaluated its therapeutic value following SCI. Four weeks after transplantation, we observed that NGF-NSCs significantly enhanced the motor function of hindlimbs after SCI and alleviated histopathological damage at the lesion epicenter. Notably, the survival NGF-NSCs at lesion core maintained high levels of NGF. Further immunochemical assays demonstrated the graft of NGF-NSCs modulated the microenvironment around lesion core via reduction of oligodendrocyte loss, attenuation of astrocytosis and demyelination, preservation of neurons, and increasing expression of multiple growth factors. More importantly, NGF-NSCs seemed to crosstalk with and activate resident NSCs, and high levels of NGF activated TrkA, upregulated cAMP-response element binding protein (CREB) and microRNA-132 around the lesion center. Taken together, the transplantation of NGF-NSCs in the subacute stage of traumatic SCI can facilitate functional recovery by modulating the microenvironment and enhancing endogenous neurogenesis in rats. And its neuroprotective effect may be mediated by activating TrkA, up-regulation of CREB, and microRNA-132.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sujie Gu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Gan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Tian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
16
|
Zhang N, Utsunomiya T, Lin T, Kohno Y, Ueno M, Maruyama M, Huang E, Rhee C, Yao Z, Goodman SB. Mesenchymal Stem Cells and NF-κB Sensing Interleukin-4 Over-Expressing Mesenchymal Stem Cells Are Equally Effective in Mitigating Particle-Associated Chronic Inflammatory Bone Loss in Mice. Front Cell Dev Biol 2021; 9:757830. [PMID: 34722543 PMCID: PMC8551755 DOI: 10.3389/fcell.2021.757830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (μCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Lim SK, Khoo BY. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol Lett 2021; 22:785. [PMID: 34594426 PMCID: PMC8456491 DOI: 10.3892/ol.2021.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
Collapse
Affiliation(s)
- Shern Kwok Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
18
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
19
|
do Prado-Lima PAS, Costa-Ferro ZSM, Souza BSDF, da Cruz IBM, Lab B. Is there a place for cellular therapy in depression? World J Psychiatry 2021; 11:553-567. [PMID: 34631460 PMCID: PMC8474995 DOI: 10.5498/wjp.v11.i9.553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Although efforts have been made to improve the pharmacological treatment of depression, approximately one-third of patients with depression do not respond to conventional therapy using antidepressants. Other potential non-pharmacological therapies have been studied in the last years, including the use of mesenchymal stem cell therapies to treat depression. These therapies are reviewed here since it is clinically relevant to develop innovative therapeutics to treat psychiatric patients. Experimental data corroborate that mesenchymal stem cell therapy could be considered a potential treatment for depression based on its anti-inflammatory and neurotrophic properties. However, some clinical trials involving treatment of depression with stem cells are in progress, but with no published results. These studies and other future clinical investigations will be crucial to define how much mesenchymal stem cells can effectively be used in psychiatric clinics as a strategy for supporting depression treatment.
Collapse
Affiliation(s)
- Pedro Antônio Schmidt do Prado-Lima
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Fiocruz, Salvador 40296-710, Bahia, Brazil
| | | | - Biogenomics Lab
- Health Sciences Center, Federal University of Santa Maria, Santa Maria 97105900, RS, Brazil
| |
Collapse
|
20
|
des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Wang Y, Wang JW, Li Y, Tian XH, Feng XS, Zhang SC, Liu PJ, Xue WJ, Zheng J, Ding XM. Bone marrow-derived mesenchymal stem cells improve rat islet graft revascularization by upregulating ISL1. STEM CELLS (DAYTON, OHIO) 2021; 39:1033-1048. [PMID: 33754392 DOI: 10.1002/stem.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Revascularization of the islet transplant is a crucial step that defines the success rate of patient recovery. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to promote revascularization; however, the underlying cellular mechanism remains unclear. Moreover, our liquid chromatography-tandem mass spectrometry results showed that BMSCs could promote the expression of insulin gene enhancer binding protein-1 (ISL1) in islets. ISL1 is involved in islets proliferation and plays a potential regulatory role in the revascularization of islets. This study identifies the ISL1 protein as a potential modulator in BMSCs-mediated revascularization of islet grafts. We demonstrated that the survival rate and insulin secretion of islets were increased in the presence of BMSCs, indicating that BMSCs promote islet revascularization in a coculture system and rat diabetes model. Interestingly, we also observed that the presence of BMSCs led to an increase in ISL1 and vascular endothelial growth factor A (VEGFA) expression in both islets and the INS-1 rat insulinoma cell line. In silico protein structure modeling indicated that ISL1 is a transcription factor that has four binding sites with VEGFA mRNA. Further results showed that overexpression of ISL1 increased both the abundance of VEGFA transcripts and protein accumulation, while inhibition of ISL1 decreased the abundance of VEGFA. Using a ChIP-qPCR assay, we demonstrated that direct molecular interactions between ISL1 and VEGFA occur in INS-1 cells. Together, these findings reveal that BMSCs promote the expression of ISL1 in islets and lead to an increase in VEGFA in islet grafts. Hence, ISL1 is a potential target to induce early revascularization in islet transplantation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing-Wen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Shu-Cong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
22
|
Zhang LK, Chen WY, Wang HM, Liu C, He J, Tang Y, Jiao Y, Guan YQ. Growth factors regional patterned and photoimmobilized scaffold applied to bone tissue regeneration. J Mater Chem B 2021; 8:10990-11000. [PMID: 33300520 DOI: 10.1039/d0tb02317e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone diseases such as osteomalacia, osteoporosis, and osteomyelitis are major illnesses that threaten the health of human. This study aimed to provide an idea at the molecular level of material properties determined with UV specific surface approaches. The tert-butyl hydroperoxide (t-BHP) exposure aging model bone mesenchymal stem cells (BMSCs) were reverted by using a poly-hybrid scaffold (PS), which is a carbon nanotube (CNT) coated polycaprolactone (PCL) and polylactic acid (PLA) scaffold, combined with insulin-like growth factor-1 (IGF). Then, the region-specific PS photo-immobilized with different growth factors (GFs) was obtained by interference and diffraction of ultraviolet (UV) light. Additionally, the reverted BMSCs were regionally pattern differentiated into three kinds of cells on the GF immobilized PS (GFs/PS). In vivo, the GFs/PS accelerate bone healing in injured Sprague-Dawley (SD) rats. The data showed that GFs/PS effectively promoted the differentiation of reverted BMSCs in the designated area on 21st day. These results suggest region-specific interface immobilization of GFs concurrently differentiating reverted BMSCs into three different cells in the same scaffold. This method might be considered as a short-time, low cost, and simple operational approach to scaffold modification for tissue regeneration in the future.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| | - Wu-Ya Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Hui-Min Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yunzhi Tang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yuxuan Jiao
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| |
Collapse
|
23
|
Li H, Zhu H, Ge T, Wang Z, Zhang C. Mesenchymal Stem Cell-Based Therapy for Diabetes Mellitus: Enhancement Strategies and Future Perspectives. Stem Cell Rev Rep 2021; 17:1552-1569. [PMID: 33675006 DOI: 10.1007/s12015-021-10139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM), a chronic disorder of carbohydrate metabolism, is characterized by the unbridled hyperglycemia resulted from the impaired ability of the body to either produce or respond to insulin. As a cell-based regenerative therapy, mesenchymal stem cells (MSCs) hold immense potency for curing DM duo to their easy isolation, multi-differentiation potential, and immunomodulatory property. However, despite the promising efficacy in pre-clinical animal models, naive MSC administration fails to exhibit clinically satisfactory therapeutic outcomes, which varies greatly among individuals with DM. Recently, numbers of innovative strategies have been applied to improve MSC-based therapy. Preconditioning, genetic modification, combination therapy and exosome application are representative strategies to maximize the therapeutic benefits of MSCs. Therefore, in this review, we summarize recent advancements in mechanistic studies of MSCs-based treatment for DM, and mainly focus on the novel approaches aiming to improve the anti-diabetic potentials of naive MSCs. Additionally, the potential directions of MSCs-based therapy for DM are also proposed at a glance.
Collapse
Affiliation(s)
- Haisen Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Ting Ge
- Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Zhifeng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. .,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China.
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Zhang N, Lo CW, Utsunomiya T, Maruyama M, Huang E, Rhee C, Gao Q, Yao Z, Goodman SB. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res Ther 2021; 12:40. [PMID: 33413614 PMCID: PMC7792350 DOI: 10.1186/s13287-020-02086-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy has the potential for immunomodulation and enhancement of tissue regeneration. Genetically modified MSCs that over-express specific cytokines, growth factors, or chemokines have shown great promise in pre-clinical studies. In this regard, the anti-inflammatory cytokine interleukin (IL)-4 converts pro-inflammatory M1 macrophages into an anti-inflammatory M2 phenotype; M2 macrophages mitigate chronic inflammation and enhance osteogenesis by MSC lineage cells. However, exposure to IL-4 prematurely inhibits osteogenesis of MSCs in vitro; furthermore, IL-4 overexpressing MSCs inhibit osteogenesis in vivo during the acute inflammatory period. Platelet-derived growth factor (PDGF)-BB has been shown to enhance osteogenesis of MSCs with a dose-dependent effect. METHODS In this study, we generated a lentiviral vector that produces PDGF-BB under a weak promoter (phosphoglycerate kinase, PGK) and lentiviral vector producing IL-4 under a strong promoter (cytomegalovirus, CMV). We infected MSCs with PDGF-BB and IL-4-producing lentiviral vectors separately or in combination to investigate cell proliferation and viability, protein expression, and the capability for osteogenesis. RESULTS PDGF-BB and IL-4 co-overexpression was observed in the co-infected MSCs and shown to enhance cell proliferation and viability, and osteogenesis compared to IL-4 overexpressing MSCs alone. CONCLUSIONS Overexpression of PDGF-BB together with IL-4 mitigates the inhibitory effect of IL-4 on osteogenesis by IL-4 overexpressing MSCS. PDGF-BB and IL-4 overexpressing MSCs may be a potential strategy to facilitate osteogenesis in scenarios of both acute and chronic inflammation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Chi-Wen Lo
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Maharajan N, Cho GW, Jang CH. Therapeutic Application of Mesenchymal Stem Cells for Cochlear Regeneration. In Vivo 2021; 35:13-22. [PMID: 33402445 PMCID: PMC7880755 DOI: 10.21873/invivo.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Hearing loss is one of the major worldwide health problems that seriously affects human social and cognitive development. In the auditory system, three components outer ear, middle ear and inner ear are essential for the hearing mechanism. In the inner ear, sensory hair cells and ganglion neuronal cells are the essential supporters for hearing mechanism. Damage to these cells can be caused by long-term exposure of excessive noise, ototoxic drugs (aminoglycosides), ear tumors, infections, heredity and aging. Since mammalian cochlear hair cells do not regenerate naturally, some therapeutic interventions may be required to replace the damaged or lost cells. Cochlear implants and hearing aids are the temporary solutions for people suffering from severe hearing loss. The current discoveries in gene therapy may provide a deeper understanding in essential genes for the inner ear regeneration. Stem cell migration, survival and differentiation to supporting cells, cochlear hair cells and spiral ganglion neurons are the important foundation in understanding stem cell therapy. Moreover, mesenchymal stem cells (MSCs) from different sources (bone marrow, umbilical cord, adipose tissue and placenta) could be used in inner ear therapy. Transplanted MSCs in the inner ear can recruit homing factors at the damaged sites to induce transdifferentiation into inner hair cells and ganglion neurons or regeneration of sensory hair cells, thus enhancing the cochlear function. This review summarizes the potential application of mesenchymal stem cells in hearing restoration and combining stem cell and molecular therapeutic strategies can also be used in the recovery of cochlear function.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang Won Cho
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Dergilev KV, Shevchenko EK, Tsokolaeva ZI, Beloglazova IB, Zubkova ES, Boldyreva MA, Menshikov MY, Ratner EI, Penkov D, Parfyonova YV. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci 2020; 21:ijms21249603. [PMID: 33339427 PMCID: PMC7766731 DOI: 10.3390/ijms21249603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.
Collapse
Affiliation(s)
- Konstantin V. Dergilev
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Evgeny K. Shevchenko
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
- Correspondence:
| | - Zoya I. Tsokolaeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow 107031, Russia
| | - Irina B. Beloglazova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Ekaterina S. Zubkova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Maria A. Boldyreva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Mikhail Yu. Menshikov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Elizaveta I. Ratner
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Dmitry Penkov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Yelena V. Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
27
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Nazari-Shafti TZ, Neuber S, Garcia Duran A, Xu Z, Beltsios E, Seifert M, Falk V, Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med 2020; 9:1558-1569. [PMID: 32761804 PMCID: PMC7695640 DOI: 10.1002/sctm.19-0432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardiovascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate the immune response. There is growing evidence that MSC‐derived extracellular vesicles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role in this paracrine mechanism. In particular, encapsulated microRNAs have been identified as important positive regulators of angiogenesis in pathological settings of insufficient blood supply to the heart, thus opening a new path for the treatment of CVD. In the present review, we discuss the current knowledge related to the proangiogenic potential of MSCs and MSC‐derived EVs as well as methods to enhance their biological activities for improved cardiac tissue repair. Increasing our understanding of mechanisms supporting angiogenesis will help optimize future approaches to CVD intervention.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Garcia Duran
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhiyi Xu
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleftherios Beltsios
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiovascular Surgery, University of Zurich, Zurich, Switzerland
| | - Christof Stamm
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
30
|
Arutyunyan IV, Fatkhudinov TK, Makarov AV, Elchaninov AV, Sukhikh GT. Regenerative medicine of pancreatic islets. World J Gastroenterol 2020; 26:2948-2966. [PMID: 32587441 PMCID: PMC7304103 DOI: 10.3748/wjg.v26.i22.2948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting β-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration via β-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to β- or δ- to β-cell conversion (trans-differentiation). The existing preclinical models of β-cell dysfunction or ablation (induced surgically, chemically or genetically) have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation. The ultimate goal, sufficient level of functional activity of β-cells or their substitutes can be achieved by two prospective broad strategies: β-cell replacement and β-cell regeneration. The “regeneration” strategy aims to maintain a preserved population of β-cells through in situ exposure to biologically active substances that improve β-cell survival, replication and insulin secretion, or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β- to β-cell conversion. The “replacement” strategy implies transplantation of β-cells (as non-disintegrated pancreatic material or isolated donor islets) or β-like cells obtained ex vivo from progenitors or mature somatic cells (for example, hepatocytes or α-cells) under the action of small-molecule inducers or by genetic modification. We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally active β-cells, the innermost hope of millions of people globally.
Collapse
Affiliation(s)
- Irina V Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Timur Kh Fatkhudinov
- Research Institute of Human Morphology, Moscow 117418, Russia
- Peoples Friendship University of Russia, Moscow 117198, Russia
| | - Andrey V Makarov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| |
Collapse
|
31
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
32
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
33
|
Benabdellah K, Sánchez-Hernández S, Aguilar-González A, Maldonado-Pérez N, Gutierrez-Guerrero A, Cortijo-Gutierrez M, Ramos-Hernández I, Tristán-Manzano M, Galindo-Moreno P, Herrera C, Martin F. Genome-edited adult stem cells: Next-generation advanced therapy medicinal products. Stem Cells Transl Med 2020; 9:674-685. [PMID: 32141715 PMCID: PMC7214650 DOI: 10.1002/sctm.19-0338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over recent decades, gene therapy, which has enabled the treatment of several incurable diseases, has undergone a veritable revolution. Cell therapy has also seen major advances in the treatment of various diseases, particularly through the use of adult stem cells (ASCs). The combination of gene and cell therapy (GCT) has opened up new opportunities to improve advanced therapy medicinal products for the treatment of several diseases. Despite the considerable potential of GCT, the use of retroviral vectors has major limitations with regard to oncogene transactivation and the lack of physiological expression. Recently, gene therapists have focused on genome editing (GE) technologies as an alternative strategy. In this review, we discuss the potential benefits of using GE technologies to improve GCT approaches based on ASCs. We will begin with a brief summary of different GE platforms and techniques and will then focus on key therapeutic approaches that have been successfully used to treat diseases in animal models. Finally, we discuss whether ASC GE could become a real alternative to retroviral vectors in a GCT setting.
Collapse
Affiliation(s)
- Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Araceli Aguilar-González
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain.,Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, Jill Roberts, Inflammatory Bowel Disease Research Institute, New York, New York, USA
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Iris Ramos-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pablo Galindo-Moreno
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
34
|
Shu P, Sun DL, Shu ZX, Tian S, Pan Q, Wen CJ, Xi JY, Ye SN. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum Gene Ther 2020; 31:286-296. [PMID: 32013585 DOI: 10.1089/hum.2019.306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common and disabling joint disease. Although there is no clear consensus on the complex pathogenic mechanism of ONFH, trauma, abuse of glucocorticoids, and alcoholism are implicated in its etiology. The therapeutic strategies are still limited, and the clinical outcomes are not satisfactory. Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on ONFH in preclinical experiments and clinical trials. The beneficial properties of MSCs are due, at least in part, to their ability to home to the injured tissue, secretion of paracrine signaling molecules, and multipotentiality. Nevertheless, the regenerative capacity of transplanted cells is impaired by the hostile environment of necrotic tissue in vivo, limiting their clinical efficacy. Recently, genetic engineering has been introduced as an attractive strategy to improve the regenerative properties of MSCs in the treatment of early-stage ONFH. This review summarizes the function of several genes used in the engineering of MSCs for the treatment of ONFH. Further, current challenges and future perspectives of genetic manipulation of MSCs are discussed. The notion of genetically engineered MSCs functioning as a "factory" that can produce a significant amount of multipotent and patient-specific therapeutic product is emphasized.
Collapse
Affiliation(s)
- Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Long Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zi Xing Shu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Pan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen Jin Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Ya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shu Nan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Da-Costa RC, Vieira IL, Hunger A, Tamura RE, Strauss BE. p19Arf sensitizes B16 melanoma cells to interferon-β delivered via mesenchymal stem cells in vitro. ACTA ACUST UNITED AC 2020; 53:e8876. [PMID: 32077463 PMCID: PMC7025448 DOI: 10.1590/1414-431x20198876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
The immune stimulatory and anti-neoplastic functions of type I interferon have long been applied for the treatment of melanoma. However, the systemic application of high levels of this recombinant protein is often met with toxicity. An approach that provides localized, yet transient, production of type I interferon may overcome this limitation. We propose that the use of mesenchymal stem cells (MSCs) as delivery vehicles for the production of interferon-β (IFNβ) may be beneficial when applied together with our cancer gene therapy approach. In our previous studies, we have shown that adenovirus-mediated gene therapy with IFNβ was especially effective in combination with p19Arf gene transfer, resulting in immunogenic cell death. Here we showed that MSCs derived from mouse adipose tissue were susceptible to transduction with adenovirus, expressed the transgene reliably, and yet were not especially sensitive to IFNβ production. MSCs used to produce IFNβ inhibited B16 mouse melanoma cells in a co-culture assay. Moreover, the presence of p19Arf in the B16 cells sensitizes them to the IFNβ produced by the MSCs. These data represent a critical demonstration of the use of MSCs as carriers of adenovirus encoding IFNβ and applied as an anti-cancer strategy in combination with p19Arf gene therapy.
Collapse
Affiliation(s)
- R C Da-Costa
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - I L Vieira
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A Hunger
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Biotecnologia Unidade 1, Cristália Produtos Químicos Farmacêuticos, Itapira, SP, Brasil
| | - R E Tamura
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - B E Strauss
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
36
|
Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med 2020; 18:42. [PMID: 32000804 PMCID: PMC6993499 DOI: 10.1186/s12967-020-02234-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have attracted intense interest due to their powerful intrinsic properties of self-regeneration, immunomodulation and multi-potency, as well as being readily available and easy to isolate and culture. Notwithstanding, MSC based therapy suffers reduced efficacy due to several challenges which include unfavorable microenvironmental factors in vitro and in vivo. Body In the quest to circumvent these challenges, several modification techniques have been applied to the naïve MSC to improve its inherent therapeutic properties. These modification approaches can be broadly divided into two groups to include genetic modification and preconditioning modification (using drugs, growth factors and other molecules). This field has witnessed great progress and continues to gather interest and novelty. We review these innovative approaches in not only maintaining, but also enhancing the inherent biological activities and therapeutics of MSCs with respect to migration, homing to target site, adhesion, survival and reduced premature senescence. We discuss the application of the improved modified MSC in some selected human diseases. Possible ways of yet better enhancing the therapeutic outcome and overcoming challenges of MSC modification in the future are also elaborated. Conclusion The importance of prosurvival and promigratory abilities of MSCs in their therapeutic applications can never be overemphasized. These abilities are maintained and even further enhanced via MSC modifications against the inhospitable microenvironment during culture and transplantation. This is a turning point in MSC-based therapy with promising preclinical studies and higher future prospect.
Collapse
|
37
|
Shahlaei M, Asl SM, Saeidifar M. Nanotechnology in gene delivery for neural regenerative medicine. NEURAL REGENERATIVE NANOMEDICINE 2020:123-157. [DOI: 10.1016/b978-0-12-820223-4.00005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Rossi F, Noren H, Sarria L, Schiller PC, Nathanson L, Beljanski V. Combination therapies enhance immunoregulatory properties of MIAMI cells. Stem Cell Res Ther 2019; 10:395. [PMID: 31852519 PMCID: PMC6921447 DOI: 10.1186/s13287-019-1515-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs), adult stromal cells most commonly isolated from bone marrow (BM), are being increasingly utilized in various therapeutic applications including tissue repair via immunomodulation, which is recognized as one of their most relevant mechanism of action. The promise of MSC-based therapies is somewhat hindered by their apparent modest clinical benefits, highlighting the need for approaches that would increase the efficacy of such therapies. Manipulation of cellular stress-response mechanism(s) such as autophagy, a catabolic stress-response mechanism, with small molecules prior to or during MSC injection could improve MSCs’ therapeutic efficacy. Unfortunately, limited information exists on how manipulation of autophagy affects MSCs’ response to inflammation and subsequent immunoregulatory properties. Methods In this study, we exposed BM-MSC precursor cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, to autophagy modulators tamoxifen (TX) or chloroquine (CQ), together with IFN-γ. Exposed cells then underwent RNA sequencing (RNAseq) to determine the effects of TX or CQ co-treatments on cellular response to IFN-γ at a molecular level. Furthermore, we evaluated their immunoregulatory capacity using activated CD4+ T cells by analyzing T cell activation marker CD25 and the percentage of proliferating T cells after co-culturing the cells with MIAMI cells treated or not with TX or CQ. Results RNAseq data indicate that the co-treatments alter both mRNA and protein levels of key genes responsible for MSCs’ immune-regulatory properties. Interestingly, TX and CQ also altered some of the microRNAs targeting such key genes. In addition, while IFN-γ treatment alone increased the surface expression of PD-L1 and secretion of IDO, this increase was further enhanced with TX. An improvement in MIAMI cells’ ability to decrease the activation and proliferation of T cells was also observed with TX, and to a lesser extent, CQ co-treatments. Conclusion Altogether, this work suggests that both TX and CQ have a potential to enhance MIAMI cells’ immunoregulatory properties. However, this enhancement is more pronounced with TX co-treatment.
Collapse
Affiliation(s)
- Fiorella Rossi
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Leonor Sarria
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Paul C Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA.,Prime Cell Biomedical Inc., Miami, FL, USA
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA.
| |
Collapse
|
39
|
Surugiu R, Olaru A, Hermann DM, Glavan D, Catalin B, Popa-Wagner A. Recent Advances in Mono- and Combined Stem Cell Therapies of Stroke in Animal Models and Humans. Int J Mol Sci 2019; 20:ijms20236029. [PMID: 31795466 PMCID: PMC6928803 DOI: 10.3390/ijms20236029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Following the failure of acute neuroprotection therapies, major efforts are currently made worldwide to promote neurological recovery and brain plasticity in the subacute and post-acute phases of stroke. Currently, there is hope that stroke recovery might be promoted by cell-based therapies. The field of stem cell therapy for cerebral ischemia has made significant progress in the last five years. A variety of stem cells have been tested in animal models and humans including adipose stem cells, human umbilical cord blood-derived mesenchymal stem cells, human amnion epithelial cells, human placenta amniotic membrane-derived mesenchymal stem cells, adult human pluripotent-like olfactory stem cells, human bone marrow endothelial progenitor cells, electrically-stimulated human neuronal progenitor cells, or induced pluripotent stem cells (iPSCs) of human origin. Combination therapies in animal models include a mix of two or more therapeutic factors consisting of bone marrow stromal cells, exercise and thyroid hormones, endothelial progenitor cells overexpressing the chemokine CXCL12. Mechanisms underlying the beneficial effects of transplanted cells include the “bystander” effects, paracrine mechanisms, or extracellular vesicles-mediated restorative effects. Mitochondria transfer also appears to be a powerful strategy for regenerative processes. Studies in humans are currently limited to a small number of studies using autologous stem cells mainly aimed to assess tolerability and side-effects of human stem cells in the clinic.
Collapse
Affiliation(s)
- Roxana Surugiu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Bogdan Catalin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 20049 Craiova, Romania
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122 Essen, Germany
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus and Queensland Eye Institute, Brisbane, QLD 4000, Australia
| |
Collapse
|
40
|
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10:274. [PMID: 31455405 PMCID: PMC6712852 DOI: 10.1186/s13287-019-1362-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) and impaired insulin secretion. The chronic inflammatory process contributed to IR and could also hamper pancreatic β cell function. However, currently applied treatment cannot reverse β cell damage or alleviate inflammation. Mesenchymal stem cells (MSCs), the cell-based therapy for their self-renewable, differentiation potential, and immunosuppressive properties, have been demonstrated in displaying therapeutic effects in T2DM. Adipose-derived MSCs (AD-MSCs) attracted more attention due to less harvested inconvenience and ethical issues commonly accompany with bone marrow-derived MSCs (BM-MSCs) and fetal annex-derived MSCs. Both AD-MSC therapy studies and mechanism explorations in T2DM animals presented that AD-MSCs could translate to clinical application. However, hyperglycemia, hyperinsulinemia, and metabolic disturbance in T2DM are crucial for impairment of AD-MSC function, which may limit the therapeutical effects of MSCs. This review focuses on the outcomes and the molecular mechanisms of MSC therapies in T2DM which light up the hope of AD-MSCs as an innovative strategy to cure T2DM.
Collapse
Affiliation(s)
- Yicheng Qi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
41
|
Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep 2019; 39:BSR20182160. [PMID: 30610158 PMCID: PMC6356012 DOI: 10.1042/bsr20182160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.
Collapse
|