1
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025:10.1038/s41576-024-00804-z. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
2
|
McDonald JF. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Mol Biol Evol 2025; 42:msae269. [PMID: 39761690 PMCID: PMC11725524 DOI: 10.1093/molbev/msae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.
Collapse
Affiliation(s)
- John F McDonald
- Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
5
|
Wang J, Zhao Z, Yang K, Bai Y. Research progress in cell therapy for oral diseases: focus on cell sources and strategies to optimize cell function. Front Bioeng Biotechnol 2024; 12:1340728. [PMID: 38515628 PMCID: PMC10955105 DOI: 10.3389/fbioe.2024.1340728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
In recent years, cell therapy has come to play an important therapeutic role in oral diseases. This paper reviews the active role of mesenchymal stem cells, immune cell sources, and other cells in oral disorders, and presents data supporting the role of cell therapy in oral disorders, including bone and tooth regeneration, oral mucosal disorders, oral soft tissue defects, salivary gland dysfunction, and orthodontic tooth movement. The paper will first review the progress of cell optimization strategies for oral diseases, including the use of hormones in combination with stem cells, gene-modified regulatory cells, epigenetic regulation of cells, drug regulation of cells, cell sheets/aggregates, cell-binding scaffold materials and hydrogels, nanotechnology, and 3D bioprinting of cells. In summary, we will focus on the therapeutic exploration of these different cell sources in oral diseases and the active application of the latest cell optimization strategies.
Collapse
Affiliation(s)
| | | | | | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Mastella GA, de Oliveira IH, de Godoi AK, do Nascimento LG, Alberton KS, Dagostim V, Cancilier SG, Madeira K, Réus GZ, Zugno AI. Behavioral and inflammatory changes in rats induced by a three-hit stress model: Implications for psychiatric disorders. J Psychiatr Res 2024; 170:307-317. [PMID: 38194848 DOI: 10.1016/j.jpsychires.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Many aspects of the impact of childhood trauma remain unknown, such as the age at which individuals are most vulnerable to trauma, whether traumatic experiences have more severe and lasting effects when experienced early in life, and whether early life trauma causes psychiatric conditions such as anxiety and major depressive disorder (MDD) that persist over time or evolve into other disorders. Thus, this study aimed to investigate the impact of traumatic experiences in childhood on susceptibility to mood disorders in adulthood, particularly MDD. Animal models were used to address these questions, and different stressor protocols at various stages of the offspring's life were used. Three-hit starting with injections of Poly: IC was performed on the 9th day of gestation and then considered the first stressor. After birth, the animals were exposed to the maternal deprivation (MD) protocol, which separated the pups from the mother 3 h a day during the first ten days of life. From the 60th day of life, the animals were divided to receive the chronic mild stress (CMS) protocol over 21 days. The stressors can induce anxiety-like behaviors, such as increased locomotor activity through a maternal immune activation protocol using Poly: IC and demonstrating depressive-like behaviors through the MD and CMS protocols. It also showed changes in brain structures for pro-inflammatory parameters, IL-1β and TNF-α, and alterations in anti-inflammatory parameters, IL-4 and IL-10, at different ages of life. The study also found that regulating pro- and anti-inflammatory cytokines is necessary for appropriate neuronal behavior, and stress responses can be both friendly and enemy, with costs and benefits balanced to provide the best-fit result. In conclusion, phenotypic characteristics of animals' life history are shaped by signals transmitted directly or indirectly to developing animals, known as "predictive adaptive responses."
Collapse
Affiliation(s)
- Gustavo Antunes Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Isabela Hübbe de Oliveira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Kunz de Godoi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Leonardo Ghisi do Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kelvin Schmoeller Alberton
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vitória Dagostim
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Sarah Galatto Cancilier
- Laboratório de Pesquisa Aplicada em Computação e Métodos Quantitativos (LACON), University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kristian Madeira
- Laboratório de Pesquisa Aplicada em Computação e Métodos Quantitativos (LACON), University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra Ioppi Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
7
|
Possamai-Della T, Cararo JH, Aguiar-Geraldo JM, Peper-Nascimento J, Zugno AI, Fries GR, Quevedo J, Valvassori SS. Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics. Mol Neurobiol 2023; 60:5013-5033. [PMID: 37233974 DOI: 10.1007/s12035-023-03348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Preclinical genetic studies have related stress early exposures with changes in gene regulatory mechanisms, including epigenetic alterations, such as modifications of DNA methylation, histone deacetylation, and histones acetylation. This study evaluates the effects of prenatal stress on the behavior, hypothalamus-pituitary-adrenal (HPA)-axis, and epigenetic parameters in stressed dams and their offspring. The rats were subjected to a protocol of chronic unpredictable mild stress on the fourteenth day of pregnancy until the birth of offspring. After birth, maternal care was evaluated for six days. Following weaning, the locomotor and depressive-like behaviors of the dams and their offspring (60 days old) were assessed. The HPA axis parameters were evaluated in serum from dams and offspring, and epigenetic parameters (histone acetyltransferase (HAT), histone deacetylase (HDAC), DNA methyltransferase (DNMT) activities, and the levels of histone H3 acetylated at lysine residue 9 (H3K9ac) and histone 3 acetylated at lysine residue 14 (H3K14ac)) were assessed in dams' and offspring' brains. Prenatal stress did not significantly influence maternal care; however, it induced manic behavior in female offspring. These behavioral alterations in the offspring were accompanied by hyperactivity of the HPA-axis, epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones H3K9 and H3K14. In addition, the prenatal stressed female offspring showed increased levels of ACTH compared to their male counterpart. Our findings reinforce the impact of prenatal stress on behavior, stress response, and epigenetic profile of offspring.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Edelaar P, Otsuka J, Luque VJ. A generalised approach to the study and understanding of adaptive evolution. Biol Rev Camb Philos Soc 2023; 98:352-375. [PMID: 36223883 PMCID: PMC10091731 DOI: 10.1111/brv.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
Collapse
Affiliation(s)
- Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera Utrera km.1, 41013, Seville, Spain.,Swedish Collegium for Advanced Study, Thunbergsvägen 2, SE-75238, Uppsala, Sweden
| | - Jun Otsuka
- Department of Philosophy, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto, 606-8501, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Tokyo, 103-0027, Japan
| | - Victor J Luque
- Department of Philosophy, University of Valencia, Av. de Blasco Ibáñez, 30, 46010, València, Spain
| |
Collapse
|
10
|
Functional genomic tools for emerging model species. Trends Ecol Evol 2022; 37:1104-1115. [PMID: 35914975 DOI: 10.1016/j.tree.2022.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/12/2023]
Abstract
Most studies in the field of ecology and evolution aiming to connect genotype to phenotype rarely validate identified loci using functional tools. Recent developments in RNA interference (RNAi) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas genome editing have dramatically increased the feasibility of functional validation. However, these methods come with specific challenges when applied to emerging model organisms, including limited spatial control of gene silencing, low knock-in efficiencies, and low throughput of functional validation. Moreover, many functional studies to date do not recapitulate ecologically relevant variation, and this limits their scope for deeper insights into evolutionary processes. We therefore argue that increased use of gene editing by allelic replacement through homology-directed repair (HDR) would greatly benefit the field of ecology and evolution.
Collapse
|
11
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
12
|
Bisht D, Arora A, Sachan M. Role of DNA De-methylation intermediate '5-hydroxymethylcytosine' in ovarian cancer management: A comprehensive review. Biomed Pharmacother 2022; 155:113674. [PMID: 36099791 DOI: 10.1016/j.biopha.2022.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer remains the most eminent silent killer, with high morbidity and mortality among all gynaecological cancers. The advanced-stage patient's diagnosis has a low survival rate caused by its asymptomatic progression and diverse histopathological sub-types, wherefore in poor prognosis and highly recurring malignancy with multidrug resistance towards chemotherapy. Epigenetic biomarkers open promising avenues of intriguing research to combat OC malignancy, furthermore a tool for its early diagnosis. 5-hydroxymethycytosine (5-hmC), alias the sixth base of the genome, is an intermediate formed during the recently established DNA demethylation process and catalysed via ten-eleven translocation (TET) family of enzymes. It plays a significant role in regulating gene expression and has sparked interest in various cancer types. This review summarizes the role of active DNA demethylation process, its enzymes and intermediate 5-hmC in epigenetic landscape of ovarian cancer as a potent biomarker for clinical translation in identification of therapeutic targets, diagnostic and prognostic evaluation.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
13
|
Solodneva EV, Kuznetsov SB, Velieva AE, Stolpovsky YA. Molecular-Genetic Bases of Mammary Gland Development Using the Example of Cattle and Other Animal Species: I. Embryonic and Pubertal Developmental Stage. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422080087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mounger JM, van Riemsdijk I, Boquete MT, Wagemaker CAM, Fatma S, Robertson MH, Voors SA, Oberstaller J, Gawehns F, Hanley TC, Grosse I, Verhoeven KJF, Sotka EE, Gehring CA, Hughes AR, Lewis DB, Schmid MW, Richards CL. Genetic and Epigenetic Differentiation Across Intertidal Gradients in the Foundation Plant Spartina alterniflora. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.868826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological genomics approaches have informed us about the structure of genetic diversity in natural populations that might underlie patterns in trait variation. However, we still know surprisingly little about the mechanisms that permit organisms to adapt to variable environmental conditions. The salt marsh foundation plant Spartina alterniflora exhibits a dramatic range in phenotype that is associated with a pronounced intertidal environmental gradient across a narrow spatial scale. Both genetic and non-genetic molecular mechanisms might underlie this phenotypic variation. To investigate both, we used epigenotyping-by-sequencing (epiGBS) to evaluate the make-up of natural populations across the intertidal environmental gradient. Based on recent findings, we expected that both DNA sequence and DNA methylation diversity would be explained by source population and habitat within populations. However, we predicted that epigenetic variation might be more strongly associated with habitat since similar epigenetic modifications could be rapidly elicited across different genetic backgrounds by similar environmental conditions. Overall, with PERMANOVA we found that population of origin explained a significant amount of the genetic (8.6%) and epigenetic (3.2%) variance. In addition, we found that a small but significant amount of genetic and epigenetic variance (<1%) was explained by habitat within populations. The interaction of population and habitat explained an additional 2.9% of the genetic variance and 1.4% of the epigenetic variance. By examining genetic and epigenetic variation within the same fragments (variation in close-cis), we found that population explained epigenetic variation in 9.2% of 8,960 tested loci, even after accounting for differences in the DNA sequence of the fragment. Habitat alone explained very little (<0.1%) of the variation in these close-cis comparisons, but the interaction of population and habitat explained 2.1% of the epigenetic variation in these loci. Using multiple matrix regression with randomization (MMRR) we found that phenotypic differences in natural populations were correlated with epigenetic and environmental differences even when accounting for genetic differences. Our results support the contention that sequence variation explains most of the variation in DNA methylation, but we have provided evidence that DNA methylation distinctly contributes to plant responses in natural populations.
Collapse
|
15
|
Cell-to-cell variability in inducible Caspase9-mediated cell death. Cell Death Dis 2022; 13:34. [PMID: 35013114 PMCID: PMC8748834 DOI: 10.1038/s41419-021-04468-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
iCasp9 suicide gene has been widely used as a promising killing strategy in various cell therapies. However, different cells show significant heterogeneity in response to apoptosis inducer, posing challenges in clinical applications of killing strategy. The cause of the heterogeneity remains elusive so far. Here, by simultaneously monitoring the dynamics of iCasp9 dimerization, Caspase3 activation, and cell fate in single cells, we found that the heterogeneity was mainly due to cell-to-cell variability in initial iCasp9 expression and XIAP/Caspase3 ratio. Moreover, multiple-round drugging cannot increase the killing efficiency. Instead, it will place selective pressure on protein levels, especially on the level of initial iCasp9, leading to drug resistance. We further show this resistance can be largely eliminated by combinatorial drugging with XIAP inhibitor at the end, but not at the beginning, of the multiple-round treatments. Our results unveil the source of cell fate heterogeneity and drug resistance in iCasp9-mediated cell death, which may enlighten better therapeutic strategies for optimized killing.
Collapse
|
16
|
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep 2021; 11:23119. [PMID: 34848793 PMCID: PMC8632914 DOI: 10.1038/s41598-021-02545-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.
Collapse
|
17
|
Holden CA, Morais CLM, Taylor JE, Martin FL, Beckett P, McAinsh M. Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy. BMC PLANT BIOLOGY 2021; 21:522. [PMID: 34753418 PMCID: PMC8579538 DOI: 10.1186/s12870-021-03293-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. RESULTS We have shown distinct differences in the spectral fingerprint region (1800-900 cm- 1) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
18
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
19
|
Qiu T, Liu Z, Yang Y, Liu B. Epigenetic variation associated with responses to different habitats in the context of genetic divergence in Phragmites australis. Ecol Evol 2021; 11:11874-11889. [PMID: 34522347 PMCID: PMC8427615 DOI: 10.1002/ece3.7954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023] Open
Abstract
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population-level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation-sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation-based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life SciencesChangchun Normal UniversityChangchunChina
- Institute of Grassland ScienceKey Laboratory of Vegetation EcologyMinistry of EducationNortheast Normal UniversityChangchunChina
- Key Laboratory of Molecular EpigeneticsMinistry of EducationNortheast Normal UniversityChangchunChina
| | - Zhiyuan Liu
- College of Computer Science and TechnologyChangchun UniversityChangchunChina
| | - Yunfei Yang
- Institute of Grassland ScienceKey Laboratory of Vegetation EcologyMinistry of EducationNortheast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular EpigeneticsMinistry of EducationNortheast Normal UniversityChangchunChina
| |
Collapse
|
20
|
Mounger J, Boquete MT, Schmid MW, Granado R, Robertson MH, Voors SA, Langanke KL, Alvarez M, Wagemaker CAM, Schrey AW, Fox GA, Lewis DB, Lira CF, Richards CL. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle. Evol Dev 2021; 23:351-374. [PMID: 34382741 DOI: 10.1111/ede.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - M Teresa Boquete
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Department of Evolutionary Ecology, CSIC, Estación Biológica de Doñana, Sevilla, Spain
| | | | - Renan Granado
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Marta H Robertson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Sandy A Voors
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Kristen L Langanke
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Mariano Alvarez
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Avalo, Durham, NC, USA
| | | | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Catarina Fonseca Lira
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Plant Evolutionary Ecology, University of Tübingen, Institute of Evolution & Ecology, Tübingen, Germany
| |
Collapse
|
21
|
Pressley M, Salvioli M, Lewis DB, Richards CL, Brown JS, Staňková K. Evolutionary Dynamics of Treatment-Induced Resistance in Cancer Informs Understanding of Rapid Evolution in Natural Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapid evolution is ubiquitous in nature. We briefly review some of this quite broadly, particularly in the context of response to anthropogenic disturbances. Nowhere is this more evident, replicated and accessible to study than in cancer. Curiously cancer has been late - relative to fisheries, antibiotic resistance, pest management and evolution in human dominated landscapes - in recognizing the need for evolutionarily informed management strategies. The speed of evolution matters. Here, we employ game-theoretic modeling to compare time to progression with continuous maximum tolerable dose to that of adaptive therapy where treatment is discontinued when the population of cancer cells gets below half of its initial size and re-administered when the cancer cells recover, forming cycles with and without treatment. We show that the success of adaptive therapy relative to continuous maximum tolerable dose therapy is much higher if the population of cancer cells is defined by two cell types (sensitive vs. resistant in a polymorphic population). Additionally, the relative increase in time to progression increases with the speed of evolution. These results hold with and without a cost of resistance in cancer cells. On the other hand, treatment-induced resistance can be modeled as a quantitative trait in a monomorphic population of cancer cells. In that case, when evolution is rapid, there is no advantage to adaptive therapy. Initial responses to therapy are blunted by the cancer cells evolving too quickly. Our study emphasizes how cancer provides a unique system for studying rapid evolutionary changes within tumor ecosystems in response to human interventions; and allows us to contrast and compare this system to other human managed or dominated systems in nature.
Collapse
|
22
|
Mounger J, Ainouche ML, Bossdorf O, Cavé-Radet A, Li B, Parepa M, Salmon A, Yang J, Richards CL. Epigenetics and the success of invasive plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200117. [PMID: 33866809 PMCID: PMC8059582 DOI: 10.1098/rstb.2020.0117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
| | - Malika L. Ainouche
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Madalin Parepa
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Canever L, Varela R, Mastella GA, Damázio LS, Valvassori SS, Quevedo JL, Zugno AI. Effects of maternal folic acid supplementation on nuclear methyltransferase activity of adult rats subjected to an animal model of schizophrenia. Int J Dev Neurosci 2021; 81:461-467. [PMID: 33786893 DOI: 10.1002/jdn.10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Schizophrenia is considered one of the most disabling and severe human diseases worldwide. The etiology of schizophrenia is thought to be multifactorial and evidence suggests that DNA methylation can play an important role in underlying pivotal neurobiological alterations of this disorder. Some studies have demonstrated the effects of dietary supplementation as an alternative approach to the prevention of schizophrenia, including folic acid. However, no study has ever investigated the role of such supplementation in altering the DNA methylation system in the context of schizophrenia. OBJECTIVES The present study aims to investigate the effects of maternal folic acid supplementation at different doses on nuclear methyltransferase activity of adult rat offspring subjected to an animal model schizophrenia induced by ketamine. METHODS Adult female Wistar rats, (60 days old) received folic acid-deficient diet, control diet, or control diet plus folic acid supplementation (at 5, 10, or 50 mg/kg) during pregnancy and lactation. After reaching adulthood (60 days), the male offspring of these dams were subjected to the animal model of schizophrenia induced by 7 days of ketamine intraperitoneal injection (25 mg/kg). After the 7-day protocol, the activity of nuclear methyltransferase was evaluated in the brains of the offspring. RESULTS Maternal folic acid supplementation at 50 mg/kg increased methyltransferase activity in the frontal cortex, while 10 mg/kg increased methyltransferase activity in the hippocampus. In the striatum of offspring treated with ketamine, maternal deficient diet, control diet, and folic acid supplementation at 5 mg/kg decreased methyltransferase activity compared to the control group. The folic acid supplementation at 10 and 50 mg/kg reversed this ketamine effect. CONCLUSIONS Maternal FA deficiency could be related to schizophrenia pathophysiology, while FA supplementation could present a protective effect since it demonstrated persistent effects in epigenetic parameters in adult offspring.
Collapse
Affiliation(s)
- Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Roger Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Louyse S Damázio
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João L Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
24
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
25
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Venney CJ, Wellband KW, Heath DD. Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon. Heredity (Edinb) 2021; 126:38-49. [PMID: 32699390 PMCID: PMC7852867 DOI: 10.1038/s41437-020-0346-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic architecture and phenotypic plasticity are important considerations when studying trait variation within and among populations. Since environmental change can induce shifts in the genetic architecture and plasticity of traits, it is important to consider both genetic and environmental sources of phenotypic variation. While there is overwhelming evidence for environmental effects on phenotype, the underlying mechanisms are less clear. Variation in DNA methylation is a potential mechanism mediating environmental effects on phenotype due to its sensitivity to environmental stimuli, transgenerational inheritance, and influences on transcription. To characterize the effect of environment on methylation, we created two 6 × 6 (North Carolina II) Chinook salmon breeding crosses and reared the offspring in two environments: uniform hatchery tanks and seminatural stream channels. We sampled the fish twice during development, at the alevin (larval) and fry (juvenile) stages. We measured DNA methylation at 13 genes using a PCR-based bisulfite sequencing protocol. The genetic architecture of DNA methylation differed between rearing environments, with greater additive and nonadditive genetic variance in hatchery fish and greater maternal effects in seminatural channel fish, though gene-specific variation was evident. We observed plasticity in methylation across all assayed genes, as well as gene-specific effects at two genes in alevin and six genes in fry, indicating developmental stage-specific effects of rearing environment on methylation. Characterizing genetic and environmental influences on methylation is critical for future studies on DNA methylation as a potential mechanism for acclimation and adaptation.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Québec City, QC, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
27
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
28
|
Reid BM, Fridley BL. DNA Methylation in Ovarian Cancer Susceptibility. Cancers (Basel) 2020; 13:E108. [PMID: 33396385 PMCID: PMC7795210 DOI: 10.3390/cancers13010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread 'constitutional' alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2-a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic-epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.
Collapse
Affiliation(s)
- Brett M. Reid
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Comment on "The growth of cognition: Free energy minimization and the embryogenesis of cortical computation". Phys Life Rev 2020; 36:1-2. [PMID: 33278813 DOI: 10.1016/j.plrev.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023]
|
30
|
Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. FORESTS 2020. [DOI: 10.3390/f11111190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The breeding of forest trees is only a few decades old, and is a much more complicated, longer, and expensive endeavor than the breeding of agricultural crops. One breeding cycle for forest trees can take 20–30 years. Recent advances in genomics and molecular biology have revolutionized traditional plant breeding based on visual phenotype assessment: the development of different types of molecular markers has made genotype selection possible. Marker-assisted breeding can significantly accelerate the breeding process, but this method has not been shown to be effective for selection of complex traits on forest trees. This new method of genomic selection is based on the analysis of all effects of quantitative trait loci (QTLs) using a large number of molecular markers distributed throughout the genome, which makes it possible to assess the genomic estimated breeding value (GEBV) of an individual. This approach is expected to be much more efficient for forest tree improvement than traditional breeding. Here, we review the current state of the art in the application of genomic selection in forest tree breeding and discuss different methods of genotyping and phenotyping. We also compare the accuracies of genomic prediction models and highlight the importance of a prior cost-benefit analysis before implementing genomic selection. Perspectives for the further development of this approach in forest breeding are also discussed: expanding the range of species and the list of valuable traits, the application of high-throughput phenotyping methods, and the possibility of using epigenetic variance to improve of forest trees.
Collapse
|
31
|
De Kort H, Panis B, Deforce D, Van Nieuwerburgh F, Honnay O. Ecological divergence of wild strawberry DNA methylation patterns at distinct spatial scales. Mol Ecol 2020; 29:4871-4881. [DOI: 10.1111/mec.15689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology University of Leuven Leuven Belgium
| | - Bart Panis
- Bioversity InternationalK.U. Leuven Leuven Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology Ghent University Ghent Belgium
| | | | - Ollivier Honnay
- Plant Conservation and Population Biology University of Leuven Leuven Belgium
| |
Collapse
|
32
|
Lopez L, Turner KG, Bellis ES, Lasky JR. Genomics of natural history collections for understanding evolution in the wild. Mol Ecol Resour 2020; 20:1153-1160. [DOI: 10.1111/1755-0998.13245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lua Lopez
- Department of Biology California State University San Bernardino San Bernardino CaliforniaUSA
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
| | - Kathryn G. Turner
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
- Department of Biological Sciences Idaho State University Pocatello IdahoUSA
| | - Emily S. Bellis
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
- Arkansas Biosciences Institute & Department of Computer Science Arkansas State University Jonesboro ArkansasUSA
| | - Jesse R. Lasky
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
| |
Collapse
|
33
|
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:137782. [PMID: 32209235 DOI: 10.1016/j.scitotenv.2020.137782] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
| | | | - Lisa G Crozier
- NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Sarah Gaichas
- NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - Roger Griffis
- NOAA National Marine Fisheries Service, Silver Spring, MD, USA
| | - Jessica E Halofsky
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Toni Lyn Morelli
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Jeffrey T Morisette
- U.S. Department of the Interior, National Invasive Species Council Secretariat, Fort Collins, CO, USA
| | - Roldan C Muñoz
- NOAA Southeast Fisheries Science Center, Beaufort, NC, USA
| | | | - David L Peterson
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Michelle D Staudinger
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Ariana E Sutton-Grier
- University of Maryland Earth System Science Interdisciplinary Center, College Park, MD, USA
| | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA
| | - James Vose
- U.S. Forest Service Southern Research Station, Raleigh, NC, USA
| | | | | |
Collapse
|
34
|
Villalba de la Peña M, Piskobulu V, Murgatroyd C, Hager R. DNA methylation patterns respond to thermal stress in the viviparous cockroach Diploptera punctata. Epigenetics 2020; 16:313-326. [PMID: 32713247 DOI: 10.1080/15592294.2020.1795603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
It is increasingly recognized that epigenetic mechanisms play a key role in acclimatization and adaptation to thermal stress in invertebrates. DNA methylation and its response to temperature variation has been poorly studied in insects. Here, we investigated DNA methylation and hydroxymethylation patterns in the viviparous cockroach Diploptera punctata at a global and gene specific level in response to variation in temperature. We specifically studied methylation percentage in the heat shock protein 70 (Hsp70), whose function is linked to thermal plasticity and resistance. We found high levels of DNA methylation in several tissues but only low levels of DNA hydroxymethylation in the brain. Hsp70 methylation patterns showed significant differences in response to temperature. We further found that global DNA methylation variation was considerably lower at 28°C compared to higher or lower temperatures, which may be indicative of the optimal temperature for this species. Our results demonstrate that DNA methylation could provide a mechanism for insects to dynamically respond to changing temperature conditions in their environment.
Collapse
Affiliation(s)
- Mariana Villalba de la Peña
- Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, the University of Manchester , Manchester, UK
| | - Veysi Piskobulu
- Integrative Evolutionary Biology Department, Max-Planck Institute for Developmental Biology , Tuebingen, Germany
| | | | - Reinmar Hager
- Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, the University of Manchester , Manchester, UK
| |
Collapse
|
35
|
Chen C, Zheng Z, Bao Y, Zhang H, Richards CL, Li J, Chen Y, Zhao Y, Shen Z, Fu C. Comparisons of Natural and Cultivated Populations of Corydalis yanhusuo Indicate Divergent Patterns of Genetic and Epigenetic Variation. FRONTIERS IN PLANT SCIENCE 2020; 11:985. [PMID: 32719703 PMCID: PMC7347962 DOI: 10.3389/fpls.2020.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Epigenetic variation may contribute to traits that are important in domestication, but how patterns of genetic and epigenetic variation differ between cultivated and wild plants remains poorly understood. In particular, we know little about how selection may shape epigenetic variation in natural and cultivated populations. In this study, we investigated 11 natural populations and 6 major cultivated populations using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MS-AFLP or MSAP) markers to identify patterns of genetic and epigenetic diversity among Corydalis yanhusuo populations. We further explored correlations among genetic, epigenetic, alkaloidal, and climatic factors in natural and cultivated C. yanhusuo. We found support for a single origin for all cultivated populations, from a natural population which was differentiated from the other natural populations. The magnitude of F ST based on AFLP was significantly correlated with that for MSAP in pairwise comparisons in both natural and cultivated populations, suggesting a relationship between genetic and epigenetic variation in C. yanhusuo. This relationship was further supported by dbRDA (distance-based redundancy analyses) where some of the epigenetic variation could be explained by genetic variation in natural and cultivated populations. Genetic variation was slightly higher in natural than cultivated populations, and exceeded epigenetic variation in both types of populations. However, epigenetic differentiation exceeded that of genetic differentiation among cultivated populations, while the reverse was observed among natural populations. The differences between wild and cultivated plants may be partly due to processes inherent to cultivation and in particular the differences in mode of reproduction. The importance of epigenetic compared to genetic modifications is thought to vary depending on reproductive strategies, and C. yanhusuo usually reproduces sexually in natural environments, while the cultivated C. yanhusuo are propagated clonally. In addition, alkaloid content of C. yanhusuo varied across cultivated populations, and alkaloid content was significantly correlated to climatic variation, but also to genetic (6.89%) and even more so to epigenetic (14.09%) variation in cultivated populations. Our study demonstrates that epigenetic variation could be important in cultivation of C. yanhusuo and serve as a source of variation for response to environmental conditions.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhi Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - Jinghui Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Zhao
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Phenology and related traits for wheat adaptation. Heredity (Edinb) 2020; 125:417-430. [PMID: 32457509 PMCID: PMC7784700 DOI: 10.1038/s41437-020-0320-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Collapse
|
37
|
Schinkel CCF, Syngelaki E, Kirchheimer B, Dullinger S, Klatt S, Hörandl E. Epigenetic Patterns and Geographical Parthenogenesis in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). Int J Mol Sci 2020; 21:E3318. [PMID: 32392879 PMCID: PMC7247541 DOI: 10.3390/ijms21093318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Polyploidization and the shift to apomictic reproduction are connected to changes in DNA cytosine-methylation. Cytosine-methylation is further sensitive to environmental conditions. We, therefore, hypothesize that DNA methylation patterns would differentiate within species with geographical parthenogenesis, i.e., when diploid sexual and polyploid apomictic populations exhibit different spatial distributions. On natural populations of the alpine plant Ranunculus kuepferi, we tested differences in methylation patterns across two cytotypes (diploid, tetraploid) and three reproduction modes (sexual, mixed, apomictic), and their correlation to environmental data and geographical distributions. We used methylation-sensitive amplified fragment-length polymorphism (methylation-sensitive AFLPs) and scored three types of epiloci. Methylation patterns differed independently between cytotypes versus modes of reproduction and separated three distinct combined groups (2x sexual + mixed, 4x mixed, and 4x apomictic), with differentiation of 4x apomicts in all epiloci. We found no global spatial autocorrelation, but instead correlations to elevation and temperature gradients in 22 and 36 epiloci, respectively. Results suggest that methylation patterns in R. kuepferi were altered by cold conditions during postglacial recolonization of the Alps, and by the concomitant shift to facultative apomixis, and by polyploidization. Obligate apomictic tetraploids at the highest elevations established a distinct methylation profile. Methylation patterns reflect an ecological gradient rather than the geographical differentiation.
Collapse
Affiliation(s)
- Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| | - Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; (B.K.); (S.D.)
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; (B.K.); (S.D.)
| | - Simone Klatt
- Section Safety and Environmental Protection, University of Goettingen, Humboldtallee 15, 37073 Göttingen, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| |
Collapse
|
38
|
von Heiseler TN. The Social Origin of the Concept of Truth - How Statements Are Built on Disagreements. Front Psychol 2020; 11:733. [PMID: 32411047 PMCID: PMC7198879 DOI: 10.3389/fpsyg.2020.00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
This paper proposes a social account for the origin of the truth value and the emergence of the first declarative sentence. Such a proposal is based on two assumptions. The first is known as the social intelligence hypothesis: that the cognitive evolution of humans is first and foremost an adaptation to social demands. The second is the function-first approach to explaining the evolution of traits: before a prototype of a new trait develops and the adaptation process begins, something already existing is used for a new purpose. Applied to the emergence of declarative sentences, this suggests something already existing-natural signs (which have a logical or causal relation to what they denote)-were used for the declarative function and thereby integrated (in the form of indexical objects implying a past action) into communication. I show that the display of an indexical object (such as the display of hunting trophies) can imply a conceptual structure similar to that informing the syntax of sentences. The view developed in this paper is broadly consistent with the argumentative theory of Mercier and Sperber, which suggests that reasoning is less adapted to decision making than to social purposes such as winning disputes or justifying one's actions. In this paper I extend this view to the origin of the concept of truth. According to my proposal, the first declarative sentence (articulated in a simple sign language) emerged as a negation of a negation of an implicit statement expressed by the display of an indexical object referring to a past action. Thereby, I suggest that the binary structure of the truth value underlying any declarative sentence is founded on disagreements based on conflicts of interest. Thus, I deny that the concept of truth could have evolved for instrumental reasons such as solving problems, or through self-questioning about what one ought to believe.
Collapse
|
39
|
Museum Epigenomics: Charting the Future by Unlocking the Past. Trends Ecol Evol 2020; 35:295-300. [DOI: 10.1016/j.tree.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023]
|
40
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Tye SJ, Quevedo J, Valvassori SS. HDAC inhibitors reverse mania-like behavior and modulate epigenetic regulatory enzymes in an animal model of mania induced by Ouabain. Pharmacol Biochem Behav 2020; 193:172917. [PMID: 32222371 DOI: 10.1016/j.pbb.2020.172917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The etiology of bipolar disorder (BD) is multifactorial, involving both environmental and genetic factors. Current pharmacological treatment is associated with several side effects, which are the main reason patients discontinue treatment. Epigenetic alterations have been studied for their role in the pathophysiology of BD, as they bridge the gap between gene and environment. OBJECTIVE Evaluate the effects of histone deacetylase inhibitors on behavior and epigenetic enzymes activity in a rat model of mania induced by ouabain. METHODS Adult male rats were subjected to a single intracerebroventricular injection of ouabain (10-3 M) followed by 7 days of valproate (200 mg/kg) or sodium butyrate (600 mg/kg) administration. Locomotor and exploratory activities were evaluated in the open-field test. Histone deacetylase, DNA methyltransferase, and histone acetyltransferase activity were assessed in the frontal cortex, hippocampus, and striatum. RESULTS Ouabain induced hyperactivity in rats, which was reversed by valproate and sodium butyrate treatment. Ouabain did not alter the activity of any of the enzymes evaluated. However, valproate and sodium butyrate decreased the activity of histone deacetylase and DNA methyltransferase. Moreover, there was a positive correlation between these two enzymes. CONCLUSION These results suggest that targeting epigenetic mechanisms may play an important role in mania-like behavior management.
Collapse
Affiliation(s)
- Roger B Varela
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences -, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil.
| |
Collapse
|
41
|
Angers B, Perez M, Menicucci T, Leung C. Sources of epigenetic variation and their applications in natural populations. Evol Appl 2020; 13:1262-1278. [PMID: 32684958 PMCID: PMC7359850 DOI: 10.1111/eva.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic processes manage gene expression and products in a real‐time manner, allowing a single genome to display different phenotypes. In this paper, we discussed the relevance of assessing the different sources of epigenetic variation in natural populations. For a given genotype, the epigenetic variation could be environmentally induced or occur randomly. Strategies developed by organisms to face environmental fluctuations such as phenotypic plasticity and diversified bet‐hedging rely, respectively, on these different sources. Random variation can also represent a proxy of developmental stability and can be used to assess how organisms deal with stressful environmental conditions. We then proposed the microbiome as an extension of the epigenotype of the host to assess the factors determining the establishment of the community of microorganisms. Finally, we discussed these perspectives in the applied context of conservation.
Collapse
Affiliation(s)
- Bernard Angers
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Maëva Perez
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Tatiana Menicucci
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Christelle Leung
- CEFE CNRS Université de Montpellier Université Paul Valéry Montpellier 3 EPHE Montpellier France
| |
Collapse
|
42
|
Sarkies P. Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Semin Cell Dev Biol 2020; 97:106-115. [PMID: 31228598 PMCID: PMC6945114 DOI: 10.1016/j.semcdb.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
Recently interest in multi-generational epigenetic phenomena have been fuelled by highly reproducible intergenerational and transgenerational inheritance paradigms in several model organisms. Such paradigms are essential in order to begin to use genetics to unpick the mechanistic bases of how epigenetic information may be transmitted between generations; indeed great strides have been made towards understanding these mechanisms. Far less well understood is the relationship between epigenetic inheritance, ecology and evolution. In this review I focus on potential connections between laboratory studies of transgenerational epigenetic inheritance phenomena and evolutionary processes that occur in natural populations. In the first section, I consider whether transgenerational epigenetic inheritance might provide an advantage to organisms over the short term in adapting to their environment. Second, I consider whether epigenetic changes can contribute to the evolution of species by contributing to stable phenotypic variation within a population. Finally I discuss whether epigenetic changes could influence evolution by either directly or indirectly promoting DNA sequence changes that could impact phenotypic divergence. Additionally, I will discuss how epigenetic changes could influence the evolution of human cancer and thus be directly relevant for the development of this disease.
Collapse
Affiliation(s)
- Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W120NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W120NN, United Kingdom.
| |
Collapse
|
43
|
Liao ZY, Scheepens JF, Li QM, Wang WB, Feng YL, Zheng YL. Founder effects, post-introduction evolution and phenotypic plasticity contribute to invasion success of a genetically impoverished invader. Oecologia 2019; 192:105-118. [PMID: 31792607 DOI: 10.1007/s00442-019-04566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.
Collapse
Affiliation(s)
- Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Wei-Bin Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
44
|
Wang MZ, Li HL, Li JM, Yu FH. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity (Edinb) 2019; 124:146-155. [PMID: 31431739 DOI: 10.1038/s41437-019-0261-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable epigenetic modifications may occur in response to environmental variation, further altering phenotypes through gene regulation, without genome sequence changes. However, epigenetic variation in wild plant populations and their correlations with genetic and phenotypic variation remain largely unknown, especially for clonal plants. We investigated genetic, epigenetic and phenotypic variation of ten populations of an introduced clonal herb Hydrocotyle vulgaris in China. Populations of H. vulgaris exhibited extremely low genetic diversity with one genotype exclusively dominant, but significantly higher epigenetic diversity. Both intra- and inter-population epigenetic variation were related to genetic variation. But there was no correlation between intra-/inter-population genetic variation and phenotypic variation. When genetic variation was controlled, intra-population epigenetic diversity was related to petiole length, specific leaf area, and leaf area variation, while inter-population epigenetic distance was correlated with leaf area differentiation. Our study provides empirical evidence that even though epigenetic variation is partly under genetic control, it could also independently play a role in shaping plant phenotypes, possibly serving as a pathway to accelerate evolution of clonal plant populations.
Collapse
Affiliation(s)
- Mo-Zhu Wang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.,School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Li Li
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun-Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China. .,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
45
|
Gaut BS, Miller AJ, Seymour DK. Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution. Annu Rev Genet 2019; 53:195-215. [PMID: 31424971 DOI: 10.1146/annurev-genet-112618-043545] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host-parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host-parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA;
| | - Allison J Miller
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103, USA.,Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
46
|
Simmons LW, Lovegrove M. Nongenetic paternal effects via seminal fluid. Evol Lett 2019; 3:403-411. [PMID: 31388449 PMCID: PMC6675144 DOI: 10.1002/evl3.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 11/08/2022] Open
Abstract
Mounting evidence suggests that nongenetic paternal effects on offspring may be widespread among animal taxa, but the mechanisms underlying this form of nongenetic inheritance are not yet fully understood. Here, we show that seminal fluids underlie paternal effects on early offspring survival in an insect, the cricket Teleogryllus oceanicus, and quantify the contribution of this paternal effect to the inheritance of this important fitness trait. We used castrated males within a full-sib half-sib experimental design to show that seminal fluid donors were responsible for variation in the survival of developing embryos to hatching, and in their subsequent survival to adulthood. Increased expression of two seminal fluid protein genes, previously found to be positively associated with sperm quality, was found to be negatively associated with embryo survival. These nongenetic paternal effects hold important implications for the evolution of adaptive maternal responses to sperm competition, and more broadly for the interpretation of sire effects from classic quantitative genetic breeding designs.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| | - Maxine Lovegrove
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
47
|
Evans JP, Wilson AJ, Pilastro A, Garcia-Gonzalez F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 2019; 157:R109-R126. [PMID: 30668523 DOI: 10.1530/rep-18-0524] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alastair J Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| |
Collapse
|
48
|
A-L LG, C LP, A D, S M. Developmental, genetic and environmental variations of global DNA methylation in the first leaves emerging from the shoot apical meristem in poplar trees. PLANT SIGNALING & BEHAVIOR 2019; 14:1596717. [PMID: 30915897 PMCID: PMC6546136 DOI: 10.1080/15592324.2019.1596717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the context of climate changes, clarifying the causes underlying tree phenotypic plasticity and adaptation is crucial. Studies suggest a role of epigenetic mechanisms in response to external stimuli, raising the question whether such processes can promote acclimation of trees exposed to adverse climate conditions. Recently, we revealed an environmental epigenetic footprint in the shoot apical meristem (SAM) which could partially be transmitted mitotically, for several months, up until the winter-dormant bud in field conditions. Here, we extended our previous analysis to the leaves of the same P. deltoides×P. nigra clones. We aimed at estimating the range of developmentally, genetically, and environmentally induced variations on DNA methylation. We showed that only the first leaves emerging from the SAM displayed variations of DNA methylation under changing water conditions. We also found that these variations are genotype- and pedoclimatic site-dependent. Altogether, our data raised questions and perspectives on the direct acquisition, the maintenance of environmentally induced DNA methylation changes, and their mitotic transmission from the SAM to the first emerging leaves.
Collapse
Affiliation(s)
- Le Gac A-L
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
- Institute for Biology III, University of Freiburg, Freiburg, Germany
- CONTACT Maury S Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans 45067, France
| | - Lafon-Placette C
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
- Department of Botany, Charles University, Prague, Czech Republic
| | - Delaunay A
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
| | - Maury S
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
| |
Collapse
|
49
|
Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity (Edinb) 2018; 121:205-209. [PMID: 29976958 PMCID: PMC6082883 DOI: 10.1038/s41437-018-0113-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden.
| | - Foteini Spagopoulou
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden.
| |
Collapse
|