1
|
Liu B, Yang J, Lu W, Wang H, Song X, Yu S, Liu Q, Sun Y, Jiang X. Altitudinal variation in rhizosphere microbial communities of the endangered plant Lilium tsingtauense and the environmental factors driving this variation. Microbiol Spectr 2024; 12:e0096624. [PMID: 39382299 PMCID: PMC11536999 DOI: 10.1128/spectrum.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
The rhizosphere soil properties and microbial communities of Lilium tsingtauense, an endangered wild plant, have not been examined in previous studies. Here, we characterized spatial variation in soil properties and microbial communities in the rhizosphere of L. tsingtauense. We measured the abundance of L. tsingtauense at different altitudes and collected rhizosphere and bulk soils at three representative altitudes. The results showed that L. tsingtauense was more abundant, and the rhizosphere soil was richer in nitrogen, phosphorus, potassium, water content, and organic matter and more acidic at high altitudes than at lower altitudes. The diversity and richness of rhizosphere bacteria and fungi increased with altitude and were higher in rhizosphere soil than in bulk soil. In addition, ectomycorrhizal fungi, endophytic fungi, and nitrogen-fixing bacteria were more abundant, and plant-pathogenic fungi were less abundant at high altitudes. Co-occurrence network analysis identified four key phyla (Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota) in the microbial communities. We identified a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, and Chaetomiaceae) and rhizosphere soil metabolites (phosphatidylcholine and phosphatidylserine) that are crucial for the survival of L. tsingtauense. Correlation analysis and random forest analysis showed that some environmental factors were closely related to the rhizosphere soil microbial community and played an important role in predicting the distribution and growth status of L. tsingtauense. In sum, the results of this study revealed altitudinal variation in the rhizosphere microbial communities of L. tsingtauense and the factors driving this variation. Our findings also have implications for habitat restoration and the conservation of this species. IMPORTANCE Our study highlighted the importance of the rhizosphere microbial community of the endangered plant L. tsingtauense. We found that soil pH plays an important role in the survival of L. tsingtauense. Our results demonstrated that a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, Aspergillaceae, and Chaetomiaceae) and soil metabolites (phosphatidylcholine and phosphatidylserine) could be essential indicators for L. tsingtauense habitat. We also found that some environmental factors play an important role in shaping rhizosphere microbial community structure. Collectively, these results provided new insights into the altitudinal distribution of L. tsingtauense and highlight the importance of microbial communities in their growth.
Collapse
Affiliation(s)
- Boda Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jinming Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wanpei Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaobo Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Pan Z, Zang H, Li Y, Wang X, Xia N, Liu C, Li Z, Han Y, Tang Z, Sun J. Foliar application of carbon dots enhances nitrogen uptake and assimilation through CEPD1-dependent signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109229. [PMID: 39471756 DOI: 10.1016/j.plaphy.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The use of nitrogen (N) fertilizers increases crop yield, but the accumulation of residual N in agricultural soils poses significant environmental risks. Improving the N use efficiency (NUE) of crops can help reduce N pollution. While nanomaterials have been shown to enhance crop agronomic traits, more research is needed to clarify the regulatory mechanisms involved. In this study, foliar spraying of carbon dots (CDs, 1 mg mL-1) derived from Salvia miltiorrhiza increased the activity of plasma membrane H+-ATPase in Arabidopsis thaliana roots, promoting the uptake, transport, and assimilation of NO3- and NH4+. The upregulation of N metabolism-related genes, such as AtAMTs and AtNRTs, was also observed in A. thaliana roots. Transcriptome analysis suggested that this regulatory effect is mediated by the shoot-to-root mobile polypeptide CEPD1 (C-terminally encoded peptide DOWNSTREAM 1) signaling pathway. Additionally, foliar application of CDs increased the NUE of sweetpotato (Ipomoea batatas (L.) Lam.) from 2.5% to 8.1%. The upregulation of genes such as CEPD1 in leaves was observed following CDs application under different N conditions. Finally, foliar spraying of CDs significantly increased field yield and enhanced tolerance to low N stress in sweetpotato. Overall, this study demonstrated that foliar application of CDs improved NUE in plants through CEPD1-dependent signaling.
Collapse
Affiliation(s)
- Zhiyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Huihui Zang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yanjuan Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao Wang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Nan Xia
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221122, China.
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
4
|
Škrabálková E, Pejchar P, Potocký M. Exploring lipid-protein interactions in plant membranes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5251-5266. [PMID: 38708855 PMCID: PMC11389841 DOI: 10.1093/jxb/erae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
Collapse
Affiliation(s)
- Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Meng X, Dong T, Li Z, Zhu M. First systematic review of the last 30 years of research on sweetpotato: elucidating the frontiers and hotspots. FRONTIERS IN PLANT SCIENCE 2024; 15:1428975. [PMID: 39036362 PMCID: PMC11258629 DOI: 10.3389/fpls.2024.1428975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Sweetpotato is an economically important crop, and it has various advantages over other crops in addressing global food security and climate change. Although substantial articles have been published on the research of various aspects of sweetpotato biology, there are no specific reports to systematically crystallize the research achievements. The current review takes the lead in conducting a keyword-centric spatiotemporal dimensional bibliometric analysis of articles on sweetpotato research using CiteSpace software to comprehensively clarify the development status, research hotspot, and development trend in the past 30 years (1993-2022). Quantitative analysis was carried out on the publishing countries, institutions, disciplines, and scholars to understand the basic status of sweetpotato research; then, visual analysis was conducted on high-frequency keywords, burst keywords, and keyword clustering; the evolution of major research hotspots and the development trend in different periods were summarized. Finally, the three main development stages-preliminary stage (1993-2005), rapid stage (2006-2013), and diversified mature stage (2014-2022)-were reviewed and analyzed in detail. Particularly, the development needs of sweetpotato production in improving breeding efficiency, enhancing stress tolerance, coordinating high yield with high quality and high resistance, and promoting demand were discussed, which will help to comprehensively understand the development dynamics of sweetpotato research from different aspects of biological exploration.
Collapse
Affiliation(s)
| | | | | | - Mingku Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Liu C, Pan Z, Wang X, Gao J, He J, Liao Z, Zhang H, Xia N, Yu Y, Li Y, Liu J, Li Z, Cao Q, Han Y, Sun J. Overexpression of phosphatidylserine synthase IbPSS1 enhances salt tolerance by stimulating ethylene signaling-dependent lignin synthesis in sweetpotato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108727. [PMID: 38761548 DOI: 10.1016/j.plaphy.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Phosphatidylserine (PS) is an important lipid signaling required for plant growth regulation and salt stress adaptation. However, how PS positively regulate plant salt tolerance is still largely unknown. In this study, IbPSS1-overexpressed sweetpotato plants that exhibited overproduction of PS was employed to explore the mechanisms underlying the PS stimulation of plant salt tolerance. The results revealed that the IbPSS1-overexpressed sweetpotato accumulated less Na+ in the stem and leaf tissues compared with the wild type plants. Proteomic profile of roots showed that lignin synthesis-related proteins over-accumulated in IbPSS1-overexpressed sweetpotato. Correspondingly, the lignin content was enhanced but the influx of Na + into the stele was significantly blocked in IbPSS1-overexpressed sweetpotato. The results further revealed that ethylene synthesis and signaling related genes were upregulated in IbPSS1-overexpressed sweetpotato. Ethylene imaging experiment revealed the enhancement of ethylene mainly localized in the root stele. Inhibition of ethylene synthesis completely reversed the PS-overproduction induced lignin synthesis and Na+ influx pattern in stele tissues. Taken together, our findings demonstrate a mechanism by which PS regulates ethylene signaling and lignin synthesis in the root stele, thus helping sweetpotato plants to block the loading of Na+ into the xylem and to minimize the accumulation of Na+ in the shoots.
Collapse
Affiliation(s)
- Chong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zhiyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Xiao Wang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Jia Gao
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Jinping He
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zhaoxia Liao
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Huihui Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nan Xia
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yicheng Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yanjuan Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Jingran Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221122, Jiangsu Province, People's Republic of China.
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Zhou Y, Li A, Du T, Qin Z, Zhang L, Wang Q, Li Z, Hou F. A Small Auxin-Up RNA Gene, IbSAUR36, Regulates Adventitious Root Development in Transgenic Sweet Potato. Genes (Basel) 2024; 15:760. [PMID: 38927696 PMCID: PMC11203243 DOI: 10.3390/genes15060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter β-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
8
|
Wu X, Li J, Song LY, Zeng LL, Guo ZJ, Ma DN, Wei MY, Zhang LD, Wang XX, Zheng HL. NADPH oxidase-dependent H 2O 2 production mediates salicylic acid-induced salt tolerance in mangrove plant Kandelia obovata by regulating Na +/K + and redox homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1119-1135. [PMID: 38308390 DOI: 10.1111/tpj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lin-Lan Zeng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Xiu-Xiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| |
Collapse
|
9
|
Wei C, Hu Z, Wang S, Tan X, Jin Y, Yi Z, He K, Zhao L, Chu Z, Fang Y, Chen S, Liu P, Zhao H. An endogenous promoter LpSUT2 discovered in duckweed: a promising transgenic tool for plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1368284. [PMID: 38638348 PMCID: PMC11025394 DOI: 10.3389/fpls.2024.1368284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Promoters are one of the most critical elements in regulating gene expression. They are considered essential biotechnological tools for heterologous protein production. The one most widely used in plants is the 35S promoter from cauliflower mosaic virus. However, our study for the first time discovered the 35S promoter reduced the expression of exogenous proteins under increased antibiotic stress. We discovered an endogenous strong promoter from duckweed named LpSUT2 that keeps higher initiation activity under antibiotic stress. Stable transformation in duckweed showed that the gene expression of eGFP in the LpSUT2:eGFP was 1.76 times that of the 35S:eGFP at 100 mg.L-1 G418 and 6.18 times at 500 mg.L-1 G418. Notably, with the increase of G418 concentration, the gene expression and the fluorescence signal of eGFP in the 35S:eGFP were weakened, while the LpSUT2:eGFP only changed slightly. This is because, under high antibiotic stress, the 35S promoter was methylated, leading to the gene silencing of the eGFP gene. Meanwhile, the LpSUT2 promoter was not methylated and maintained high activity. This is a previously unknown mechanism that provides us with new insights into screening more stable promoters that are less affected by environmental stress. These outcomes suggest that the LpSUT2 promoter has a high capacity to initiate the expression of exogenous proteins. In conclusion, our study provides a promoter tool with potential application for plant genetic engineering and also provides new insights into screening promoters.
Collapse
Affiliation(s)
- Cuicui Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhubin Hu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiao Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Leyi Zhao
- Pitzer College, Claremont, CA, United States
| | - Ziyue Chu
- Faculty of Mathematical and Physical Sciences, University College London, London, United Kingdom
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shuang Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
11
|
Pan Z, Li Z, Han Y, Sun J. Genome-Wide Identification and Expression Analysis of the DMP and MTL Genes in Sweetpotato ( Ipomoea batatas L.). Genes (Basel) 2024; 15:354. [PMID: 38540413 PMCID: PMC10970459 DOI: 10.3390/genes15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.) is a strategic crop with both economic and energy value. However, improving sweetpotato varieties through traditional breeding approaches can be a time-consuming and labor-intensive process due to the complex genetic nature of sweetpotato as a hexaploid species (2n = 6x = 90). Double haploid (DH) breeding, based on in vivo haploid induction, provides a new approach for rapid breeding of crops. The success of haploid induction can be achieved by manipulating specific genes. Two of the most critical genes, DMP (DUF679 membrane proteins) and MTL (MATRILINEAL), have been shown to induce haploid production in several species. Here, we identified and characterized DMP and MTL genes in sweetpotato using gene family analysis. In this study, we identified 5 IbDMPs and 25 IbpPLAs. IbDMP5 and IbPLAIIs (IbPLAIIκ, IbPLAIIλ, and IbPLAIIμ) were identified as potential haploid induction (HI) genes in sweetpotato. These results provide valuable information for the identification and potential function of HI genes in sweetpotato and provide ideas for the breeding of DH lines.
Collapse
Affiliation(s)
- Zhiyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| |
Collapse
|
12
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Hou W, Yan P, Shi T, Lu P, Zhao W, Yang H, Zeng L, Yang J, Li Z, Fan W, Zhang L. Modulation of anthocyanin accumulation in storage roots of sweetpotato by transcription factor IbMYB1-2 through direct binding to anthocyanin biosynthetic gene promoters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:868-879. [PMID: 36878161 DOI: 10.1016/j.plaphy.2023.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The storage roots of purple-fleshed sweetpotato rich in anthocyanins are considered nutrient-rich foods with health effects. However, the molecular mechanism underlying anthocyanin biosynthesis and regulation remains to be revealed. In this study, IbMYB1-2 was isolated from purple-fleshed sweetpotato "Xuzishu8". The phylogenetic and sequence analysis indicated that IbMYB1-2 belongs to the SG6 subfamily with a conserved bHLH motif. Subcellular localization analysis and transcriptional activity assay revealed that IbMYB1-2 is a key transcriptional activator and is specific to the nucleus. Agrobacterium rhizogenes-mediated overexpression of IbMYB1-2 in sweetpotato through in vivo root transgenic system led to an increase in anthocyanins in the root of sweetpotato. qRT-PCR and transcriptome analysis depicted that the transcript levels of IbMYB1-2, IbbHLH42, and eight structural genes that are associated with the synthesis of anthocyanin were upregulated in overexpressed IbMYB1-2 transgenic roots. Dual-luciferase reporter (DLR) assay and yeast one-hybrid (Y1H) assay demonstrated IbMYB1-2 binding to the promoter regions of IbbHLH42 and other anthocyanin biosynthetic genes, including IbCHS, IbCHI, IbF3H, IbDFR, IbANS, IbGSTF12, IbUGT78D2, and IbUF3GT. Moreover, IbbHLH42 was shown to be an active enhancer for the formation of MYB-bHLH-WD40 (MBW) complex, which strongly supports the promoter activities of the IbCHS, IbANS, IbUGT78D2, and IbGSTF12 genes to induce anthocyanin accumulation. Taken together, our findings not only revealed the underlying regulatory molecular mechanism of IbMYB1-2 for anthocyanin accumulation in the storage roots of sweetpotato but also uncovered a potential mechanism by which IbbHLH42 modulated anthocyanin biosynthesis through a positive feedback regulatory loop.
Collapse
Affiliation(s)
- Wenqian Hou
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China.
| | - Ping Yan
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China.
| | - Tianye Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China.
| | - Pengzhou Lu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China
| | - Weiwei Zhao
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China
| | - Huimin Yang
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China
| | - Liqian Zeng
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, People's Republic of China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China
| | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, People's Republic of China.
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Street, Xuzhou, 221100, Jiangsu Province, People's Republic of China.
| |
Collapse
|
14
|
Su Y, Liu Y, Xiao S, Wang Y, Deng Y, Zhao L, Wang Y, Zhao D, Dai X, Zhou Z, Cao Q. Isolation, characterization, and functional verification of salt stress response genes of NAC transcription factors in Ipomoea pes-caprae. FRONTIERS IN PLANT SCIENCE 2023; 14:1119282. [PMID: 36818867 PMCID: PMC9929455 DOI: 10.3389/fpls.2023.1119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental stress is a major environmental factor threatening food security, which is why improving plant stress resistance is essential for agricultural productivity and environmental sustainability. The NAC (NAM, ATAF, and CUC) transcription factors (TFs) play a dominant role in plant responses to abiotic and biotic stresses, but they have been poorly studied in Ipomoea pes-caprae. In this research, 12 NAC TFs, named IpNAC1-IpNAC12, were selected from transcriptome data. The homologous evolution tree divided IpNACs into four major categories, and six IpNACs were linearly associated with Arabidopsis ANAC genes. From the gene structures, protein domains, and promoter upstream regulatory elements, IpNACs were shown to contain complete NAC-specific subdomains (A-E) and cis-acting elements corresponding to different stress stimuli. We measured the expression levels of the 12 IpNACs under abiotic stress (salt, heat, and drought) and hormone treatment (abscisic acid, methyl jasmonate, and salicylic acid), and their transcription levels differed. IpNAC5/8/10/12 were located in the nucleus through subcellular localization, and the overexpressing transgenic Arabidopsis plants showed high tolerance to salt stress. The cellular Na+ homeostasis content in the mature and elongation zones of the four IpNAC transgenic sweetpotato roots showed an obvious efflux phenomenon. These conclusions demonstrate that IpNAC5/8/10/12 actively respond to abiotic stress, have significant roles in improving plant salt tolerance, and are important salt tolerance candidate genes in I. pes-caprae and sweetpotato. This study laid the foundation for further studies on the function of IpNACs in response to abiotic stress. It provides options for improving the stress resistance of sweetpotato using gene introgression from I. pes-caprae.
Collapse
|
15
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
16
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
17
|
Wang X, Dai WW, Liu C, Zhang GX, Song WH, Li C, Yangchen YC, Gao RF, Chen YY, Yan H, Tang W, Kou M, Zhang YG, Yuan B, Li Q. Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels. Genes (Basel) 2022; 13:genes13081350. [PMID: 36011261 PMCID: PMC9407167 DOI: 10.3390/genes13081350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although salinity stress is one of the principal abiotic stresses affecting crop yield, a suitable concentration of NaCl has proven to be useful for increasing crop quality. This study used low salinity (34 mmol/L NaCl) and high salinity (85 mmol/L) to cultivate purple sweetpotato. Using transcriptomics and metabolomics to profile the pathway indicated that glycometabolism, secondary metabolite biosynthesis and the starch catabolic process were the significant pathways under the salinity stress. Further research showed that purple sweetpotato could regulate genes related to the regulation of the cellular Na+, K+, and other ions concentration in response to the low salinity tolerance, but loses this ability under high salinity. Meanwhile, under low salinity, the activity of antioxidant enzymes and their related gene expression are maintained at a high level. The low salinity influences the monosaccharide composition as well as the content and regulation of genes related to starch synthesis. Quality analysis showed that the low salinity could increase the starch content and influence the amylopectin biosynthesis. It suggested that low salinity promotes substance accumulation. High salinity could increase the anthocyanins biosynthesis and low salinity had a significant impact on phenolic acid and flavonol. Finally, the gene expression levels also prove the low salinity could change the composition and content level of the purple sweetpotato. This study showed that an appropriate concentration of NaCl can be used as an elicitor for application in purple sweetpotato planting.
Collapse
Affiliation(s)
- Xin Wang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (W.-W.D.); (G.-X.Z.); (Y.-C.Y.)
| | - Chong Liu
- Institute of Agricultural Sciences in the Coastal Area Jiangsu, Yancheng 224002, China;
| | - Guang-Xi Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (W.-W.D.); (G.-X.Z.); (Y.-C.Y.)
| | - Wei-Han Song
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Chen Li
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Yuenden-Ci Yangchen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (W.-W.D.); (G.-X.Z.); (Y.-C.Y.)
| | - Run-Fei Gao
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Yu-Yu Chen
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Hui Yan
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Wei Tang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Meng Kou
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Yun-Gang Zhang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (W.-W.D.); (G.-X.Z.); (Y.-C.Y.)
- Correspondence: (B.Y.); (Q.L.)
| | - Qiang Li
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology & Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (X.W.); (W.-H.S.); (C.L.); (R.-F.G.); (Y.-Y.C.); (H.Y.); (W.T.); (M.K.); (Y.-G.Z.)
- Correspondence: (B.Y.); (Q.L.)
| |
Collapse
|
18
|
Yi X, Sun X, Tian R, Li K, Ni M, Ying J, Xu L, Liu L, Wang Y. Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of RsPIP2-6 Involved in Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:860742. [PMID: 35909741 PMCID: PMC9337223 DOI: 10.3389/fpls.2022.860742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins (AQPs) constitute a highly diverse family of channel proteins that transport water and neutral solutes. AQPs play crucial roles in plant development and stress responses. However, the characterization and biological functions of RsAQPs in radish (Raphanus sativus L.) remain elusive. In this study, 61 non-redundant members of AQP-encoding genes were identified from the radish genome database and located on nine chromosomes. Radish AQPs (RsAQPs) were divided into four subfamilies, including 21 plasma membrane intrinsic proteins (PIPs), 19 tonoplast intrinsic proteins (TIPs), 16 NOD-like intrinsic proteins (NIPs), and 5 small basic intrinsic proteins (SIPs), through phylogenetic analysis. All RsAQPs contained highly conserved motifs (motifs 1 and 4) and transmembrane regions, indicating the potential transmembrane transport function of RsAQPs. Tissue- and stage-specific expression patterns of AQP gene analysis based on RNA-seq data revealed that the expression levels of PIPs were generally higher than TIPs, NIPs, and SIPs in radish. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that seven selected RsPIPs, according to our previous transcriptome data (e.g., RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14), exhibited significant upregulation in roots of salt-tolerant radish genotype. In particular, the transcriptional levels of RsPIP2-6 dramatically increased after 6 h of 150 mM NaCl treatment during the taproot thickening stage. Additionally, overexpression of RsPIP2-6 could enhance salt tolerance by Agrobacterium rhizogenes-mediated transgenic radish hairy roots, which exhibited the mitigatory effects of plant growth reduction, leaf relative water content (RWC) reduction and alleviation of O2- in cells, as shown by nitro blue tetrazolium (NBT) staining, under salt stress. These findings are helpful for deeply dissecting the biological function of RsAQPs on the salt stress response, facilitating practical application and genetic improvement of abiotic stress resistance in radish.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochuan Sun
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Rong Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kexin Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Overexpression of an Inositol Phosphorylceramide Glucuronosyltransferase Gene IbIPUT1 Inhibits Na+ Uptake in Sweet Potato Roots. Genes (Basel) 2022; 13:genes13071140. [PMID: 35885923 PMCID: PMC9317492 DOI: 10.3390/genes13071140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
IPUT1 is a glycosyltransferase capable of synthesizing the glycosyl inositol phosphorylceramide (GIPC) sphingolipid. The GIPC sphingolipid is a Na+ receptor on cell membranes which can sense extracellular Na+ concentrations, promote the increase in intracellular Ca2+ concentrations, and plays critical roles in maintaining intracellular Na+ balance. Therefore, the IPUT1 gene plays an important role in the genetic improvement of crop salt tolerance. Herein, the IbIPUT1 gene, which encodes an ortholog of Arabidopsis AtIPUT1, from sweet potato was cloned. Agrobacterium rhizogenes-mediated in vivo transgenic technology, non-invasive micro-measuring technology (NMT) and Na+ fluorescence imaging technology were then combined to quickly study the potential function of IbIPUT1 in salt tolerance. The data showed that IbIPUT1 was involved in the regulation of root cell Na+ balance, and the overexpression of IbIPUT1 could not promote sweet potato root cell Na+ efflux under salt stress, but it could significantly inhibit the Na+ absorption of root cells, thereby reducing the accumulation of Na+ in root cells under salt stress. Additionally, Ca2+ efflux in transgenic root cells was slightly higher than that in control roots under salt stress. Collectively, an efficient transgenic method for gene function studies was established, and our results suggested that IbIPUT1 acts as a candidate gene for the genetic enhancement of sweet potato salt tolerance.
Collapse
|
20
|
Jiang W, Jin R, Wang D, Yang Y, Zhao P, Liu M, Zhang A, Tang Z. A Novel High-Affinity Potassium Transporter IbHKT-like Gene Enhances Low-Potassium Tolerance in Transgenic Roots of Sweet Potato ( Ipomoea batatas (L.) Lam.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111389. [PMID: 35684162 PMCID: PMC9182616 DOI: 10.3390/plants11111389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
The high-affinity potassium transporters (HKT) mediate K+-Na+ homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet potato, which was significantly induced by potassium deficiency stress. IbHKT-like overexpressing transgenic roots were obtained from a sweet potato cultivar Xuzishu8 using an Agrobacterium rhizogenes-mediated root transgenic system in vivo. Compared with the CK, whose root cells did not overexpress the IbHKT-like gene, overexpression of the IbHKT-like gene protected cell ultrastructure from damage, and transgenic root meristem cells had intact mitochondria, endoplasmic reticulum, and Golgi dictyosomes. The steady-state K+ influx increased by 2.2 times in transgenic root meristem cells. Overexpression of the IbHKT-like gene also improved potassium content in the whole plant, which increased by 63.8% compared with the CK plants. These results could imply that the IbHKT-like gene, as a high-affinity potassium transporter gene, may play an important role in potassium deficiency stress responses.
Collapse
Affiliation(s)
- Wei Jiang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Danfeng Wang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Yufeng Yang
- Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| |
Collapse
|
21
|
Li Y, Tang Z, Pan Z, Wang R, Wang X, Zhao P, Liu M, Zhu Y, Liu C, Wang W, Liang Q, Gao J, Yu Y, Li Z, Lei B, Sun J. Calcium-Mobilizing Properties of Salvia miltiorrhiza-Derived Carbon Dots Confer Enhanced Environmental Adaptability in Plants. ACS NANO 2022; 16:4357-4370. [PMID: 35200008 DOI: 10.1021/acsnano.1c10556] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomass-derived carbon dots (CDs) are promising nanotools for agricultural applications and function as a reactive oxygen species (ROS) scavenger to alleviate plant oxidative stress under adverse environments. Nevertheless, plants need ROS burst to fully activate Ca2+-regulated defensive signaling pathway. The underlying mechanism of CDs to improve plant environmental adaptability without ROS is largely unknown. Here, Salvia miltiorrhiza-derived CDs triggered ROS-independent Ca2+ mobilization in plant roots. Mechanistic investigation attributed this function mainly to the hydroxyl and carboxyl groups on CDs. CDs-triggered Ca2+ mobilization was found to be dependent on the production of cyclic nucleotides and cyclic nucleotide-gated ion channels. Lectin receptor kinases were verified as essential for this Ca2+ mobilization. CDs hydroponic application promoted Ca2+ signaling and plant environmental adaptability under salinity and nutrient-deficient conditions. All these findings uncover that CDs have a Ca2+-mobilizing property and thus can be used as a simultaneous Ca2+ signaling amplifier and ROS scavenger for crop improvement.
Collapse
Affiliation(s)
- Yanjuan Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Zhiyuan Pan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Ruigang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiao Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Peng Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Ming Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Yixia Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Chong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Weichi Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiang Liang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
22
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
23
|
Yu Y, Pan Z, Wang X, Bian X, Wang W, Liang Q, Kou M, Ji H, Li Y, Ma D, Li Z, Sun J. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease. MOLECULAR PLANT PATHOLOGY 2022; 23:104-117. [PMID: 34633749 PMCID: PMC8659606 DOI: 10.1111/mpp.13146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Sweet potato (Ipomoea batatas) is one of the most important crops in the world, and its production rate is mainly decreased by the sweet potato virus disease (SPVD) caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus. However, methods for improving SPVD resistance have not been established. Thus, this study aimed to enhance SPVD resistance by targeting one of its important pathogenesis-related factors (i.e., SPCSV-RNase3) by using the CRISPR-Cas13 technique. First, the RNA targeting activity of four CRISPR-Cas13 variants were compared using a transient expression system in Nicotiana benthamiana. LwaCas13a and RfxCas13d had more efficient RNA and RNA virus targeting activity than PspCas13b and LshCas13a. Driven by the pCmYLCV promoter for the expression of gRNAs, RfxCas13d exhibited higher RNA targeting activity than that driven by the pAtU6 promoter. Furthermore, the targeting of SPCSV-RNase3 using the LwaCas13a system inhibited its RNA silencing suppressor activity and recovered the RNA silencing activity in N. benthamiana leaf cells. Compared with the wild type, transgenic N. benthamiana plants carrying an RNase3-targeted LwaCas13a system exhibited enhanced resistance against turnip mosaic virus TuMV-GFP and cucumber mosaic virus CMV-RNase3 co-infection. Moreover, transgenic sweet potato plants carrying an RNase3-targeted RfxCas13d system exhibited substantially improved SPVD resistance. This method may contribute to the development of SPVD immune germplasm and the enhancement of sweet potato production in SPVD-prevalent regions.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Zhiyuan Pan
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiao Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaofeng Bian
- Institute of Food CropsProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Weichi Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Qiang Liang
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai DistrictXuzhou, Jiangsu ProvinceChina
| | - Hongtao Ji
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Yanjuan Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai DistrictXuzhou, Jiangsu ProvinceChina
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative GenomicsSchool of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
24
|
Han X, Yang Y. Phospholipids in Salt Stress Response. PLANTS 2021; 10:plants10102204. [PMID: 34686013 PMCID: PMC8540237 DOI: 10.3390/plants10102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
High salinity threatens crop production by harming plants and interfering with their development. Plant cells respond to salt stress in various ways, all of which involve multiple components such as proteins, peptides, lipids, sugars, and phytohormones. Phospholipids, important components of bio-membranes, are small amphoteric molecular compounds. These have attracted significant attention in recent years due to the regulatory effect they have on cellular activity. Over the past few decades, genetic and biochemical analyses have partly revealed that phospholipids regulate salt stress response by participating in salt stress signal transduction. In this review, we summarize the generation and metabolism of phospholipid phosphatidic acid (PA), phosphoinositides (PIs), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), as well as the regulatory role each phospholipid plays in the salt stress response. We also discuss the possible regulatory role based on how they act during other cellular activities.
Collapse
Affiliation(s)
- Xiuli Han
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China;
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-10-62732030
| |
Collapse
|
25
|
Qin Y, Wang D, Fu J, Zhang Z, Qin Y, Hu G, Zhao J. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. PLANT METHODS 2021; 17:103. [PMID: 34627322 PMCID: PMC8502350 DOI: 10.1186/s13007-021-00802-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/26/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Litchi chinensis Sonn. is an economically important fruit tree in tropical and subtropical regions. However, litchi functional genomics is severely hindered due to its recalcitrance to regeneration and stable transformation. Agrobacterium rhizogenes-mediated hairy root transgenic system provide an alternative to study functional genomics in woody plants. However, the hairy root transgenic system has not been established in litchi. RESULTS In this study, we report a rapid and highly efficient A. rhizogenes-mediated co-transformation system in L. chinensis using Green Fluorescent Protein (GFP) gene as a marker. Both leaf discs and stem segments of L. chinensis cv. 'Fenhongguiwei' seedlings were able to induce transgenic hairy roots. The optimal procedure involved the use of stem segments as explants, infection by A. rhizogenes strain MSU440 at optical density (OD600) of 0.7 for 10 min and co-cultivation for 3 days, with a co-transformation efficiency of 9.33%. Furthermore, the hairy root transgenic system was successfully used to validate the function of the key anthocyanin regulatory gene LcMYB1 in litchi. Over-expression of LcMYB1 produced red hairy roots, which accumulated higher contents of anthocyanins, proanthocyanins, and flavonols. Additionally, the genes involving in the flavonoid pathway were strongly activated in the red hairy roots. CONCLUSION We first established a rapid and efficient transformation system for the study of gene function in hairy roots of litchi using A. rhizogenes strain MSU440 by optimizing parameters. This hairy root transgenic system was effective for gene function analysis in litchi using the key anthocyanin regulator gene LcMYB1 as an example.
Collapse
Affiliation(s)
- Yaqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaxin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Jin R, Zhang A, Sun J, Chen X, Liu M, Zhao P, Jiang W, Tang Z. Identification of Shaker K + channel family members in sweetpotato and functional exploration of IbAKT1. Gene 2020; 768:145311. [PMID: 33220344 DOI: 10.1016/j.gene.2020.145311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 01/27/2023]
Abstract
The Shaker K+ channel family plays a vital role in potassium absorption and stress resistance in plants. However little information on the genes family is available about sweetpotato. In the present study, eleven sweetpotato Shaker K+ channel genes were identified and classified into five groups based on phylogenetic relationships, conserved motifs, and gene structure analyses. Based on synteny analysis, four duplicated gene pairs were identified, derived from both ancient and recent duplication, whereas only one resulted from tandem duplication events. Different expression pattern of Shaker K+ channel genes in roots of Xu32 and NZ1 resulted in different K+ deficiency tolerances, suggesting there is different mechanism of K+ uptake in sweetpotato cultivars with different K+-tolerance levels. Quantitative real-time PCR analysis revealed that the shaker K+ channel genes responded to drought and high salt stresses. Higher K+ influx under normal condition and lower K+ efflux under K+ deficiency stress were observed in IbAKT1 overexpressing transgenic roots than in adventitious roots, which indicated that IbAKT1 may play an important role in the regulation of K+ deficiency tolerance in sweetpotato. This is the first genome-wide analysis of Shaker K+ channel genes and the first functional analysis of IbAKT1 in sweetpotato. Our results provide valuable information on the gene structure, evolution, expression and functions of the Shaker K+ channel gene family in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoguang Chen
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Wei Jiang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China.
| |
Collapse
|