1
|
Ding J, Wang K, Pandey S, Perales M, Allona I, Khan MRI, Busov VB, Bhalerao RP. Molecular advances in bud dormancy in trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6063-6075. [PMID: 38650362 DOI: 10.1093/jxb/erae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. We provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged from our current understanding of bud dormancy and offer insights for future studies.
Collapse
Affiliation(s)
- Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Kejing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
2
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
4
|
Peck LD, Sork VL. Can DNA methylation shape climate response in trees? TRENDS IN PLANT SCIENCE 2024; 29:1089-1102. [PMID: 38853096 DOI: 10.1016/j.tplants.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Woody plants create the ecosystems they occupy and shape their biodiversity. Today's rapidly warming climate threatens these long-lived species by creating new environments in which existing populations become maladapted. Plants show enormous phenotypic diversity in response to environmental change, which can be caused by genotype or epigenetic mechanisms that influence the expression of the underlying DNA sequence. Whether epigenetics can affect ecologically important traits in trees is an important and controversial question. We explore the evidence that DNA methylation can affect gene expression, both directly and indirectly via its interaction with transposable elements (TEs), and subsequently shapes phenotypic variation in natural tree populations. Furthermore, we consider the potential of epigenetic approaches to assist in their conservation management strategies.
Collapse
Affiliation(s)
- Lily D Peck
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Miryeganeh M, Armitage DW. Epigenetic responses of trees to environmental stress in the context of climate change. Biol Rev Camb Philos Soc 2024. [PMID: 39192567 DOI: 10.1111/brv.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In long-lived tree populations, when environmental change outpaces rates of evolutionary adaptation, plasticity in traits related to stress tolerance, dormancy, and dispersal may be vital for preventing extinction. While a population's genetic background partly determines its ability to adapt to a changing environment, so too do the many types of epigenetic modifications that occur within and among populations, which vary on timescales orders of magnitude faster than the emergence of new beneficial alleles. Consequently, phenotypic plasticity driven by epigenetic modification may be especially critical for sessile, long-lived organisms such as trees that must rely on this plasticity to keep pace with rapid anthropogenic environmental change. While studies have reported large effects of DNA methylation, histone modification, and non-coding RNAs on the expression of stress-tolerance genes and resulting phenotypic responses, little is known about the role of these effects in non-model plants and particularly in trees. Here, we review new findings in plant epigenetics with particular relevance to the ability of trees to adapt to or escape stressors associated with rapid climate change. Such findings include specific epigenetic influences over drought, heat, and salinity tolerance, as well as dormancy and dispersal traits. We also highlight promising findings concerning transgenerational inheritance of an epigenetic 'stress memory' in plants. As epigenetic information is becoming increasingly easy to obtain, we close by outlining ways in which ecologists can use epigenetic information better to inform population management and forecasting efforts. Understanding the molecular mechanisms behind phenotypic plasticity and stress memory in tree species offers a promising path towards a mechanistic understanding of trees' responses to climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - David W Armitage
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
6
|
Goeckeritz CZ, Grabb C, Grumet R, Iezzoni AF, Hollender CA. Genetic factors acting prior to dormancy in sour cherry influence bloom time the following spring. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4428-4452. [PMID: 38602443 PMCID: PMC11263489 DOI: 10.1093/jxb/erae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Understanding the process of Prunus species floral development is crucial for developing strategies to manipulate bloom time and prevent crop loss due to climate change. Here, we present a detailed examination of flower development from initiation until bloom for early- and late-blooming sour cherries (Prunus cerasus) from a population segregating for a major bloom time QTL on chromosome 4. Using a new staging system, we show floral buds from early-blooming trees were persistently more advanced than those from late-blooming siblings. A genomic DNA coverage analysis revealed the late-blooming haplotype of this QTL, k, is located on a subgenome originating from the late-blooming P. fruticosa progenitor. Transcriptome analyses identified many genes within this QTL as differentially expressed between early- and late-blooming trees during the vegetative-to-floral transition. From these, we identified candidate genes for the late bloom phenotype, including multiple transcription factors homologous to Reproductive Meristem B3 domain-containing proteins. Additionally, we determined that the basis of k in sour cherry is likely separate from candidate genes found in sweet cherry-suggesting several major regulators of bloom time are located on Prunus chromosome 4.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Chloe Grabb
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Liu J, Bennett D, Demuth M, Burchard E, Artlip T, Dardick C, Liu Z. euAP2a, a key gene that regulates flowering time in peach ( Prunus persica) by modulating thermo-responsive transcription programming. HORTICULTURE RESEARCH 2024; 11:uhae076. [PMID: 38752224 PMCID: PMC11091482 DOI: 10.1093/hr/uhae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.
Collapse
Affiliation(s)
- Jianyang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Dennis Bennett
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Mark Demuth
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Erik Burchard
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Tim Artlip
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| |
Collapse
|
8
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
9
|
Park Y, Muthuramalingam P, Jeong JH, Kim SH, Shin H. Physiological and metabolic analyses reveal the proline-mediated flowering delay mechanism in Prunus persica. FRONTIERS IN PLANT SCIENCE 2024; 15:1302975. [PMID: 38726296 PMCID: PMC11079198 DOI: 10.3389/fpls.2024.1302975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 05/12/2024]
Abstract
Peaches are susceptible to various environmental stresses. Particularly in late spring, freezing temperatures can damage peaches and consequently, affect their productivity. Therefore, flowering delay is a prominent strategy for avoiding spring frost damage. Our previous study confirmed that treatment with 5% sodium alginate and 100 mM CaCl2 (5AG) to avoid frost damage during the blooming stage delays flowering. To reveal the flowering delay mechanism of peaches, this study systematically analyzed the modification of amino acid profiles in control and 5AG-treated peach plants at different day intervals. Our findings indicate that arginine (Arg), glutamate (Glu), and proline (Pro) levels differed between the control and 5AG-treated peach shoots throughout the phenological development of flower buds. Furthermore, two amino acids (Arg and Glu) are involved in the Pro pathway. Thus, using a computational metabolomics method, Pro biosynthesis and its characteristics, gene ontology, gene synteny, cis-regulatory elements, and gene organizations were examined to decipher the involvement of Pro metabolism in peach flowering delay. In addition, qRT-PCR analysis revealed the transcriptional regulation of Pro-related and flowering-responsive genes and their role in flowering delay. Overall, this pilot study provides new insights into the role of Pro in the flowering delay mechanisms in Prunus persica through 5AG treatment.
Collapse
Affiliation(s)
- Yeonju Park
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Pandiyan Muthuramalingam
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Hoon Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, Republic of Korea
| | - Seung Heui Kim
- Department of Fruit Science, Korea National College of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Hyunsuk Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
10
|
Zhong S, Zhu H, Li W, Wu D, Miao Y, Dong B, Wang Y, Xiao Z, Fang Q, Deng J, Zhao H. DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans. HORTICULTURE RESEARCH 2024; 11:uhae010. [PMID: 38464472 PMCID: PMC10923647 DOI: 10.1093/hr/uhae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Short-term ambient low temperature (ALT) stimulation is necessary for Osmanthus fragrans to facilitate continued flower opening after floral bud development reaches maturity. DNA methylation, a vital epigenetic modification, regulates various biological processes in response to temperature fluctuations. However, its role in temperature-driven flower opening remains elusive. In this study, we identified the pivotal timeframe during which O. fragrans promptly detected temperature cues. Using whole-genome bisulfite sequencing, we explored global DNA hypomethylation during this phase, with the most significant changes occurring in CHH sequence contexts. Auxin transport inhibitor (TIBA) application revealed that ALT-induced endogenous auxin accumulation promoted peduncle elongation. In our mRNA-seq analysis, we discovered that the differentially expressed genes (DEGs) with hypo-differentially methylated regions (hypo-DMRs) were mainly enriched in auxin and temperature response, RNA processing, and carbohydrate and lipid metabolism. Transcripts of three DNA demethylase genes (OfROS1a, OfDML3, OfDME) showed upregulation. Furthermore, all DNA methylase genes, except OfCMT2b, also displayed increased expression, specifically with two of them, OfCMT3a and OfCMT1, being associated with hypo-DMRs. Promoter assays showed that OfROS1a, with promoters containing low-temperature- and auxin-responsive elements, were activated by ALT and exogenous IAA at low concentrations but inhibited at high concentrations. Overexpression of OfROS1 reduced endogenous auxin levels but enhanced the expression of genes related to auxin response and spliceosome in petunia. Furthermore, OfROS1 promoted sucrose synthesis in petunia corollas. Our data characterized the rapid response of active DNA hypomethylation to ALT and suggested a possible epiregulation of temperature-dependent flower opening in O. fragrans. This study revealed the pivotal role of DNA hypomethylation in O. fragrans during the ALT-responsive phase before flower opening, involving dynamic DNA demethylation, auxin signaling modulation, and a potential feedback loop between hypomethylation and methylation.
Collapse
Affiliation(s)
- Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huijun Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
12
|
Chu X, Wang M, Fan Z, Li J, Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int J Mol Sci 2024; 25:1666. [PMID: 38338945 PMCID: PMC10855862 DOI: 10.3390/ijms25031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.
Collapse
Affiliation(s)
- Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| |
Collapse
|
13
|
Waite JM, Hollender CA, Eilers JR, Burchard E, Dardick C. Peach LAZY1 and DRO1 protein-protein interactions and co-expression with PRAF/RLD family support conserved gravity-related protein interactions across plants. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000995. [PMID: 38287925 PMCID: PMC10823791 DOI: 10.17912/micropub.biology.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
IGT/LAZY proteins play a central role in determining gravitropic set point angle and orientation of lateral organs across plant species. Recent work in model systems has demonstrated that interactions between IGT/LAZY proteins and BREVIS RADIX (BRX)-domain containing proteins, such as PH, RCC1, AND FYVE/RCC1-LIKE DOMAIN (PRAF/RLD), and BREVIS RADIX LIKE (BRXL) family members, are mechanistically important for setting gravitropic set point angle. Here, we identified peach PRAF/RLD proteins as interactors of the peach IGT/LAZY proteins PpeLAZY1 and DEEPER ROOTING 1 (PpeDRO1) from a yeast-two-hybrid screen. We also show that the BRX domains of these interacting proteins have high sequence similarity with PRAF/RLD and BRX family proteins from rice and Arabidopsis. Further, PpeLAZY1 and the peach PRAF/RLD interactors are all expressed at relatively high levels in leaf, meristem, and shoot tip tissues. Together, this evidence supports the importance and conservation of IGT/LAZY-BRX-domain interactions, which underlie setting gravitropic set point angle across angiosperms.
Collapse
Affiliation(s)
| | | | - Jon R. Eilers
- USDA ARS Tree Fruit Research Laboratory, Wenatchee, WA
| | - Erik Burchard
- USDA ARS Appalachian Fruit Research Station, Kearneysville, WV
| | - Chris Dardick
- USDA ARS Appalachian Fruit Research Station, Kearneysville, WV
| |
Collapse
|
14
|
Fouché M, Bonnet H, Bonnet DMV, Wenden B. Transport capacity is uncoupled with endodormancy breaking in sweet cherry buds: physiological and molecular insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1240642. [PMID: 38752012 PMCID: PMC11094712 DOI: 10.3389/fpls.2023.1240642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 05/18/2024]
Abstract
Introduction To avoid the negative impacts of winter unfavorable conditions for plant development, temperate trees enter a rest period called dormancy. Winter dormancy is a complex process that involves multiple signaling pathways and previous studies have suggested that transport capacity between cells and between the buds and the twig may regulate the progression throughout dormancy stages. However, the dynamics and molecular actors involved in this regulation are still poorly described in fruit trees. Methods Here, in order to validate the hypothesis that transport capacity regulates dormancy progression in fruit trees, we combined physiological, imaging and transcriptomic approaches to characterize molecular pathways and transport capacity during dormancy in sweet cherry (Prunus avium L.) flower buds. Results Our results show that transport capacity is reduced during dormancy and could be regulated by environmental signals. Moreover, we demonstrate that dormancy release is not synchronized with the transport capacity resumption but occurs when the bud is capable of growth under the influence of warmer temperatures. We highlight key genes involved in transport capacity during dormancy. Discussion Based on long-term observations conducted during six winter seasons, we propose hypotheses on the environmental and molecular regulation of transport capacity, in relation to dormancy and growth resumption in sweet cherry.
Collapse
Affiliation(s)
- Mathieu Fouché
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| | | | | | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| |
Collapse
|
15
|
Zhao YL, Li Y, Cao K, Yao JL, Bie HL, Khan IA, Fang WC, Chen CW, Wang XW, Wu JL, Guo WW, Wang LR. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. PLANT PHYSIOLOGY 2023; 193:448-465. [PMID: 37217835 PMCID: PMC10469376 DOI: 10.1093/plphys/kiad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.
Collapse
Affiliation(s)
- Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wen-Wu Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
16
|
Puertes A, Polat H, Ramón-Núñez LA, González M, Ancillo G, Zuriaga E, Ríos G. Single-Bud Expression Analysis of Bud Dormancy Factors in Peach. PLANTS (BASEL, SWITZERLAND) 2023; 12:2601. [PMID: 37514216 PMCID: PMC10385799 DOI: 10.3390/plants12142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory DORMANCY-ASSOCIATED MADS-BOX (DAM) factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance. This analysis provides a close view on gene-specific, single-bud variability throughout the developmental shift from dormant to dormancy-released stages, contributing to the characterization of putative co-expression modules and other regulatory aspects in this particular tissue.
Collapse
Affiliation(s)
- Ana Puertes
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Helin Polat
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | | | - Matilde González
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gema Ancillo
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Elena Zuriaga
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gabino Ríos
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| |
Collapse
|
17
|
Li M, Li J, Nie P, Li G, Liu W, Gong Q, Dong X, Gao X, Chen W, Zhang A. A high-quality assembled genome of a representative peach landrace, 'Feichenghongli', and analysis of distinct late florescence and narrow leaf traits. BMC PLANT BIOLOGY 2023; 23:230. [PMID: 37120546 PMCID: PMC10148998 DOI: 10.1186/s12870-023-04242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Peach (Prunus persica L. Batsch) is one of the most popular fruits worldwide. Although the reference genome of 'Lovell' peach has been released, the diversity of genome-level variations cannot be explored with one genome. To detect these variations, it is necessary to assemble more genomes. RESULTS We sequenced and de novo assembled the genome of 'Feichenghongli' (FCHL), a representative landrace with strict self-pollination, which maintained the homozygosity of the genome as much as possible. The chromosome-level genome of FCHL was 239.06 Mb in size with a contig N50 of 26.93 Mb and only 4 gaps at the scaffold level. The alignment of the FCHL genome with the reference 'Lovell' genome enabled the identification of 432535 SNPs, 101244 insertions and deletions, and 7299 structural variants. Gene family analysis showed that the expanded genes in FCHL were enriched in sesquiterpenoids and triterpenoid biosynthesis. RNA-seq analyses were carried out to investigate the two distinct traits of late florescence and narrow leaves. Two key genes, PpDAM4 and PpAGL31, were identified candidates for the control of flower bud dormancy, and an F-box gene, PpFBX92, was identified as a good candidate gene in the regulation of leaf size. CONCLUSIONS The assembled high-quality genome could deepen our understanding of variations among diverse genomes and provide valuable information for identifying functional genes and improving the molecular breeding process.
Collapse
Affiliation(s)
- Miao Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Jian Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Peixian Nie
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Guixiang Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Wei Liu
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Qingtao Gong
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Xiaolan Gao
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Wenyu Chen
- Feicheng peach Industry Development Center, Feicheng City, 271600 Shandong Province China
| | - Anning Zhang
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| |
Collapse
|
18
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
19
|
Small RNA and Degradome Sequencing in Floral Bud Reveal Roles of miRNAs in Dormancy Release of Chimonanthus praecox. Int J Mol Sci 2023; 24:ijms24044210. [PMID: 36835618 PMCID: PMC9964840 DOI: 10.3390/ijms24044210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Chimonanthus praecox (wintersweet) is highly valued ornamentally and economically. Floral bud dormancy is an important biological characteristic in the life cycle of wintersweet, and a certain period of chilling accumulation is necessary for breaking floral bud dormancy. Understanding the mechanism of floral bud dormancy release is essential for developing measures against the effects of global warming. miRNAs play important roles in low-temperature regulation of flower bud dormancy through mechanisms that are unclear. In this study, small RNA and degradome sequencing were performed for wintersweet floral buds in dormancy and break stages for the first time. Small RNA sequencing identified 862 known and 402 novel miRNAs; 23 differentially expressed miRNAs (10 known and 13 novel) were screened via comparative analysis of breaking and other dormant floral bud samples. Degradome sequencing identified 1707 target genes of 21 differentially expressed miRNAs. The annotations of the predicted target genes showed that these miRNAs were mainly involved in the regulation of phytohormone metabolism and signal transduction, epigenetic modification, transcription factors, amino acid metabolism, and stress response, etc., during the dormancy release of wintersweet floral buds. These data provide an important foundation for further research on the mechanism of floral bud dormancy in wintersweet.
Collapse
|
20
|
Li Y, Guo L, Wang Z, Zhao D, Guo D, Carlson JE, Yin W, Hou X. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony ( Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. HORTICULTURE RESEARCH 2023; 10:uhac263. [PMID: 36793754 PMCID: PMC9926158 DOI: 10.1093/hr/uhac263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Tree peony is a unique traditional flower in China, with large, fragrant, and colorful flowers. However, a relatively short and concentrated flowering period limits the applications and production of tree peony. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of flowering phenology traits and ornamental phenotypes in tree peony. A diverse panel of 451 tree peony accessions was phenotyped for 23 flowering phenology traits and 4 floral agronomic traits over 3 years. Genotyping by sequencing (GBS) was used to obtain a large number of genome-wide single-nucleotide polymorphisms (SNPs) (107 050) for the panel genotypes, and 1047 candidate genes were identified by association mapping. Eighty-two related genes were observed during at least 2 years for flowering, and seven SNPs repeatedly identified for multiple flowering phenology traits over multiple years were highly significantly associated with five genes known to regulate flowering time. We validated the temporal expression profiles of these candidate genes and highlighted their possible roles in the regulation of flower bud differentiation and flowering time in tree peony. This study shows that GWAS based on GBS can be used to identify the genetic determinants of complex traits in tree peony. The results expand our understanding of flowering time control in perennial woody plants. Identification of markers closely related to these flowering phenology traits can be used in tree peony breeding programs for important agronomic traits.
Collapse
Affiliation(s)
| | | | - Zhanying Wang
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang, Henan, 471000, China
| | - Dehui Zhao
- College of Agronomy/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - John E. Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Weilun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
21
|
Canton M, Forestan C, Marconi G, Carrera E, Bonghi C, Varotto S. Evidence of chromatin and transcriptional dynamics for cold development in peach flower bud. THE NEW PHYTOLOGIST 2022; 236:974-988. [PMID: 35860865 PMCID: PMC9804738 DOI: 10.1111/nph.18393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In temperate zones, fruit trees regulate their annual growth cycle to seasonal environmental changes. During the cold season, growth is limited by both environmental and genetic factors. After the exposure to low temperature and fulfillment of chilling requirements, mild temperatures promote the growth and flowering. However, an insufficient chilling exposure may lead to nonuniform blooming, with a negative impact on fruit set. To gain insights into flower development in the fruit tree buds, peach is an interesting model, the flower and vegetative bud being distinct organs. To understand how flower bud development is regulated, we integrated cytological observations and epigenetic and chromatin genome-wide data with transcriptional changes to identify the main regulatory factors involved in flower development during chilling accumulation. We demonstrated that growth cessation does not occur in peach flower buds during chilling accumulation, but that there are changes in transcript abundance of key genes of hormone metabolism and flower bud development, distribution of histone modifications (H3K4me3 and H3K27me3) and DNA methylation. Altogether, our findings indicate that during the cold season the flower bud is in a nondormant state and that the chilling experience allows flower differentiation to be completed.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL)University of Bologna40127BolognaBOItaly
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental SciencesUniversity of Perugia06121PerugiaItaly
| | - Esther Carrera
- Instituto de Biologıa Molecular y Celular de Plantas (IBMCP)Universidad Politecnica de Valencia‐Consejo Superior de Investigaciones Cientıficas (CSIC)ValenciaSpain
| | - Claudio Bonghi
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| |
Collapse
|
22
|
Li P, Zhang Q, Shi B, Liu L, Zhang X, Wang J, Yi H. Integration of genome and transcriptome reveal molecular regulation mechanism of early flowering trait in Prunus genus ( Prunus mume and Prunus persica). FRONTIERS IN PLANT SCIENCE 2022; 13:1036221. [PMID: 36275593 PMCID: PMC9582937 DOI: 10.3389/fpls.2022.1036221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Flowering time is crucial for the survival and reproduction. Prunus genus belongs to the Rosaceae family and includes several hundred species of flowering trees and shrubs with important ornamental and economic values. However, the molecular mechanism underlying early flowering in Prunus genus is unclear. Here, we utilized the genome and transcriptome of P. mume and P. persica to explore the transcriptional regulation mechanism of early flowering. Comparative genomics found that genes accounting for 92.4% of the total P. mume genome and 91.2% of the total P. persica genome belonged to orthogroups. A total of 19,169 orthogroups were found between P. mume and P. persica, including 20,431 corresponding orthologues and 20,080 collinearity gene pairs. A total of 305 differentially expressed genes (DEGs) associated with early flowering were found, among which FT, TLI65, and NAP57 were identified as hub genes in the early flowering regulation pathway. Moreover, we identified twenty-five transcription factors (TFs) from nine protein families, including MADS-box, AP2/ERF, and MYB. Our results provide insights into the underlying molecular model of flowering time regulation in Prunus genus and highlight the utility of multi-omics in deciphering the properties of the inter-genus plants.
Collapse
Affiliation(s)
- Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Qin Zhang
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Baosheng Shi
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Liu Liu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaoman Zhang
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Jia Wang
- National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Haihui Yi
- College of Agronomy, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
23
|
Quesada-Traver C, Lloret A, Carretero-Paulet L, Badenes ML, Ríos G. Evolutionary origin and functional specialization of Dormancy-Associated MADS box (DAM) proteins in perennial crops. BMC PLANT BIOLOGY 2022; 22:473. [PMID: 36199018 PMCID: PMC9533583 DOI: 10.1186/s12870-022-03856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Alba Lloret
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - María Luisa Badenes
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Gabino Ríos
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| |
Collapse
|
24
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
25
|
Sun L, Nie T, Chen Y, Yin Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int J Mol Sci 2022; 23:ijms231810959. [PMID: 36142871 PMCID: PMC9500781 DOI: 10.3390/ijms231810959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees.
Collapse
Affiliation(s)
- Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Department of Biology, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Tangjie Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-85427316
| |
Collapse
|
26
|
Small RNA Differential Expression Analysis Reveals miRNAs Involved in Dormancy Progression in Sweet Cherry Floral Buds. PLANTS 2022; 11:plants11182396. [PMID: 36145795 PMCID: PMC9500734 DOI: 10.3390/plants11182396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In sweet cherry (Prunus avium), as in other temperate woody perennials, bud dormancy allows for survival in adverse environmental conditions during winter. During this process, environmental signals such as short days and/or low temperatures trigger internal signals that enable buds to become tolerant to the cold. The process involves tracking chilling units up to chilling the requirement fulfillment to resume growth, a transition involving transcriptional regulation, metabolic signaling, and epigenetic-related regulatory events. Massive sequencing of small RNAs was performed to identify miRNAs involved in sweet cherry dormancy by comparing their expression in field (regular seasonal) and controlled non-stop (continuous) chilling conditions. miRNAs highlighted by sequencing were validated using specific stem-loop PCR quantification, confirming expression patterns for known miRNAs such as miR156e, miR166c, miR172d, miR391, miR482c, and miR535b, as well as for newly proposed miRNAs. In silico prediction of the target genes was used to construct miRNA/target gene nodes. In particular, the involvement of the sweet cherry version for the miR156/SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN genes whose expression was opposite in the two conditions suggests their involvement on dormancy regulation in sweet cherry. miRNA levels indicate that the regulation of stress-related genes and hormone synthesis modulates the expression of calcium metabolism and cell development-associated genes. Understanding the regulatory networks involved in sweet cherry dormancy, particularly in the context of miRNA involvement, represents the first step in the development of new agricultural strategies that may help overcome the increasing challenges presented by global climate change.
Collapse
|
27
|
Lempe J, Flachowsky H, Peil A. Exploring epigenetic variation for breeding climate resilient apple crops. PHYSIOLOGIA PLANTARUM 2022; 174:e13782. [PMID: 36151889 DOI: 10.1111/ppl.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Climate change with warmer winter and spring temperatures poses major challenges to apple fruit production. Long-term observations confirm the trend toward earlier flowering, which leads to an increased risk of frost damage. New breeding strategies are needed to generate cultivars that are able to stay largely unaffected by warmer temperatures. Recently, epigenetic variation has been proposed as a new resource for breeding purposes and seems suitable in principle for apple breeding. However, to serve as a new resource for apple breeding, it is necessary to clarify whether epigenetic variation can be induced by the environment, whether it can create phenotypic variation, and whether this variation is stable across generations. In this brief review, we summarize the impact of climate change on the timing of apple phenology, highlight how epigenetic variation can potentially support novel breeding strategies, and point out important features of epigenetic variation that are required for its application in breeding programs.
Collapse
Affiliation(s)
- Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
28
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Fall Applications of Ethephon Modulates Gene Networks Controlling Bud Development during Dormancy in Peach ( Prunus Persica). Int J Mol Sci 2022; 23:ijms23126801. [PMID: 35743242 PMCID: PMC9224305 DOI: 10.3390/ijms23126801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Ethephon (ET) is an ethylene-releasing plant growth regulator (PGR) that can delay the bloom time in Prunus, thus reducing the risk of spring frost, which is exacerbated by global climate change. However, the adoption of ET is hindered by its detrimental effects on tree health. Little knowledge is available regarding the mechanism of how ET shifts dormancy and flowering phenology in peach. This study aimed to further characterize the dormancy regulation network at the transcriptional level by profiling the gene expression of dormant peach buds from ET-treated and untreated trees using RNA-Seq data. The results revealed that ET triggered stress responses during endodormancy, delaying biological processes related to cell division and intercellular transportation, which are essential for the floral organ development. During ecodormancy, ET mainly impeded pathways related to antioxidants and cell wall formation, both of which are closely associated with dormancy release and budburst. In contrast, the expression of dormancy-associated MADS (DAM) genes remained relatively unaffected by ET, suggesting their conserved nature. The findings of this study signify the importance of floral organogenesis during dormancy and shed light on several key processes that are subject to the influence of ET, therefore opening up new avenues for the development of effective strategies to mitigate frost risks.
Collapse
|
30
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
31
|
Lempe J, Peil A, Flachowsky H. Time-Resolved Analysis of Candidate Gene Expression and Ambient Temperature During Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2022; 12:803341. [PMID: 35111181 PMCID: PMC8802299 DOI: 10.3389/fpls.2021.803341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Winter dormancy - a period of low metabolic activity and no visible growth - appears as an adaptation to harsh winter conditions and can be divided into different phases. It is tightly controlled by environmental cues, with ambient temperature playing a major role. During endodormancy, a cultivar-specific amount of cold needs to be perceived, and during ecodormancy, heat hours accumulate before bud burst and anthesis in spring. Expression analysis, performed in several key fruit tree species, proved to be very useful in elucidating the molecular control of onset and release of dormancy. However, the time resolution of these experiments has been limited. Therefore, in this study, dense time-series expression analysis was conducted for 40 candidate genes involved in dormancy control, under the cool-temperate climate conditions in Dresden. Samples were taken from the cultivars 'Pinova' and 'Gala,' which differ in flowering time. The set of candidate genes included well-established dormancy genes such as DAM genes, MdFLC-like, MdICE1, MdPRE 1, and MdPIF4. Furthermore, we tested genes from dormancy-associated pathways including the brassinosteroid, gibberellic acid, abscisic acid (ABA), cytokinin response, and respiratory stress pathways. The expression patterns of well-established dormancy genes were confirmed and could be associated with specific dormancy phases. In addition, less well-known transcription factors and genes of the ABA signaling pathway showed associations with dormancy progression. The three ABA signaling genes HAB1_chr15, HAI3, and ABF2 showed a local minimum of gene expression in proximity of the endodormancy to ecodormancy transition. The number of sampling points allowed us to correlate expression values with temperature data, which revealed significant correlations of ambient temperature with the expression of the Malus domestica genes MdICE1, MdPIF4, MdFLC-like, HAB1chr15, and the type-B cytokinin response regulator BRR9. Interestingly, the slope of the linear correlation of temperature with the expression of MdPIF4 differed between cultivars. Whether the strength of inducibility of MdPIF4 expression by low temperature differs between the 'Pinova' and 'Gala' alleles needs to be tested further.
Collapse
|
32
|
Zhang M, Cheng W, Yuan X, Wang J, Cheng T, Zhang Q. Integrated transcriptome and small RNA sequencing in revealing miRNA-mediated regulatory network of floral bud break in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:931454. [PMID: 35937373 PMCID: PMC9355595 DOI: 10.3389/fpls.2022.931454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 05/08/2023]
Abstract
MicroRNAs is one class of small non-coding RNAs that play important roles in plant growth and development. Though miRNAs and their target genes have been widely studied in many plant species, their functional roles in floral bud break and dormancy release in woody perennials is still unclear. In this study, we applied transcriptome and small RNA sequencing together to systematically explore the transcriptional and post-transcriptional regulation of floral bud break in P. mume. Through expression profiling, we identified a few candidate genes and miRNAs during different developmental stage transitions. In total, we characterized 1,553 DEGs associated with endodormancy release and 2,084 DEGs associated with bud flush. Additionally, we identified 48 known miRNAs and 53 novel miRNAs targeting genes enriched in biological processes such as floral organ morphogenesis and hormone signaling transudation. We further validated the regulatory relationship between differentially expressed miRNAs and their target genes combining computational prediction, degradome sequencing, and expression pattern analysis. Finally, we integrated weighted gene co-expression analysis and constructed miRNA-mRNA regulatory networks mediating floral bud flushing competency. In general, our study revealed the miRNA-mediated networks in modulating floral bud break in P. mume. The findings will contribute to the comprehensive understanding of miRNA-mediated regulatory mechanism governing floral bud break and dormancy cycling in wood perennials.
Collapse
|
33
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
34
|
Lloret A, Quesada-Traver C, Conejero A, Arbona V, Gómez-Mena C, Petri C, Sánchez-Navarro JA, Zuriaga E, Leida C, Badenes ML, Ríos G. Regulatory circuits involving bud dormancy factor PpeDAM6. HORTICULTURE RESEARCH 2021; 8:261. [PMID: 34848702 PMCID: PMC8632999 DOI: 10.1038/s41438-021-00706-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | | | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castello de la Plana, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - César Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain.
| |
Collapse
|
35
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, Li J, Wei J, Ni J, Ahmad M, Bai S, Teng Y. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. HORTICULTURE RESEARCH 2021; 8:197. [PMID: 34465760 PMCID: PMC8408243 DOI: 10.1038/s41438-021-00632-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
Dormancy-associated MADS-box (DAM) genes serve as crucial regulators of the endodormancy cycle in rosaceous plants. Although pear DAM genes have been identified previously, the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes. Additionally, the contribution of other genes to the regulation of endodormancy release remains poorly understood. In this study, a high-quality genome assembly for 'Cuiguan' pear (Pyrus pyrifolia), which is a leading cultivar with a low chilling requirement cultivated in China, was constructed using PacBio and Hi-C technologies. Using this genome sequence, we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between 'Cuiguan' and the high-chilling-requirement cultivar 'Suli' during the dormancy cycle. Using a virus-induced gene silencing system, we determined the repressive effects of DAM genes on bud break. Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of 'Suli' buds during artificial chilling using the new reference genome. Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change.
Collapse
Affiliation(s)
- Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
36
|
Wu R, Cooney J, Tomes S, Rebstock R, Karunairetnam S, Allan AC, Macknight RC, Varkonyi-Gasic E. RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. TREE PHYSIOLOGY 2021; 41:1510-1523. [PMID: 33564851 DOI: 10.1093/treephys/tpab007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/14/2021] [Indexed: 05/23/2023]
Abstract
DORMANCY-ASSOCIATED MADS-box (DAM) and SHORT VEGETATIVE PHASE (SVP) genes have been implicated in the regulation of winter dormancy in perennials. Ectopic expression of apple (Malus × domestica Borkh. 'Royal Gala') DAM and SVP genes delays budbreak and constrains lateral shoot outgrowth. In this study, we used RNA interference (RNAi) to simultaneously target all apple DAM and SVP genes in order to study their role and mode of action in the regulation of bud dormancy, budbreak and flowering. A synthetic construct carrying a hairpin fragment assembled from sequences specific to coding regions of three DAM and two SVP genes was used to generate transgenic lines. Reduced expression of DAM/SVP genes resulted in delayed leaf senescence and abscission in autumn, failure to enter bud dormancy in winter and continual growth of new leaves regardless of the season for over 3 years. Precocious flowering but normal flower morphology, fertility and fruit development were observed. The non-dormant phenotype was associated with modified phytohormone composition. The content of gibberellins (GAs) and jasmonates (JAs) was significantly increased in terminal buds of RNAi lines compared with wildtype plants, accompanied by elevated expression of the key GA biosynthesis pathway gene GIBBERELLIN 20 OXIDASE-2 (MdGA20ox-2) along with the FLOWERING LOCUS T gene MdFT2. The key mediator of plasmodesmatal closure, MdCALLOSE SYNTHASE 1 (MdCALS1), was repressed in RNAi lines. This study provides functional evidence for the role of DAM/SVP genes in vegetative phenology of apple and paves the way for production of low-chill varieties suitable for growth in warming climates.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Ruakura Campus, Hamilton 3214, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| |
Collapse
|
37
|
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, Teng Y. Bud endodormancy in deciduous fruit trees: advances and prospects. HORTICULTURE RESEARCH 2021; 8:139. [PMID: 34078882 PMCID: PMC8172858 DOI: 10.1038/s41438-021-00575-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
Bud endodormancy is a complex physiological process that is indispensable for the survival, growth, and development of deciduous perennial plants. The timely release of endodormancy is essential for flowering and fruit production of deciduous fruit trees. A better understanding of the mechanism of endodormancy will be of great help in the artificial regulation of endodormancy to cope with climate change and in creating new cultivars with different chilling requirements. Studies in poplar have clarified the mechanism of vegetative bud endodormancy, but the endodormancy of floral buds in fruit trees needs further study. In this review, we focus on the molecular regulation of endodormancy induction, maintenance and release in floral buds of deciduous fruit trees. We also describe recent advances in quantitative trait loci analysis of chilling requirements in fruit trees. We discuss phytohormones, epigenetic regulation, and the detailed molecular network controlling endodormancy, centered on SHORT VEGETATIVE PHASE (SVP) and Dormancy-associated MADS-box (DAM) genes during endodormancy maintenance and release. Combining previous studies and our observations, we propose a regulatory model for bud endodormancy and offer some perspectives for the future.
Collapse
Affiliation(s)
- Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Takaya Moriguchi
- Shizuoka Professional University of Agriculture, Iwata, Shizuoka, 438-0803, Japan
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
38
|
Yu J, Bennett D, Dardick C, Zhebentyayeva T, Abbott AG, Liu Z, Staton ME. Genome-Wide Changes of Regulatory Non-Coding RNAs Reveal Pollen Development Initiated at Ecodormancy in Peach. Front Mol Biosci 2021; 8:612881. [PMID: 33968979 PMCID: PMC8098804 DOI: 10.3389/fmolb.2021.612881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Bud dormancy is under the regulation of complex mechanisms including genetic and epigenetic factors. To study the function of regulatory non-coding RNAs in winter dormancy release, we analyzed the small RNA and long non-coding RNA (lncRNA) expression from peach (Prunus persica) floral buds in endodormancy, ecodormancy and bud break stages. Small RNAs underwent a major shift in expression primarily between dormancy and flowering with specific pairs of microRNAs and their mRNA target genes undergoing coordinated differential expression. From endodormancy to ecodormancy, ppe-miR6285 was significantly upregulated while its target gene, an ASPARAGINE-RICH PROTEIN involved in the regulation of abscisic acid signaling, was downregulated. At ecodormancy, ppe-miR2275, a homolog of meiosis-specific miR2275 across angiosperms, was significantly upregulated, supporting microsporogenesis in anthers at a late stage of dormancy. The expression of 785 lncRNAs, unlike the overall expression pattern in the small RNAs, demonstrated distinctive expression signatures across all dormancy and flowering stages. We predicted that a subset of lncRNAs were targets of microRNAs and found 18 lncRNA/microRNA target pairs with both differentially expressed across time points. The genome-wide differential expression and network analysis of non-coding RNAs and mRNAs from the same tissues provide new candidate loci for dormancy regulation and suggest complex noncoding RNA interactions control transcriptional regulation across these key developmental time points.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Albert G Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Margaret E Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States.,Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
39
|
Goeckeritz C, Hollender CA. There is more to flowering than those DAM genes: the biology behind bloom in rosaceous fruit trees. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101995. [PMID: 33444911 DOI: 10.1016/j.pbi.2020.101995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
The regulation of bloom time in deciduous fruit trees is an area of increasing interest due to the negative impact of climate change on fruit production. Although flower development has been well-studied in model species, there are many knowledge gaps about this process in perennial fruit trees, whose floral development spans the four seasons and includes many temperature-driven transitions. To develop solutions for minimizing crop loss, a comprehensive research strategy is needed to understand flower development and bloom time in deciduous fruit trees. This approach must incorporate genetic, physiological, and phenological strategies which include morphological and molecular analyses. Here, we describe key floral development events for rosaceae family fruit trees, highlight recent molecular and genetic discoveries, and discuss future directions for this field.
Collapse
Affiliation(s)
- Charity Goeckeritz
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States
| | - Courtney A Hollender
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States.
| |
Collapse
|
40
|
Qi X, Ogden EL, Bostan H, Sargent DJ, Ward J, Gilbert J, Iorizzo M, Rowland LJ. High-Density Linkage Map Construction and QTL Identification in a Diploid Blueberry Mapping Population. FRONTIERS IN PLANT SCIENCE 2021; 12:692628. [PMID: 34234801 PMCID: PMC8256855 DOI: 10.3389/fpls.2021.692628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/24/2021] [Indexed: 05/11/2023]
Abstract
Genotyping by sequencing approaches have been widely applied in major crops and are now being used in horticultural crops like berries and fruit trees. As the original and largest producer of cultivated blueberry, the United States maintains the most diverse blueberry germplasm resources comprised of many species of different ploidy levels. We previously constructed an interspecific mapping population of diploid blueberry by crossing the parent F1#10 (Vaccinium darrowii Fla4B × diploid V. corymbosum W85-20) with the parent W85-23 (diploid V. corymbosum). Employing the Capture-Seq technology developed by RAPiD Genomics, with an emphasis on probes designed in predicted gene regions, 117 F1 progeny, the two parents, and two grandparents of this population were sequenced, yielding 131.7 Gbp clean sequenced reads. A total of 160,535 single nucleotide polymorphisms (SNPs), referenced to 4,522 blueberry genome sequence scaffolds, were identified and subjected to a parent-dependent sliding window approach to further genotype the population. Recombination breakpoints were determined and marker bins were deduced to construct a high density linkage map. Twelve blueberry linkage groups (LGs) consisting of 17,486 SNP markers were obtained, spanning a total genetic distance of 1,539.4 cM. Among 18 horticultural traits phenotyped in this population, quantitative trait loci (QTLs) that were significant over at least 2 years were identified for chilling requirement, cold hardiness, and fruit quality traits of color, scar size, and firmness. Interestingly, in 1 year, a QTL associated with timing of early bloom, full bloom, petal fall, and early green fruit was identified in the same region harboring the major QTL for chilling requirement. In summary, we report here the first high density bin map of a diploid blueberry mapping population and the identification of several horticulturally important QTLs.
Collapse
Affiliation(s)
- Xinpeng Qi
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Elizabeth L. Ogden
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Hamed Bostan
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | | | - Judson Ward
- Driscoll’s Inc., Watsonville, CA, United States
| | | | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Lisa J. Rowland
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- *Correspondence: Lisa J. Rowland, ;
| |
Collapse
|
41
|
Wang X, Zhang R, Huang Q, Shi X, Li D, Shao L, Xu T, Horvath DP, Xia Y, Zhang J. Comparative Study on Physiological Responses and Gene Expression of Bud Endodormancy Release Between Two Herbaceous Peony Cultivars ( Paeonia lactiflora Pall.) With Contrasting Chilling Requirements. FRONTIERS IN PLANT SCIENCE 2021; 12:772285. [PMID: 35185946 PMCID: PMC8847303 DOI: 10.3389/fpls.2021.772285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 05/10/2023]
Abstract
With the global temperature increase, diverse endogenous factors and environmental cues can lead to severe obstacles to bud endodormancy release for important economic plants, such as herbaceous peony (Paeonia lactiflora Pall.). Knowing the underlying mechanism in bud endodormancy release is vital for widely planting herbaceous peony at low latitudes with warm winter climates. A systematic study was carried out between the southern Chinese cultivar 'Hang Baishao' with low-chilling requirement (CR) trait and the northern cultivar 'Zhuguang' with high-CR trait. Peony buds were sampled at regular intervals under natural cold during the crucial bud endodormancy release stage. Physiology and morphology of the buds were observed, and the roles of reactive oxygen species (ROS) and relevant genes in the regulation of bud endodormancy release were also highlighted, which has been rather rare in previous bud dormancy studies of both herbaceous and tree peonies. The expression of the starch metabolism- and sucrose synthesis-related genes PlAMY PlSPS and PlSUS was lower in the high-CR 'Zhuguang' and corresponded to a lower content of soluble sugars. The expression of polyamine oxidase gene PlPAO2 correlated with a higher level of hydrogen peroxide (H2O2) in high-CR 'Zhuguang' than in low CR 'Hang Baishao' during bud endodormancy. Expression of PlMAPKKK5, an intermediate gene in the abscisic acid (ABA) response to ROS signaling, correlated with ROS levels and ABA content. We present the hypothesis that accumulation of ROS increases ABA content and decreases GA3 content and signal transduction leading to reduced expression of PlSVP and PlSOC1. Reduced cell division and increased cellular damage which probably blocked bud endodormancy release were also observed in high-CR 'Zhuguang' through histological observation and related genes expression. This study provides a comparative analysis on physiological responses and gene expression patterns of bud dormancy of geophytes in an increasingly unsuitable environment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Runlong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiaoyu Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaohua Shi
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tong Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David P. Horvath
- Agricultural Research Service, United States Department of Agriculture, Washington, DC, United States
- *Correspondence: David P. Horvath,
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Yiping Xia,
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Jiaping Zhang,
| |
Collapse
|
42
|
Zhang M, Yang Q, Yuan X, Yan X, Wang J, Cheng T, Zhang Q. Integrating Genome-Wide Association Analysis With Transcriptome Sequencing to Identify Candidate Genes Related to Blooming Time in Prunus mume. FRONTIERS IN PLANT SCIENCE 2021; 12:690841. [PMID: 34335659 PMCID: PMC8319914 DOI: 10.3389/fpls.2021.690841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/28/2021] [Indexed: 05/12/2023]
Abstract
Prunus mume is one of the most important woody perennials for edible and ornamental use. Despite a substantial variation in the flowering phenology among the P. mume germplasm resources, the genetic control for flowering time remains to be elucidated. In this study, we examined five blooming time-related traits of 235 P. mume landraces for 2 years. Based on the phenotypic data, we performed genome-wide association studies, which included a combination of marker- and gene-based association tests, and identified 1,445 candidate genes that are consistently linked with flowering time across multiple years. Furthermore, we assessed the global transcriptome change of floral buds from the two P. mume cultivars exhibiting contrasting bloom dates and detected 617 associated genes that were differentially expressed during the flowering process. By integrating a co-expression network analysis, we screened out 191 gene candidates of conserved transcriptional pattern during blooming across cultivars. Finally, we validated the temporal expression profiles of these candidates and highlighted their putative roles in regulating floral bud break and blooming time in P. mume. Our findings are important to expand the understanding of flowering time control in woody perennials and will boost the molecular breeding of novel varieties in P. mume.
Collapse
Affiliation(s)
- Man Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingqing Yang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xi Yuan
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | - Jia Wang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Qixiang Zhang
| |
Collapse
|