1
|
Insausti S, Ramos-Caballero A, Wiley B, González-Resines S, Torralba J, Elizaga-Lara A, Shamblin C, Ojida A, Caaveiro JMM, Zwick MB, Rujas E, Domene C, Nieva JL. Generation of a Nonbilayer Lipid Nanoenvironment after Epitope Binding Potentiates Neutralizing HIV-1 MPER Antibody. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59934-59948. [PMID: 39446590 DOI: 10.1021/acsami.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood. To approach this issue, we computationally and experimentally investigated lipid interactions of broadly neutralizing antibody 10E8 and optimized versions engineered to enhance their epitope and membrane affinity by grafting bulky aromatic compounds. Our data revealed a correlation between neutralization potency and the establishment of favorable interactions with small headgroup lipids cholesterol and phosphatidylethanolamine, evolving after specific engagement with MPER. Molecular dynamics simulations of chemically modified Fabs in complex with an MPER-Transmembrane Domain helix supported the generation of a nanoenvironment causing localized deformation of the thick, rigid viral membrane and identified sphingomyelin preferentially occupying a phospholipid-binding site of 10E8. Together, these interactions appear to facilitate insertion of the Fabs through their engagement with the MPER epitope. These findings implicate individual lipid molecules in the neutralization function of MPER bnAbs, validate targeted chemical modification as a method to optimize MPER antibodies, and suggest pathways for MPER peptide-liposome vaccine development.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Ander Ramos-Caballero
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Brian Wiley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Saul González-Resines
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Anne Elizaga-Lara
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Christine Shamblin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Akio Ojida
- Department of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria 01006, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao48013, Spain
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - José L Nieva
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| |
Collapse
|
2
|
Yuste E, Gil H, Garcia F, Sanchez-Merino V. Antiretroviral Therapy with Ritonavir-Boosted Atazanavir- and Lopinavir-Containing Regimens Correlates with Diminished HIV-1 Neutralization. Vaccines (Basel) 2024; 12:1176. [PMID: 39460342 PMCID: PMC11511486 DOI: 10.3390/vaccines12101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The impact of virion maturation on neutralizing antibody responses in HIV treatment is not fully understood. This study examines whether antiretroviral regimens (ART) with boosted protease inhibitors (b-PI), which increase exposure to immature virions, affect neutralization capacity compared to Non-b-PI regimens. METHODS Neutralization activity was assessed in 45 HIV-infected individuals on b-PI regimens and 56 on Non-b-PI regimens, adjusting for factors like infection duration, ART initiation, and immune markers. Individuals on b-PI regimens had significantly lower neutralization scores [mean: 6.1, 95% Confidence Interval (CI): 5.3-6.9] than those on Non-b-PI regimens (mean: 8.9, 95% CI: 8.0-9.9; p < 0.0001). This difference was not explained by infection duration or CD4+ counts. CD4+/CD8+ ratios were positively associated with neutralization, while b-PI use was negatively associated. A regression model indicated that b-PI use significantly predicted lower neutralization scores (beta = -0.30, p = 0.049). CONCLUSIONS These findings suggest that exposure to immature virions via b-PI use reduces neutralizing antibody responses, highlighting the importance of virion maturation in antibody induction. ART regimens promoting exposure to mature virions may enhance neutralization, with potential implications for HIV vaccine design. Further research is needed to explore implications for HIV vaccine design, especially using virus-like particles.
Collapse
Affiliation(s)
- Eloisa Yuste
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (H.G.); (V.S.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Horacio Gil
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (H.G.); (V.S.-M.)
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Victor Sanchez-Merino
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (H.G.); (V.S.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| |
Collapse
|
3
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
4
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape Hedgehog morphogen gradients. Proc Natl Acad Sci U S A 2024; 121:e2400677121. [PMID: 39190357 PMCID: PMC11388384 DOI: 10.1073/pnas.2400677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Miram Meziane
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
5
|
Khandan V, Boerkamp VJP, Chiechi RC, Hohlbein J, Mathwig K. Addressing spatiotemporal signal variations in pair correlation function analysis. Biophys J 2024:S0006-3495(24)00524-1. [PMID: 39113360 DOI: 10.1016/j.bpj.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a cornerstone technique in optical microscopy to measure, for example, the concentration and diffusivity of fluorescent emitters and biomolecules in solution. The application of FCS to complex biological systems, however, is fraught with inherent intricacies that impair the interpretation of correlation patterns. Critical among these intricacies are temporal variations beyond diffusion in the quantity, intensity, and spatial distribution of fluorescent emitters. These variations introduce distortions into correlated intensity data, thus compromising the accuracy and reproducibility of the analysis. This issue is accentuated in imaging-based approaches such as pair correlation function (pCF) analysis due to their broader regions of interest compared with point-detector-based approaches. Despite ongoing developments in FCS, attention to systems characterized by a spatiotemporal-dependent probability distribution function (ST-PDF) has been lacking. To address this knowledge gap, we developed a new analytical framework for ST-PDF systems that introduces a dual-timescale model function within the conventional pCF analysis. Our approach selectively differentiates the signals associated with rapid processes, such as particle diffusion, from signals stemming from spatiotemporal variations in the distribution of fluorescent emitters occurring at extended delay timescales. To corroborate our approach, we conducted proof-of-concept experiments on an ST-PDF system, wherein the, initially, uniform distribution of fluorescent microspheres within a microfluidic channel changes into a localized accumulation of microspheres over time. Our framework is offering a comprehensive solution for investigating various phenomena such as biomolecular binding, sedimentation, and particle accumulation.
Collapse
Affiliation(s)
- Vahid Khandan
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, Groningen, the Netherlands
| | - Vincent J P Boerkamp
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ryan C Chiechi
- Department of Chemistry & Organic and Carbon Electronics Laboratory, North Carolina State University, Raleigh, North Carolina
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, the Netherlands.
| | - Klaus Mathwig
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, Groningen, the Netherlands; imec within OnePlanet Research Center, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Raghunath G, Abbott EH, Marin M, Wu H, Reyes Ballista JM, Brindley MA, Melikyan GB. Disruption of Transmembrane Phosphatidylserine Asymmetry by HIV-1 Incorporated SERINC5 Is Not Responsible for Virus Restriction. Biomolecules 2024; 14:570. [PMID: 38785977 PMCID: PMC11118262 DOI: 10.3390/biom14050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Host restriction factor SERINC5 (SER5) incorporates into the HIV-1 membrane and inhibits infectivity by a poorly understood mechanism. Recently, SER5 was found to exhibit scramblase-like activity leading to the externalization of phosphatidylserine (PS) on the viral surface, which has been proposed to be responsible for SER5's antiviral activity. This and other reports that document modulation of HIV-1 infectivity by viral lipid composition prompted us to investigate the role of PS in regulating SER5-mediated HIV-1 restriction. First, we show that the level of SER5 incorporation into virions correlates with an increase in PS levels in the outer leaflet of the viral membrane. We developed an assay to estimate the PS distribution across the viral membrane and found that SER5, but not SER2, which lacks antiviral activity, abrogates PS asymmetry by externalizing this lipid. Second, SER5 incorporation diminished the infectivity of pseudoviruses produced from cells lacking a flippase subunit CDC50a and, therefore, exhibited a higher baseline level of surface-accessible PS. Finally, exogenous manipulation of the viral PS levels utilizing methyl-alpha-cyclodextrin revealed a lack of correlation between external PS and virion infectivity. Taken together, our study implies that the increased PS exposure to SER5-containing virions itself is not directly linked to HIV-1 restriction.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Elizabeth H. Abbott
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.R.B.); (M.A.B.)
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.R.B.); (M.A.B.)
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape morphogen gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592050. [PMID: 38746265 PMCID: PMC11092646 DOI: 10.1101/2024.05.01.592050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extra-cellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, and morphogens can only overcome the barrier by passing through a membrane-unconfined state. Under this model, SCUBE1 promotes Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and discovered novel knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
|
8
|
Kohler J, Hur KH, Mueller JD. Statistical analysis of the autocorrelation function in fluorescence correlation spectroscopy. Biophys J 2024; 123:667-680. [PMID: 38219016 PMCID: PMC10995414 DOI: 10.1016/j.bpj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful method to measure concentration, mobility, and stoichiometry in solution and in living cells, but quantitative analysis of FCS data remains challenging due to the correlated noise in the autocorrelation function (ACF) of FCS. We demonstrate here that least-squares fitting of the conventional ACF is incompatible with the χ2 goodness-of-fit test and systematically underestimates the true fit parameter uncertainty. To overcome this challenge, a simple method to fit the ACF is introduced that allows proper calculation of goodness-of-fit statistics and that provides more tightly constrained parameter estimates than the conventional least-squares fitting method, achieving the theoretical minimum uncertainty. Because this method requires significantly more data than the standard method, we further introduce an approximate method that requires fewer data. We demonstrate both these new methods using experiments and simulations of diffusion. Finally, we apply our method to FCS data of the peripheral membrane protein HRas, which has a slow-diffusing membrane-bound population and a fast-diffusing cytoplasmic population. Despite the order-of-magnitude difference of the diffusion times, conventional FCS fails to reliably resolve the two species, whereas the new method identifies the correct model and provides robust estimates of the fit parameters for both species.
Collapse
Affiliation(s)
- John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Joachim Dieter Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
9
|
Cheng X, Pu Y, Ye S, Xiao X, Zhang X, Chen H. Measuring Solvent Exchange in Silica Nanoparticles with Rotor-Based Fluorophore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305779. [PMID: 37774750 DOI: 10.1002/adma.202305779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Measuring the diffusivity of molecules is the first step toward understanding their dependence and controlling diffusion, but the challenge increases with the decrease of molecular size, particularly for non-fluorescent and non-reactive molecules such as solvents. Here, the capability to monitor the solvent exchange process within the micropores of silica with millisecond time resolution is demonstrated, by simply embedding a rotor-based fluorophore (thioflavin T) in colloidal silica nanoparticles. Basically, the silica provides an extreme case of viscous microenvironment, which is affected by the polarity of the solvents. The fluorescence intensity traces can be well fitted to the Fickian diffusion model, allowing analytical solution of the diffusion process, and revealing the diffusion coefficients. The validation experiments, involving the water-to-ethanol and ethanol-to-water solvent exchange, the comparison of different drying conditions, and the variation in the degree of cross-linking in silica, confirmed the effectiveness and sensitivity of this method for characterizing diffusion in silica micropores. This work focuses on the method development of measuring diffusivity and the high temporal resolution in tracking solvent exchange dynamics over a short distance (within 165 nm) opens enormous possibilities for further studies.
Collapse
Affiliation(s)
- Xuejun Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Yingming Pu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiao Xiao
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
10
|
Tateishi H, Chinen T, Fukuda R, Radwan MO, Shimagaki K, Koga R, Masuda T, Okamoto Y, Sakamoto A, Misumi S, Otsuka M, Fujita M, Anraku K. HIV-1 Gag MA domain binds to cardiolipin in a binding mode distinct from virus assemble mediator PI(4,5)P 2. Chem Biol Drug Des 2024; 103:e14401. [PMID: 37985015 DOI: 10.1111/cbdd.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag protein is responsible for facilitating HIV-1 virion assembly and budding. Our study demonstrates that cardiolipin (CL), a component found in the inner mitochondrial membrane, exhibits the highest binding affinity to the N-terminal MA domain of the HIV-1 Gag protein within the lipid group of host cells. To assess this binding interaction, we synthesized short acyl chain derivatives of CL and employed surface plasmon resonance (SPR) analysis to determine the dissociation constants (Kd) for CL and the MA domain. Simultaneously, we examined the Kd of D-myo-phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) derivatives, known to play a crucial role in virion formation. Among all the derivatives, Tetra-C7 -CL exhibited the lowest Kd value (Kd = 30.8 ± 6.9 μM) for MA binding on the CL analog-immobilized sensorchip, indicating a higher affinity. Similarly, the Kd value of Di-C7 -PIP2 (Kd = 36.6 ± 4.7 μM) was the lowest on the PI(4,5)P2 analog-immobilized sensorchip. Thus, Tetra-C7 -CL binds to the MA domain using a distinct binding mode while displaying a comparable binding affinity to Di-C7 -PIP2. This discovery holds significant implications for comprehending the virological importance of CL-MA domain binding, such as its subcellular distribution, including mitochondrial translocation, and involvement in viral particle formation in concert with PI(4,5)P2 . Furthermore, this study has the potential to contribute to the development of drugs in the future.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuma Chinen
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryota Fukuda
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Kazunori Shimagaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Masuda
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshinari Okamoto
- Department of Instrumental Analysis, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Arisa Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Science Farm Ltd., Kumamoto, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensaku Anraku
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
11
|
Verma S, Chen YC, Marin M, Gillespie SE, Melikyan GB. IFITM1 and IFITM3 Proteins Inhibit the Infectivity of Progeny HIV-1 without Disrupting Envelope Glycoprotein Clusters. Viruses 2023; 15:2390. [PMID: 38140631 PMCID: PMC10748374 DOI: 10.3390/v15122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Human interferon-induced transmembrane (IFITM) proteins inhibit the fusion of a broad spectrum of enveloped viruses, both when expressed in target cells and when present in infected cells. Upon expression in infected cells, IFITMs incorporate into progeny virions and reduce their infectivity by a poorly understood mechanism. Since only a few envelope glycoproteins (Envs) are present on HIV-1 particles, and Env clustering has been proposed to be essential for optimal infectivity, we asked if IFITM protein incorporation modulates HIV-1 Env clustering. The incorporation of two members of the IFITM family, IFITM1 and IFITM3, into HIV-1 pseudoviruses correlated with a marked reduction of infectivity. Super-resolution imaging of Env distribution on single HIV-1 pseudoviruses did not reveal significant effects of IFITMs on Env clustering. However, IFITM3 reduced the Env processing and incorporation into virions relative to the control and IFITM1-containing viruses. These results show that, in addition to interfering with the Env function, IFITM3 restricts HIV-1 Env cleavage and incorporation into virions. The lack of notable effect of IFITMs on Env clustering supports alternative restriction mechanisms, such as modification of the properties of the viral membrane.
Collapse
Affiliation(s)
- Smita Verma
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Yen-Cheng Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| | - Scott E. Gillespie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Kruse E, Abdalrahman T, Selhorst P, Franz T. Mathematical model for force and energy of virion-cell interactions during full engulfment in HIV: Impact of virion maturation and host cell morphology. Biomech Model Mechanobiol 2023; 22:1847-1855. [PMID: 37322329 PMCID: PMC10613145 DOI: 10.1007/s10237-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Viral endocytosis involves elastic cell deformation, driven by chemical adhesion energy, and depends on physical interactions between the virion and cell membrane. These interactions are not easy to quantify experimentally. Hence, this study aimed to develop a mathematical model of the interactions of HIV particles with host cells and explore the effects of mechanical and morphological parameters during full virion engulfment. The invagination force and engulfment energy were described as viscoelastic and linear-elastic functions of radius and elastic modulus of virion and cell, ligand-receptor energy density and engulfment depth. The influence of changes in the virion-cell contact geometry representing different immune cells and ultrastructural membrane features and the decrease in virion radius and shedding of gp120 proteins during maturation on invagination force and engulfment energy was investigated. A low invagination force and high ligand-receptor energy are associated with high virion entry ability. The required invagination force was the same for immune cells of different sizes but lower for a local convex geometry of the cell membrane at the virion length scale. This suggests that localized membrane features of immune cells play a role in viral entry ability. The available engulfment energy decreased during virion maturation, indicating the involvement of additional biological or biochemical changes in viral entry. The developed mathematical model offers potential for the mechanobiological assessment of the invagination of enveloped viruses towards improving the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Elizabeth Kruse
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Philippe Selhorst
- Division of Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
Hufsky F, Abecasis AB, Babaian A, Beck S, Brierley L, Dellicour S, Eggeling C, Elena SF, Gieraths U, Ha AD, Harvey W, Jones TC, Lamkiewicz K, Lovate GL, Lücking D, Machyna M, Nishimura L, Nocke MK, Renard BY, Sakaguchi S, Sakellaridi L, Spangenberg J, Tarradas-Alemany M, Triebel S, Vakulenko Y, Wijesekara RY, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2023. Viruses 2023; 15:2031. [PMID: 37896809 PMCID: PMC10612056 DOI: 10.3390/v15102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Ana B. Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Artem Babaian
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sebastian Beck
- Leibniz Institute of Virology, Department Viral Zoonoses—One Health, 20251 Hamburg, Germany;
| | - Liam Brierley
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
| | - Simon Dellicour
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Christian Eggeling
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Santiago F. Elena
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
| | - Udo Gieraths
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Will Harvey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Terry C. Jones
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel L. Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Martin Machyna
- Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Maximilian K. Nocke
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department for Molecular & Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernard Y. Renard
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Digital Engineering Faculty, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
| | - Lygeri Sakellaridi
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Jannes Spangenberg
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Maria Tarradas-Alemany
- Computational Genomics Lab., Department of Genetics, Microbiology and Statistics, Institut de Biomedicina UB (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Triebel
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Yulia Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rajitha Yasas Wijesekara
- Institute for Bioinformatics, University of Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
- Leibniz Institute for Age Research—Fritz Lippman Institute, 07745 Jena, Germany
| |
Collapse
|
14
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Kohler J, Hur KH, Mueller JD. Autocorrelation function of finite-length data in fluorescence correlation spectroscopy. Biophys J 2023; 122:241-253. [PMID: 36266971 PMCID: PMC9822791 DOI: 10.1016/j.bpj.2022.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023] Open
Abstract
The experimental autocorrelation function of fluorescence correlation spectroscopy calculated from finite-length data is a biased estimator of the theoretical correlation function. This study presents a new theoretical framework that explicitly accounts for the data length to allow for unbiased analysis of experimental autocorrelation functions. To validate our theory, we applied it to experiments and simulations of diffusion and characterized the accuracy and precision of the resulting parameter estimates. Because measurements in living cells are often affected by instabilities of the fluorescence signal, autocorrelation functions are typically calculated on segmented data to improve their robustness. Our reformulated theory extends the range of usable segment times down to timescales approaching the diffusion time. This flexibility confers unique advantages for live-cell data that contain intensity variations and instabilities. We describe several applications of short segmentation to analyze data contaminated with unwanted fluctuations, drifts, or spikes in the intensity that are not suited for conventional fluorescence correlation analysis. These results demonstrate the potential of our theoretical framework to significantly expand the experimental systems accessible to fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joachim Dieter Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
16
|
Park J, Jin S, Jang J, Seo D. Single-Molecule Imaging of Membrane Proteins on Vascular Endothelial Cells. J Lipid Atheroscler 2023; 12:58-72. [PMID: 36761059 PMCID: PMC9884557 DOI: 10.12997/jla.2023.12.1.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023] Open
Abstract
Transporting substances such as gases, nutrients, waste, and cells is the primary function of blood vessels. Vascular cells use membrane proteins to perform crucial endothelial functions, including molecular transport, immune cell infiltration, and angiogenesis. A thorough understanding of these membrane receptors from a clinical perspective is warranted to gain insights into the pathogenesis of vascular diseases and to develop effective methods for drug delivery through the vascular endothelium. This review summarizes state-of-the-art single-molecule imaging techniques, such as super-resolution microscopy, single-molecule tracking, and protein-protein interaction analysis, for observing and studying membrane proteins. Furthermore, recent single-molecule studies of membrane proteins such as cadherins, integrins, caveolins, transferrin receptors, vesicle-associated protein-1, and vascular endothelial growth factor receptor are discussed.
Collapse
Affiliation(s)
- Jiseong Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| |
Collapse
|
17
|
Kuhn T, Landge AN, Mörsdorf D, Coßmann J, Gerstenecker J, Čapek D, Müller P, Gebhardt JCM. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat Commun 2022; 13:6101. [PMID: 36243734 PMCID: PMC9569377 DOI: 10.1038/s41467-022-33704-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.
Collapse
Affiliation(s)
- Timo Kuhn
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Amit N. Landge
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - David Mörsdorf
- grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Neurosciences and Developmental Biology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jonas Coßmann
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johanna Gerstenecker
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Čapek
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Patrick Müller
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ,grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - J. Christof M. Gebhardt
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
18
|
Hoffman HK, Aguilar RS, Clark AR, Groves NS, Pezeshkian N, Bruns MM, van Engelenburg SB. Endocytosed HIV-1 Envelope Glycoprotein Traffics to Rab14 + Late Endosomes and Lysosomes to Regulate Surface Levels in T-Cell Lines. J Virol 2022; 96:e0076722. [PMID: 35770989 PMCID: PMC9327703 DOI: 10.1128/jvi.00767-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Production of infectious HIV-1 particles requires incorporation of the viral envelope glycoprotein (Env) at the plasma membrane (PM) of infected CD4+ T cells. Env trafficking to the PM exposes viral epitopes that can be exploited by the host immune system; however, HIV-1 can evade this response by endocytosis of excess Env from the PM. The fate of Env after internalization remains unclear, with evidence suggesting several different vesicular trafficking steps may be involved, including recycling pathways. To date, there have been very few studies documenting the trafficking pathways of native Env in infected T cells. Furthermore, it remains unclear whether there are T-cell-specific endosomal pathways regulating the fate of endocytic Env. Here, we use a pulse-labeling approach with a monovalent anti-Env Fab probe to characterize the trafficking of internalized Env within infected CD4+ T-cell lines, together with CRISPR/Cas9-mediated endogenous protein tagging, to assess the role of host cell Rab GTPases in Env trafficking. We show that endocytosed Env traffics to Rab14+ compartments that possess hallmarks of late endosomes and lysosomes. We also demonstrate that Env can recycle back to the PM, although we find that recycling does not occur at high rates when compared to the model recycling protein transferrin. These results help to resolve open questions about the fate and relevance of endocytosed Env in HIV-infected cells and suggest a novel role for Rab14 in a cell-type-specific late-endosomal/lysosomal trafficking pathway in T cells. IMPORTANCE HIV-1 envelope glycoprotein (Env) evades immune neutralization through many mechanisms. One immune evasion strategy may result from the internalization of excess surface-exposed Env to prevent antibody-dependent cellular cytotoxicity or neutralization. Characterization of the fate of endocytosed Env is critical to understand which vesicular pathways could be targeted to promote display of Env epitopes to the immune system. In this study, we characterize the endocytic fate of native Env, expressed from infected human T-cell lines. We demonstrate that Env is rapidly trafficked to a late-endosome/lysosome-like compartment and can be recycled to the cell surface for incorporation into virus assembly sites. This study implicates a novel intracellular compartment, marked by host-cell Rab14 GTPases, for the sequestration of Env. Therapeutic approaches aimed at mobilizing this intracellular pool of Env could lead to stronger immune control of HIV-1 infection via antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Rebekah S. Aguilar
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Austin R. Clark
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nicholas S. Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nairi Pezeshkian
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Merissa M. Bruns
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
19
|
Raghunath G, Chen YC, Marin M, Wu H, Melikyan GB. SERINC5-Mediated Restriction of HIV-1 Infectivity Correlates with Resistance to Cholesterol Extraction but Not with Lipid Order of Viral Membrane. Viruses 2022; 14:v14081636. [PMID: 35893701 PMCID: PMC9332783 DOI: 10.3390/v14081636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Serine incorporator 5 (SER5) is a protein that upon incorporation into virions inhibits HIV-1 infectivity by interfering with the ability of the Env glycoprotein to promote viral fusion. The mechanisms by which SER5 antagonizes HIV-1 fusion are not well understood. A recent study of SER5's structure revealed a lipid-binding pocket, suggesting the ability to sequester lipids. This finding, along with the well-documented modulation of HIV-1 infectivity by viral lipids, especially cholesterol, prompted our examination of SER5's effect on the general lipid order of the HIV-1 membrane. Pseudoviruses bearing the SER5-sensitive HXB2-Env and containing SER5 or SER2, a control protein that lacks antiviral activity, were analyzed using two distinct lipid-order probes. We show that SER5 incorporation does not noticeably affect the lipid order of pseudoviruses. Although viral cholesterol extraction reduces HIV-1 infectivity, SER5+ viruses are less sensitive to cholesterol extraction than the control samples. In contrast, the virus' sensitivity to cholesterol oxidation was not affected by SER5 incorporation. The hydrolytic release of sphingomyelin-sequestered cholesterol had a minimal impact on the apparent resistance to cholesterol extraction. Based on these results, we propose that a subpopulation of more stable Env glycoproteins responsible for the residual infectivity of SER5+ viruses is less sensitive to the cholesterol content of the viral membrane.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Yen-Cheng Chen
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
20
|
Robb NC. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166347. [PMID: 35032594 PMCID: PMC8755447 DOI: 10.1016/j.bbadis.2022.166347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/06/2023]
Abstract
As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.
Collapse
Affiliation(s)
- Nicole C Robb
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
21
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
22
|
Spillings BL, Day CJ, Garcia-Minambres A, Aggarwal A, Condon ND, Haselhorst T, Purcell DFJ, Turville SG, Stow JL, Jennings MP, Mak J. Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Rep 2022; 38:110296. [PMID: 35108536 DOI: 10.1016/j.celrep.2022.110296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.
Collapse
Affiliation(s)
- Belinda L Spillings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Damian F J Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; School of Medicine, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
23
|
Nieto-Garai JA, Lorizate M, Contreras FX. Shedding light on membrane rafts structure and dynamics in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183813. [PMID: 34748743 DOI: 10.1016/j.bbamem.2021.183813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain.
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
24
|
Bryer AJ, Reddy T, Lyman E, Perilla JR. Full scale structural, mechanical and dynamical properties of HIV-1 liposomes. PLoS Comput Biol 2022; 18:e1009781. [PMID: 35041642 PMCID: PMC8797243 DOI: 10.1371/journal.pcbi.1009781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/28/2022] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Enveloped viruses are enclosed by a lipid membrane inside of which are all of the components necessary for the virus life cycle; viral proteins, the viral genome and metabolites. Viral envelopes are lipid bilayers that adopt morphologies ranging from spheres to tubes. The envelope is derived from the host cell during viral replication. Thus, the composition of the bilayer depends on the complex constitution of lipids from the host-cell's organelle(s) where assembly and/or budding of the viral particle occurs. Here, molecular dynamics (MD) simulations of authentic, asymmetric HIV-1 liposomes are used to derive a unique level of resolution of its full-scale structure, mechanics and dynamics. Analysis of the structural properties reveal the distribution of thicknesses of the bilayers over the entire liposome as well as its global fluctuations. Moreover, full-scale mechanical analyses are employed to derive the global bending rigidity of HIV-1 liposomes. Finally, dynamical properties of the lipid molecules reveal important relationships between their 3D diffusion, the location of lipid-rafts and the asymmetrical composition of the envelope. Overall, our simulations reveal complex relationships between the rich lipid composition of the HIV-1 liposome and its structural, mechanical and dynamical properties with critical consequences to different stages of HIV-1's life cycle.
Collapse
Affiliation(s)
- Alexander J. Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Tyler Reddy
- CCS-7 Applied Computer Science, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Edward Lyman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, United States of America
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
25
|
Tran N, Oh Y, Sutherland M, Cui Q, Hong M. Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers. J Mol Biol 2021; 434:167345. [PMID: 34762895 DOI: 10.1016/j.jmb.2021.167345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
The envelope glycoprotein (Env) of the human immunodeficient virus (HIV-1) is known to cluster on the viral membrane surface to attach to target cells and cause membrane fusion for HIV-1 infection. However, the molecular structural mechanisms that drive Env clustering remain opaque. Here, we use solid-state NMR spectroscopy and molecular dynamics (MD) simulations to investigate nanometer-scale clustering of the membrane-proximal external region (MPER) and transmembrane domain (TMD) of gp41, the fusion protein component of Env. Using 19F solid-state NMR experiments of mixed fluorinated peptides, we show that MPER-TMD trimers form clusters with interdigitated MPER helices in cholesterol-containing membranes. Inter-trimer 19F-19F cross peaks, which are indicative of spatial contacts within ∼2 nm, are observed in cholesterol-rich virus-mimetic membranes but are suppressed in cholesterol-free model membranes. Water-peptide and lipid-peptide cross peaks in 2D 1H-19F correlation spectra indicate that the MPER is well embedded in model phosphocholine membranes but is more exposed to the surface of the virus-mimetic membrane. These experimental results are reproduced in coarse-grained and atomistic molecular dynamics simulations, which suggest that the effects of cholesterol on gp41 clustering is likely via indirect modulation of the MPER orientation. Cholesterol binding to the helix-turn-helix region of the MPER-TMD causes a parallel orientation of the MPER with the membrane surface, thus allowing MPERs of neighboring trimers to interact with each other to cause clustering. These solid-state NMR data and molecular dynamics simulations suggest that MPER and cholesterol cooperatively govern the clustering of gp41 trimers during virus-cell membrane fusion.
Collapse
Affiliation(s)
- Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Younghoon Oh
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States.
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States. https://twitter.com/MeiHongLab
| |
Collapse
|
26
|
Carlon-Andres I, Malinauskas T, Padilla-Parra S. Structure dynamics of HIV-1 Env trimers on native virions engaged with living T cells. Commun Biol 2021; 4:1228. [PMID: 34707229 PMCID: PMC8551276 DOI: 10.1038/s42003-021-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env-T cell interactions in real time and therefore might control immune evasion.
Collapse
Affiliation(s)
- Irene Carlon-Andres
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergi Padilla-Parra
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
27
|
Human Transbodies to Reverse Transcriptase Connection Subdomain of HIV-1 Gag-Pol Polyprotein Reduce Infectiousness of the Virus Progeny. Vaccines (Basel) 2021; 9:vaccines9080893. [PMID: 34452018 PMCID: PMC8402387 DOI: 10.3390/vaccines9080893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
HIV-1 progeny are released from infected cells as immature particles that are unable to infect new cells. Gag-Pol polyprotein dimerization via the reverse transcriptase connection domain (RTCDs) is pivotal for proper activation of the virus protease (PR protein) in an early event of the progeny virus maturation process. Thus, the RTCD is a potential therapeutic target for a broadly effective anti-HIV agent through impediment of virus maturation. In this study, human single-chain antibodies (HuscFvs) that bound to HIV-1 RTCD were generated using phage display technology. Computerized simulation guided the selection of the transformed Escherichia coli-derived HuscFvs that bound to the RTCD dimer interface. The selected HuscFvs were linked molecularly to human-derived-cell-penetrating peptide (CPP) to make them cell-penetrable (i.e., become transbodies). The CPP-HuscFvs/transbodies produced by a selected transformed E. coli clone were tested for anti-HIV-1 activity. CPP-HuscFvs of transformed E. coli clone 11 (CPP-HuscFv11) that presumptively bound at the RTCD dimer interface effectively reduced reverse transcriptase activity in the newly released virus progeny. Infectiousness of the progeny viruses obtained from CPP-HuscFv11-treated cells were reduced by a similar magnitude to those obtained from protease/reverse transcriptase inhibitor-treated cells, indicating anti-HIV-1 activity of the transbodies. The CPP-HuscFv11/transbodies to HIV-1 RTCD could be an alternative, anti-retroviral agent for long-term HIV-1 treatment.
Collapse
|
28
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
29
|
Rossignol ED, Dugast AS, Compere H, Cottrell CA, Copps J, Lin S, Cizmeci D, Seaman MS, Ackerman ME, Ward AB, Alter G, Julg B. Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Rep 2021; 35:109167. [PMID: 34038720 PMCID: PMC8196545 DOI: 10.1016/j.celrep.2021.109167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
HIV monoclonal antibodies for viral reservoir eradication strategies will likely need to recognize reactivated infected cells and potently drive Fc-mediated innate effector cell activity. We systematically characterize a library of 185 HIV-envelope-specific antibodies derived from 15 spontaneous HIV controllers (HCs) that selectively exhibit robust serum Fc functionality and compared them to broadly neutralizing antibodies (bNAbs) in clinical development. Within the 10 antibodies with the broadest cell-recognition capability, seven originated from HCs and three were bNAbs. V3-loop-targeting antibodies are enriched among the top cell binders, suggesting the V3-loop may be selectively exposed and accessible on the cell surface. Fc functionality is more variable across antibodies, which is likely influenced by distinct binding topology and corresponding Fc accessibility, highlighting not only the importance of target-cell recognition but also the need to optimize for Fc-mediated elimination. Ultimately, our results demonstrate that this comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells. Rossignol et al. characterize 185 HIV-envelope-specific antibodies derived from spontaneous HIV controllers, downselecting antibodies based on their ability to broadly recognize infected cells and potently drive Fc-mediated innate effector cell activity. This comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells for viral reservoir eradication strategies.
Collapse
Affiliation(s)
- Evan D Rossignol
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Hacheming Compere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Lukose J, Chidangil S, George SD. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosens Bioelectron 2021; 178:113004. [PMID: 33497877 PMCID: PMC7832448 DOI: 10.1016/j.bios.2021.113004] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The outbreak of life-threatening pandemic like COVID-19 necessitated the development of novel, rapid and cost-effective techniques that facilitate detection of viruses like SARS-CoV-2. The presently popular approach of a collection of samples using the nasopharyngeal swab method and subsequent detection of RNA using the real-time polymerase chain reaction suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques namely optical sensing, spectroscopy, and imaging shows a great promise in virus detection. Herein, a comprehensive review of the various photonics technologies employed for virus detection, particularly the SARS-CoV family, is discussed. The state-of-art research activities in utilizing the photonics tools such as near-infrared spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence-based techniques, super-resolution microscopy, surface plasmon resonance-based detection, for virus detection accounted extensively with an emphasis on coronavirus detection. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of optical techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Jijo Lukose
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
31
|
Chojnacki J, Eggeling C. Super-Resolution STED Microscopy-Based Mobility Studies of the Viral Env Protein at HIV-1 Assembly Sites of Fully Infected T-Cells. Viruses 2021; 13:608. [PMID: 33918253 PMCID: PMC8067239 DOI: 10.3390/v13040608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.
Collapse
Affiliation(s)
- Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, Badalona, 08916 Barcelona, Spain
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
32
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
33
|
Dankovich TM, Rizzoli SO. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 2021; 24:102134. [PMID: 33665555 PMCID: PMC7898072 DOI: 10.1016/j.isci.2021.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details requires large datasets of high-quality, reproducible SRM images. In this review, we discuss the unique set of challenges facing quantitative SRM, giving particular attention to the shortcomings of conventional specimen preparation techniques and the necessity for optimal labeling of molecular targets. We further discuss the obstacles to scaling SRM methods, such as lengthy image acquisition and complex SRM data analysis. For each of these challenges, we review the recent advances in the field that circumvent these pitfalls and provide practical advice to biologists for optimizing SRM experiments.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen 37075, Germany
| |
Collapse
|
34
|
Sher M, Coleman B, Caputi M, Asghar W. Development of a Point-of-Care Assay for HIV-1 Viral Load Using Higher Refractive Index Antibody-Coated Microbeads. SENSORS (BASEL, SWITZERLAND) 2021; 21:1819. [PMID: 33807789 PMCID: PMC7961362 DOI: 10.3390/s21051819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022]
Abstract
The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index of refraction that can specifically bind with viruses and increase the acceptance angle. Using the new technology, we have developed a portable, cost-effective, and field-deployable platform for the rapid quantification of HIV-1 viral load for point-of-care (POC) settings. The system combines microfluidics with a wide field of view lensless imaging technology. Highly specific antibodies are functionalized to a glass slide inside a microchip to capture HIV-1 virions. The captured virions are then bound by antibody-conjugated microbeads, which have a higher refraction index. The microbeads-HIV-1 virions complexes generate diffraction patterns that are detected with a custom-built imaging setup and rapidly and accurately quantified by computational analysis. This platform technology enables fast nanoscale virus imaging and quantification from biological samples and thus can play a significant role in the detection and management of viral diseases.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Benjamin Coleman
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
35
|
Marty N, Saeng-Aroon S, Heger E, Thielen A, Obermeier M, Pfeifer N, Kaiser R, Klimkait T. Adapting the geno2pheno[coreceptor] tool to HIV-1 subtype CRF01_AE by phenotypic validation using clinical isolates from South-East Asia. J Clin Virol 2021; 136:104755. [PMID: 33639408 DOI: 10.1016/j.jcv.2021.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Geno2pheno[coreceptor] is a widely used tool for the prediction of coreceptor usage (viral tropism) of HIV-1 samples. For HIV-1 CRF01_AE, a significant overcalling of X4-tropism is observed when using the standard settings of Geno2pheno[coreceptor]. The aim of this study was to provide the experimental backing for adaptations to the geno2pheno[coreceptor] algorithm in order to improve coreceptor usage predictions of clinical HIV-1 CRF01_AE isolates STUDY DESIGN: V3-sequences of 20 clinical HIV-1 subtype CRF01_AE samples were sequenced and analyzed by geno2pheno[coreceptor]. In parallel, coreceptor usage was determined for these samples by replicative phenotyping in human cells in the presence of specific X4- or R5-inhibitors. RESULTS The sole introduction of the CRF01_AE V3 region into a full-length otherwise subtype B provirus failed to produce replication-competent viral progeny. A successive genome-replacement strategy revealed that also CRF01_AE derived gag and pol sequences are necessary to generate HIV genomes with sufficient replication competence. Subsequent phenotypic analysis confirmed overcalling of X4-tropism for CRF01_AE viruses using the current version and the standard cut-off at 10% false positive rate (FPR) of geno2pheno[coreceptor]. Lowering the FPR cut-off to 2.5% reduced the X4-overcalling in our sample collection, while still allowing a safe administration of Maraviroc (MCV). CONCLUSION This study demonstrates the successful adjustment of geno2pheno[coreceptor] rules for subtype CRF01_AE. It also supports the unique strength of combining complementing methods, namely phenotyping and genotyping, for validating new bioinformatics tools prior to application in diagnostics.
Collapse
Affiliation(s)
- Nina Marty
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland.
| | - Siriphan Saeng-Aroon
- Hazardous Pathogen Laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | | | - Nico Pfeifer
- Max Planck Institute for Informatics, Saarland Informatics Campus E1 4, Saarbruecken, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland
| |
Collapse
|
36
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
37
|
Nieto‐Garai JA, Arboleya A, Otaegi S, Chojnacki J, Casas J, Fabriàs G, Contreras F, Kräusslich H, Lorizate M. Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003468. [PMID: 33552873 PMCID: PMC7856888 DOI: 10.1002/advs.202003468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 05/07/2023]
Abstract
HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.
Collapse
Affiliation(s)
- Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Sara Otaegi
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| | | | - Josefina Casas
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - F‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| | - Hans‐Georg Kräusslich
- Department of Infectious DiseasesVirologyUniversitätsklinikum HeidelbergHeidelberg69120Germany
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| |
Collapse
|
38
|
Schneider F, Sych T, Eggeling C, Sezgin E. Influence of nanobody binding on fluorescence emission, mobility, and organization of GFP-tagged proteins. iScience 2021; 24:101891. [PMID: 33364580 PMCID: PMC7753935 DOI: 10.1016/j.isci.2020.101891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Advanced fluorescence microscopy studies require specific and monovalent molecular labeling with bright and photostable fluorophores. This necessity led to the widespread use of fluorescently labeled nanobodies against commonly employed fluorescent proteins (FPs). However, very little is known how these nanobodies influence their target molecules. Here, we tested commercially available nanobodies and observed clear changes of the fluorescence properties, mobility and organization of green fluorescent protein (GFP) tagged proteins after labeling with the anti-GFP nanobody. Intriguingly, we did not observe any co-diffusion of fluorescently labeled nanobodies with the GFP-labeled proteins. Our results suggest significant binding of the nanobodies to a non-emissive, likely oligomerized, form of the FPs, promoting disassembly into monomeric form after binding. Our findings have significant implications on the application of nanobodies and GFP labeling for studying dynamic and quantitative protein organization in the plasma membrane of living cells using advanced imaging techniques.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65 Solna, Sweden
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- Jena Center of Soft Matters, Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65 Solna, Sweden
| |
Collapse
|
39
|
Yuan Y, Jacobs CA, Llorente Garcia I, Pereira PM, Lawrence SP, Laine RF, Marsh M, Henriques R. Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses 2021; 13:142. [PMID: 33478139 PMCID: PMC7835772 DOI: 10.3390/v13010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.
Collapse
Affiliation(s)
- Yue Yuan
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Caron A. Jacobs
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | | | - Pedro M. Pereira
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- Bacterial Cell Biology, MOSTMICRO, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Scott P. Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
40
|
Gorai B, Sahoo AK, Srivastava A, Dixit NM, Maiti PK. Concerted Interactions between Multiple gp41 Trimers and the Target Cell Lipidome May Be Required for HIV-1 Entry. J Chem Inf Model 2020; 61:444-454. [PMID: 33373521 DOI: 10.1021/acs.jcim.0c01291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 mediates the fusion between viral and host cell membranes leading to virus entry and target cell infection. Despite years of research, important aspects of this process such as the number of gp41 trimers involved and how they orchestrate the rearrangement of the lipids in the apposed membranes along the fusion pathway remain obscure. To elucidate these molecular underpinnings, we performed coarse-grained molecular dynamics simulations of HIV-1 virions pinned to the CD4 T cell membrane by different numbers of gp41 trimers. We built realistic cell and viral membranes by mimicking their respective lipid compositions. We found that a single gp41 was inadequate for mediating fusion. Lipid mixing between membranes, indicating the onset of fusion, was efficient when three or more gp41 trimers pinned the membranes. The gp41 trimers interacted strongly with many different lipids in the host cell membrane, triggering lipid configurational rearrangements, exchange, and mixing. Simpler membranes, comprising fewer lipid types, displayed strong resistance to fusion, revealing the crucial role of the lipidomes in HIV-1 entry. Performing simulations at different temperatures, we estimated the free energy barrier to lipid mixing, and hence membrane stalk formation, with three and four tethering gp41 trimers to be ∼6.2 kcal/mol, a >4-fold reduction over estimates without gp41. Together, these findings present molecular-level, quantitative insights into the early stages of gp41-mediated HIV-1 entry. Preventing the requisite gp41 molecules from tethering the membranes or altering membrane lipid compositions may be potential intervention strategies.
Collapse
Affiliation(s)
- Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore-560012, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
41
|
Groves NS, Bruns MM, van Engelenburg SB. A Quantitative Live-Cell Superresolution Imaging Framework for Measuring the Mobility of Single Molecules at Sites of Virus Assembly. Pathogens 2020; 9:pathogens9110972. [PMID: 33233482 PMCID: PMC7700196 DOI: 10.3390/pathogens9110972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
The insurgence of superresolution microscopy into the fields of virology and microbiology has begun to enable the mapping of molecular assemblies critical for host–pathogen interfaces that organize on a scale below the resolution limit of the light microscope. It is, however, challenging to completely understand the molecular interactions between host and pathogen from strictly time-invariant observations. Herein, we describe a method using simultaneous dual-color superresolution microscopy to gain both structural and dynamic information about HIV-1 assembly. Specifically, we demonstrate the reconstruction of single virus assembly sites using live-cell photo-activated localization microscopy (PALM) while concurrently assessing the sub-viral mobility of the HIV-1 envelope glycoprotein during interaction with the viral lattice. We propose that our method is broadly applicable to elucidating pathogen and host protein–protein interactions through quantification of the dynamics of these proteins at the nanoscale.
Collapse
|
42
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
43
|
Villamil Giraldo AM, Kasson PM. Bilayer-Coated Nanoparticles Reveal How Influenza Viral Entry Depends on Membrane Deformability but Not Curvature. J Phys Chem Lett 2020; 11:7190-7196. [PMID: 32808796 DOI: 10.1021/acs.jpclett.0c01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enveloped viruses infect cells via fusion between the viral envelope and a cellular membrane. This membrane fusion process is driven by viral proteins, but slow stochastic protein activation dominates the fusion kinetics, making it challenging to probe the role of membrane mechanics in viral entry directly. Furthermore, many changes to the interacting membranes alter the curvature, deformability, and spatial organization of membranes simultaneously. We have used bilayer-coated silica nanoparticles to restrict the deformability of lipid membranes in a controllable manner. The single-event kinetics for fusion of influenza virus to coated nanoparticles permits independent testing of how the membrane curvature and deformability control the free energy barriers to fusion. Varying the free energy of membrane deformation, but not membrane curvature, causes a corresponding response in the fusion kinetics and fusion protein stoichiometry. Thus, the main free energy barrier to lipid mixing by influenza virus is controlled by membrane deformability and not the initial membrane curvature.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
44
|
Gesper A, Wennmalm S, Hagemann P, Eriksson SG, Happel P, Parmryd I. Variations in Plasma Membrane Topography Can Explain Heterogenous Diffusion Coefficients Obtained by Fluorescence Correlation Spectroscopy. Front Cell Dev Biol 2020; 8:767. [PMID: 32903922 PMCID: PMC7443568 DOI: 10.3389/fcell.2020.00767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 01/18/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is frequently used to study diffusion in cell membranes, primarily the plasma membrane. The diffusion coefficients reported in the plasma membrane of the same cell type and even within single cells typically display a large spread. We have investigated whether this spread can be explained by variations in membrane topography throughout the cell surface, that changes the amount of membrane in the FCS focal volume at different locations. Using FCS, we found that diffusion of the membrane dye DiI in the apical plasma membrane was consistently faster above the nucleus than above the cytoplasm. Using live cell scanning ion conductance microscopy (SICM) to obtain a topography map of the cell surface, we demonstrate that cell surface roughness is unevenly distributed with the plasma membrane above the nucleus being the smoothest, suggesting that the difference in diffusion observed in FCS is related to membrane topography. FCS modeled on simulated diffusion in cell surfaces obtained by SICM was consistent with the FCS data from live cells and demonstrated that topography variations can cause the appearance of anomalous diffusion in FCS measurements. Furthermore, we found that variations in the amount of the membrane marker DiD, a proxy for the membrane, but not the transmembrane protein TCRζ or the lipid-anchored protein Lck, in the FCS focal volume were related to variations in diffusion times at different positions in the plasma membrane. This relationship was seen at different positions both at the apical cell and basal cell sides. We conclude that it is crucial to consider variations in topography in the interpretation of FCS results from membranes.
Collapse
Affiliation(s)
| | - Stefan Wennmalm
- SciLifeLab, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Ingela Parmryd
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Ladinsky MS, Gnanapragasam PN, Yang Z, West AP, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. eLife 2020; 9:58411. [PMID: 32697193 PMCID: PMC7394545 DOI: 10.7554/elife.58411] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Fusion of HIV-1 with the membrane of its target cell, an obligate first step in virus infectivity, is mediated by binding of the viral envelope (Env) spike protein to its receptors, CD4 and CCR5/CXCR4, on the cell surface. The process of viral fusion appears to be fast compared with viral egress and has not been visualized by EM. To capture fusion events, the process must be curtailed by trapping Env-receptor binding at an intermediate stage. We have used fusion inhibitors to trap HIV-1 virions attached to target cells by Envs in an extended pre-hairpin intermediate state. Electron tomography revealed HIV-1 virions bound to TZM-bl cells by 2–4 narrow spokes, with slightly more spokes present when evaluated with mutant virions that lacked the Env cytoplasmic tail. These results represent the first direct visualization of the hypothesized pre-hairpin intermediate of HIV-1 Env and improve our understanding of Env-mediated HIV-1 fusion and infection of host cells.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Priyanthi Np Gnanapragasam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
46
|
Sengupta P, Lippincott-Schwartz J. Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses 2020; 12:v12070745. [PMID: 32664429 PMCID: PMC7412473 DOI: 10.3390/v12070745] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.
Collapse
|
47
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
48
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
49
|
Barbotin A, Urbančič I, Galiani S, Eggeling C, Booth M, Sezgin E. z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics. Biophys J 2020; 118:2448-2457. [PMID: 32359408 PMCID: PMC7231928 DOI: 10.1016/j.bpj.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ∼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Silvia Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Martin Booth
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
50
|
Tosheva KL, Yuan Y, Matos Pereira P, Culley S, Henriques R. Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:163001. [PMID: 33994582 PMCID: PMC8114953 DOI: 10.1088/1361-6463/ab6b95] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 05/23/2023]
Abstract
Super-resolution microscopy (SRM) enables non-invasive, molecule-specific imaging of the internal structure and dynamics of cells with sub-diffraction limit spatial resolution. One of its major limitations is the requirement for high-intensity illumination, generating considerable cellular phototoxicity. This factor considerably limits the capacity for live-cell observations, particularly for extended periods of time. Here, we give an overview of new developments in hardware, software and probe chemistry aiming to reduce phototoxicity. Additionally, we discuss how the choice of biological model and sample environment impacts the capacity for live-cell observations.
Collapse
Affiliation(s)
- Kalina L Tosheva
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Yue Yuan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|