1
|
Hayashi Y, Kamimura-Aoyagi Y, Nishikawa S, Noka R, Iwata R, Iwabuchi A, Watanabe Y, Matsunuma N, Yuki K, Kobayashi H, Harada Y, Harada H. IL36G-producing neutrophil-like monocytes promote cachexia in cancer. Nat Commun 2024; 15:7662. [PMID: 39266531 PMCID: PMC11393454 DOI: 10.1038/s41467-024-51873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Most patients with advanced cancer develop cachexia, a multifactorial syndrome characterized by progressive skeletal muscle wasting. Despite its catastrophic impact on survival, the critical mediators responsible for cancer cachexia development remain poorly defined. Here, we show that a distinct subset of neutrophil-like monocytes, which we term cachexia-inducible monocytes (CiMs), emerges in the advanced cancer milieu and promotes skeletal muscle loss. Unbiased transcriptome analysis reveals that interleukin 36 gamma (IL36G)-producing CD38+ CiMs are induced in chronic monocytic blood cancer characterized by prominent cachexia. Notably, the emergence of CiMs and the activation of CiM-related gene signatures in monocytes are confirmed in various advanced solid cancers. Stimuli of toll-like receptor 4 signaling are responsible for the induction of CiMs. Genetic inhibition of IL36G-mediated signaling attenuates skeletal muscle loss and rescues cachexia phenotypes in advanced cancer models. These findings indicate that the IL36G-producing subset of neutrophil-like monocytes could be a potential therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
- Laboratory of Cancer Pathobiology and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yasushige Kamimura-Aoyagi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sayuri Nishikawa
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rena Noka
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rika Iwata
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Asami Iwabuchi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yushin Watanabe
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Natsumi Matsunuma
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kanako Yuki
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Kobayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
2
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
5
|
Xu F, Lu S, Pan N, Zhao F, Jia X, Wang S, Zhang Y, Zhou Y. Bromodomain protein 4 is a key molecular driver of TGFβ1-induced hepatic stellate cell activation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119569. [PMID: 37597774 DOI: 10.1016/j.bbamcr.2023.119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix in liver. Chronic liver injury induces the activation of hepatic stellate cell (HSCs), a key step in liver fibrogenesis. The activated HSC is the primary source of ECM and contributes significantly to liver fibrosis. TGFβ1 is the most potent pro-fibrotic cytokine. Bromodomain protein 4 (BrD4), an epigenetic reader of histone acetylation marks, was crucial for profibrotic gene expression in HSCs. The present study aimed to investigate the roles of BRD4 in TGFβ1-dependent HSC activation and liver fibrosis, focusing on TGFβ1-induced alterations of the levels of the fibrotic-related important proteins in HSCs by employing the heterozygous TGFβ1 knockout mice and BrD4 knockdown in vivo and in vitro. Results revealed that BrD4 protein level was significantly upregulated by TGFβ1 and BrD4 knockdown reduced TGFβ1-induced HSC activation and liver fibrosis. BrD4 was required for the influences of TGFβ1 on PDGFβ receptor and on the pathways of Smad3, Stat3, and Akt. BrD4 also mediated TGFβ1-induced increases in histone acetyltransferase p300, the pivotal pro-inflammatory NFkB p65, and tissue inhibitor of metalloproteinase 1 whereas BrD4 reduced Caspase-3 protein levels in HSCs during liver injury, independent of TGFβ1. Further experiments indicated the interaction between TGFβ1-induced BrD4 and NFkB p65 in HSCs and in liver of TAA-induced liver injury. Human cirrhotic livers were demonstrated a parallel increase in the protein levels of BrD4 and NFkB p65 in HSCs. This study revealed that BrD4 was a key molecular driver of TGFβ1-induced HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Nachuan Pan
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Feifei Zhao
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Shouwei Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Yali Zhang
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
6
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
7
|
Xu JQ, Pan YK, Zhang JX, Dai SX, Xu LS. Sarcopenia in liver cirrhosis: perspectives from epigenetics and microbiota. Front Med (Lausanne) 2023; 10:1264205. [PMID: 37881635 PMCID: PMC10595017 DOI: 10.3389/fmed.2023.1264205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Sarcopenia is characterized by the loss of muscle mass and function. It is well known that sarcopenia is often associated with aging, while in recent years, sarcopenia comorbid with chronic diseases such as cirrhosis has attracted widespread attention, whose underlying molecular mechanisms remain unclear. Since cirrhosis and sarcopenia are assumed to be closely interrelated in terms of pathogenesis, this review innovatively discussed the role of epigenetic modifications and microecological dysregulation in sarcopenia in the context of liver cirrhosis. Here we illustrated the relationship between sarcopenia and cirrhosis in the aspect of epigenetics, dysbiosis, and the crosstalk between gene modifications and intestinal microecology. Furthermore, the alterations in cirrhosis patients with sarcopenia, such as inflammatory response and oxidative stress, are found to present synergistic effects in the pathways of epigenetics and dysbiosis leading to sarcopenia. This review proposes that microbiome-based therapies are promising to break the vicious cycle between epigenetic modification and dysbiosis, providing strong support for the use of intestinal microecological interventions to prevent sarcopenia in cirrhotic patients.
Collapse
Affiliation(s)
- Jia-qi Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu-ke Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-xin Zhang
- Department of Joint Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shi-xue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-shu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
9
|
Xu F, Lu S, Jia X, Zhou Y. Bromodomain protein 4 mediates the roles of TGFβ1-induced Stat3 signaling in mouse liver fibrogenesis. Toxicol Lett 2023; 385:42-50. [PMID: 37634812 DOI: 10.1016/j.toxlet.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic reader Bromodomain protein 4 (BrD4) functions as a global genomic regulator to direct hepatic stellate cell (HSC) activation (a key step in liver fibrogenesis) and liver fibrosis. The pivotal pro-fibrotic cytokine transforming growth factor-β1 (TGFβ1) signals through both Smad and Stat3 to elicit a wide array of biological effects. Stat3 is widely acknowledged as a regulator of gene transcription and is involved in fibrosis of multiple tissues. The present study focused on BrD4 function implication in the roles of TGFβ1-induced Stat3 signaling in HSC activation and liver fibrosis by using heterozygous TGFβ1 knockout mice and HSC culture. Results showed that Stat3 was required for TGFβ1-induced BrD4 expression in HSCs. BrD4 expression paralleled Stat3 activation in activated HSCs in human cirrhotic livers. BrD4 was involved in the roles of TGFβ1-induced Stat3 in HSC activation and liver fibrogenesis. Smad3 bound to phosphorylated-Stat3 and contributed to TGFβ1-induced Stat3 signaling. BrD4 expression induced by Stat3 signaling required the early-immediate gene Egr1. Egr1 had a positive feedback on Stat3 activation. In conclusion, a network consisting of Stat3 signaling, Smad3 signaling, Egr1, and BrD4 was involved in the effects of TGFβ1 on liver fibrosis, providing new toxicological mechanisms for TGFβ1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
10
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Winter LM, Reinhardt D, Schatter A, Tissen V, Wiora H, Gerlach D, Tontsch-Grunt U, Colbatzky F, Stierstorfer B, Yun SW. Molecular basis of GDF15 induction and suppression by drugs in cardiomyocytes and cancer cells toward precision medicine. Sci Rep 2023; 13:12061. [PMID: 37495707 PMCID: PMC10372009 DOI: 10.1038/s41598-023-38450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
GDF15 has recently emerged as a key driver of the development of various disease conditions including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation in human cardiomyocytes and cancer cell lines and analyzed in-house and public gene signature databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug- and cell type-specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of anticancer drugs and patients for precision medicine.
Collapse
Affiliation(s)
- Lisa-Maria Winter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Diana Reinhardt
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Ariane Schatter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Vivien Tissen
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Heike Wiora
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Daniel Gerlach
- Boehringer Ingelheim RCV, GmbH & Co KG, 1120, Vienna, Austria
| | | | - Florian Colbatzky
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Birgit Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany.
| |
Collapse
|
12
|
Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023; 14:1150-1167. [PMID: 36864755 PMCID: PMC10235899 DOI: 10.1002/jcsm.13073] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 03/04/2023] Open
Abstract
Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Agnès Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| | - Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris SaclayEvryFrance
| | - Damien Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| |
Collapse
|
13
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
14
|
Emerging Mechanisms of Skeletal Muscle Homeostasis and Cachexia: The SUMO Perspective. Cells 2023; 12:cells12040644. [PMID: 36831310 PMCID: PMC9953977 DOI: 10.3390/cells12040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Mobility is an intrinsic feature of the animal kingdom that stimulates evolutionary processes and determines the biological success of animals. Skeletal muscle is the primary driver of voluntary movements. Besides, skeletal muscles have an immense impact on regulating glucose, amino acid, and lipid homeostasis. Muscle atrophy/wasting conditions are accompanied by a drastic effect on muscle function and disrupt steady-state muscle physiology. Cachexia is a complex multifactorial muscle wasting syndrome characterized by extreme loss of skeletal muscle mass, resulting in a dramatic decrease in life quality and reported mortality in more than 30% of patients with advanced cancers. The lack of directed treatments to prevent or relieve muscle loss indicates our inadequate knowledge of molecular mechanisms involved in muscle cell organization and the molecular etiology of cancer-induced cachexia (CIC). This review highlights the latest knowledge of regulatory mechanisms involved in maintaining muscle function and their deregulation in wasting syndromes, particularly in cachexia. Recently, protein posttranslational modification by the small ubiquitin-like modifier (SUMO) has emerged as a key regulatory mechanism of protein function with implications for different aspects of cell physiology and diseases. We also review an atypical association of SUMO-mediated pathways in this context and deliberate on potential treatment strategies to alleviate muscle atrophy.
Collapse
|
15
|
Martella N, Colardo M, Sergio W, Petraroia M, Varone M, Pensabene D, Russo M, Di Bartolomeo S, Ranalli G, Saviano G, Segatto M. Lavender Essential Oil Modulates Hepatic Cholesterol Metabolism in HepG2 Cells. Curr Issues Mol Biol 2023; 45:364-378. [PMID: 36661512 PMCID: PMC9857966 DOI: 10.3390/cimb45010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Cholesterol is an essential lipid that guarantees several biological processes in eukaryotic cells. Its metabolism is regulated by a complex protein network that could be significantly influenced by numerous exogenous sources, such as essential oils (EOs). For instance, it has been speculated that monoterpenoid and sesquiterpenoid compounds contained in lavender essential oil (LEO) may exert important hypocholesterolemic activities. However, the molecular mechanisms by which LEO influences cholesterol homeostasis are not characterized. In this work, we evaluated the ability of LEO to regulate the protein network that controls cholesterol metabolism in the HepG2 cell line. The main findings indicate that LEO administration increases intracellular cholesterol content. Concurrently, LEO affects the expression of proteins involved in cholesterol uptake, biosynthesis, and trafficking. These effects are partially mediated by terpinene-4-ol, one of the most abundant compounds in LEO. These results demonstrate that LEO modulates cholesterol metabolism in hepatic cells.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Miriam Russo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Giancarlo Ranalli
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence: (G.S.); (M.S.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence: (G.S.); (M.S.)
| |
Collapse
|
16
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
17
|
Amrute-Nayak M, Gand LV, Khan B, Holler T, Kefalakes E, Kosanke M, Kraft T, Nayak A. SENP7 deSUMOylase-governed transcriptional program coordinates sarcomere assembly and is targeted in muscle atrophy. Cell Rep 2022; 41:111702. [DOI: 10.1016/j.celrep.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
18
|
Cho CS, Kim Y, Park SR, Kim B, Davis C, Hwang I, Brooks SV, Lee JH, Kim M. Simultaneous loss of TSC1 and DEPDC5 in skeletal and cardiac muscles produces early-onset myopathy and cardiac dysfunction associated with oxidative damage and SQSTM1/p62 accumulation. Autophagy 2022; 18:2303-2322. [PMID: 34964695 PMCID: PMC9542799 DOI: 10.1080/15548627.2021.2016255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Chun-Seok Cho
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yongsung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sung-Rye Park
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boyoung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Irene Hwang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,CONTACT Jun Hee Lee Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,Myungjin Kim
| |
Collapse
|
19
|
Yang N, Das D, Shankar SR, Goy PA, Guccione E, Taneja R. An interplay between BRD4 and G9a regulates skeletal myogenesis. Front Cell Dev Biol 2022; 10:978931. [PMID: 36158208 PMCID: PMC9489841 DOI: 10.3389/fcell.2022.978931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation and methylation are epigenetic modifications that are dynamically regulated by chromatin modifiers to precisely regulate gene expression. However, the interplay by which histone modifications are synchronized to coordinate cellular differentiation is not fully understood. In this study, we demonstrate a relationship between BRD4, a reader of acetylation marks, and G9a, a writer of methylation marks in the regulation of myogenic differentiation. Using loss- and gain-of-function studies, as well as a pharmacological inhibition of its activity, we examined the mechanism by which BRD4 regulates myogenesis. Transcriptomic analysis using RNA sequencing revealed that a number of myogenic differentiation genes are downregulated in Brd4-depleted cells. Interestingly, some of these genes were upregulated upon G9a knockdown, indicating that BRD4 and G9a play opposing roles in the control of myogenic gene expression. Remarkably, the differentiation defect caused by Brd4 knockdown was rescued by inhibition of G9a methyltransferase activity. These findings demonstrate that the absence of BRD4 results in the upregulation of G9a activity and consequently impaired myogenic differentiation. Collectively, our study identifies an interdependence between BRD4 and G9a for the precise control of transcriptional outputs to regulate myogenesis.
Collapse
Affiliation(s)
- Naidi Yang
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Taneja,
| |
Collapse
|
20
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
21
|
Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers (Basel) 2022; 14:cancers14174258. [PMID: 36077789 PMCID: PMC9454911 DOI: 10.3390/cancers14174258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary An uncontrollable loss in the skeletal muscle of cancer patients which leads to a significant reduction in body weight is clinically referred to as cancer cachexia (CC). While factors derived from the tumor environment which trigger various signaling pathways have been identified, not much progress has been made clinically to effectively prevent muscle loss. Deeper insights into the transcriptional and epigenetic regulation of muscle catabolic genes may shed light on key regulators which can be targeted to develop new therapeutic avenues. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting. Here, we review CC-associated signaling pathways and the transcriptional cascade triggered by inflammatory cytokines. Further, we highlight epigenetic factors involved in the transcription of catabolic genes in muscle wasting. We conclude with reflections on the directions that might pave the way for new therapeutic approaches to treat CC.
Collapse
|
22
|
Targeting cyclin-dependent kinase 9 in cancer therapy. Acta Pharmacol Sin 2022; 43:1633-1645. [PMID: 34811514 PMCID: PMC9253122 DOI: 10.1038/s41401-021-00796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p-TEFb) complex responsible for transcriptional regulation. It has been shown that CDK9 modulates the expression and activity of oncogenes, such as MYC and murine double minute 4 (MDM4), and it also plays an important role in development and/or maintenance of the malignant cell phenotype. Malfunction of CDK9 is frequently observed in numerous cancers. Recent studies have highlighted the function of CDK9 through a variety of mechanisms in cancers, including the formation of new complexes and epigenetic alterations. Due to the importance of CDK9 activation in cancer cells, CDK9 inhibitors have emerged as promising candidates for cancer therapy. Natural product-derived and chemically synthesized CDK9 inhibitors are being examined in preclinical and clinical research. In this review, we summarize the current knowledge on the role of CDK9 in transcriptional regulation, epigenetic regulation, and different cellular factor interactions, focusing on new advances. We show the importance of CDK9 in mediating tumorigenesis and tumor progression. Then, we provide an overview of some CDK9 inhibitors supported by multiple oncologic preclinical and clinical investigations. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
|
23
|
Li W, Zhang C, Zhang HE, Dong R, Liu JY, Wang CM, Wang M, Wang YW, Wang C, Zhang Y, Shi L, Xu Y, Sun LP. Design, synthesis, and anticancer evaluation of ammosamide B with pyrroloquinoline derivatives as novel BRD4 inhibitors. Bioorg Chem 2022; 127:105917. [PMID: 35738217 DOI: 10.1016/j.bioorg.2022.105917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Bromodomain-containing protein 4 (BRD4), which is a member of the bromodomain and extra-terminal domain (BET) family, plays an important role in the regulation of gene expression as the "reader" of epigenetic regulation. BRD4 has become a promising target to treat cancer, because the up-regulation of BRD4 expression is closely associated with the occurrence and development of various cancers. At present, several BRD4 inhibitors are in clinical trials for cancer therapy, but no BRD4 inhibitors are on the market. Here, we designed and synthesized a series of compounds bearing pyrrolo[4,3,2-de]quinolin-2(1H)-one scaffold through structural modification of natural products ammosamide B, which is a natural pyrroloquinoline derivative reported for its potential antitumor activity. All target compounds were evaluated for their BRD4 BD1 inhibition activities via the protein thermal shift assays or AlphaSceen assay. The representative compound 49 showed potent activity (IC50 = 120 nM). The co-crystal of compound 49 with BRD4 BD1 was solved to study the structure activity relationship, which showed that 49 could combine with the acetyl lysine binding site and formed a hydrogen bond with the conserved residue Asn140. The results demonstrate that compound 49 is worthy of further investigation as a promising BRD4 inhibitor.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Hong-En Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing-Ying Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun-Meng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Discovery of potent BET bromodomain 1 stereoselective inhibitors using DNA-encoded chemical library selections. Proc Natl Acad Sci U S A 2022; 119:e2122506119. [PMID: 35622893 PMCID: PMC9295786 DOI: 10.1073/pnas.2122506119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BET bromodomain inhibition is therapeutic in multiple diseases; however, pan-BET inhibitors have induced significant myelosuppression and gastrointestinal toxicity, perhaps due to inhibition of both tandem bromodomains (BD) of all BET family members. However, selective inhibition of just the first BD (BD1) phenocopies pan-BET inhibitor activity in preclinical models of cancer, other diseases, and, for BRDT, in the testes for a contraceptive effect. Here, we leveraged our multibillion-molecule collection of DNA-encoded chemical libraries (DECLs) to identify BET BD1-selective inhibitors of specific chirality with high potency, stability, and good cellular activity. Our findings highlight the robustness and efficiency of the DECL platform to identify specific, potent protein binders that have promise as potential anticancer and anti-inflammatory agents and as male contraceptives. BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure–activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1–specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.
Collapse
|
25
|
Shen Q, Kuang JX, Miao CX, Zhang WL, Li YW, Zhang XW, Liu X. Alantolactone ameliorates cancer cachexia-associated muscle atrophy mainly by inhibiting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153858. [PMID: 34861585 DOI: 10.1016/j.phymed.2021.153858] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cancer cachexia is a serious metabolic disorder syndrome that is responsible for the deaths of approximately 30% of patients with cancer, but effective drugs for cancer cachexia are still lacking. Inflammatory cytokines such as TNF-α or IL-6 are involved in the induction of skeletal muscle atrophy and fat depletion in patients with cancer cachexia. PURPOSE In this study, we assessed the therapeutic effects of the natural compound alantolactone (AL) on cancer cachexia and tried to clarify the mechanisms by which it ameliorates muscle atrophy. METHODS The C26 tumor-bearing cancer cachexia mouse model was used to evaluate the efficacy of AL in alleviating cancer cachexia in vivo. The levels of IL-6 or TNF-α in mouse serum were detected using ELISA kits. Cultured C2C12 myotubes and 3T3-L1 adipocytes treated with conditioned medium of C26 tumor cells, IL-6 or TNF-α were employed as in vitro cancer cachexia models to examine the effects of AL in vitro. RESULTS AL (5 or 10 mg/kg, qd, i.p.) protected mice with C26 tumors and cachexia from a loss of body weight and muscle wasting but only slightly ameliorated fat loss. The circulating level of IL-6 but not TNF-α was significantly decreased by AL. AL treatment significantly inhibited STAT3 activation in the gastrocnemius (GAS) muscle of cancer cachexia mice. AL (0.125, 0.25, 0.5 and 1 µM) dose-dependently ameliorated myotube atrophy and STAT3 activation in cultured C2C12 myotubes induced by conditioned medium from C26 tumor cells. AL also ameliorated C2C12 myotube atrophy induced by IL-6 and inhibited IL-6-mediated STAT3 activation. AL exhibited weak effects on ameliorating TNF-α-mediated myotube atrophy and NF-κB activation. Only AL at high doses of more than 5 µM ameliorated lipolysis and STAT3 activation induced in mature 3T3-L1 adipocytes by conditioned medium from C26 tumor cells. CONCLUSIONS AL significantly ameliorated muscle atrophy in a cancer cachexia model mainly through the inhibition of the STAT3 pathway. AL might be a promising lead compound in the development of drug candidates for cancer cachexia therapy.
Collapse
Affiliation(s)
- Qiang Shen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ji-Xia Kuang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Xiao Miao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wan-Li Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi-Wei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
26
|
circDENND4C Promotes Proliferation and Metastasis of Lung Cancer by Upregulating BRD4 Signaling Pathway. JOURNAL OF ONCOLOGY 2021; 2021:2469691. [PMID: 34876902 PMCID: PMC8645384 DOI: 10.1155/2021/2469691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effects of circDENND4C on the malignant biological behavior of lung cancer and its downstream target genes and molecular mechanisms. Methods The expression of circDENND4C in lung cancer tissues and cells was detected. After transfection with silenced circDENND4C, the expression levels of circDENND4C, miR-141-3p, and BRD4 in lung cancer cells were detected by qRT-PCR. The targeting relationship between circDENND4C and miR-141-3p as well as miR-141-3p and BRD4 was verified. Cell activity was detected by CCK-8 and EdU assay. Transwell assay was used to detect the invasiveness of A549 and NCI-H1299 in each group. Effects of circDENND4C on proliferation and metastasis of lung cancer in nude mice were studied. Results In vitro and in vivo results showed that circDENND4C silencing reduced the proliferation, invasion, and metastasis of lung cancer cells. Mechanism studies showed that circDENND4C has a targeting relationship with miR-141-3p. However, miR-141-3p has a targeting relationship with BRD4. circDENND4C indirectly upregulated BRD4 through sponge adsorption of miR-141-3p, thereby promoting metastasis and proliferation of NSCLC. Conclusion circDENND4C, as an oncogene, promotes the proliferation, invasion, and metastasis of lung cancer cells.
Collapse
|
27
|
He MY, Halford MM, Liu R, Roy JP, Grant ZL, Coultas L, Thio N, Gilan O, Chan YC, Dawson MA, Achen MG, Stacker SA. Three-dimensional CRISPR screening reveals epigenetic interaction with anti-angiogenic therapy. Commun Biol 2021; 4:878. [PMID: 34267311 PMCID: PMC8282794 DOI: 10.1038/s42003-021-02397-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR–Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT. Through three-dimensional CRISPR screening, He et al. report that functional inhibition of BET family of proteins BRD2/3/4 shows mitigating effects on blood endothelial cell (EC) survival and/or proliferation upon VEGFA blockade. An interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs through CDC25B phosphatase, is potentially involved with EC resistance to anti-angiogenic therapy.
Collapse
Affiliation(s)
- Michael Y He
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael M Halford
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ruofei Liu
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Roy
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe L Grant
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Gladstone Institutes, San Francisco, CA, USA
| | - Leigh Coultas
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Niko Thio
- Bioinformatics Core, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Omer Gilan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Yih-Chih Chan
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia.,Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc G Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
28
|
Fix DK, Counts BR, Smuder AJ, Sarzynski MA, Koh H, Carson JA. Wheel running improves fasting-induced AMPK signaling in skeletal muscle from tumor-bearing mice. Physiol Rep 2021; 9:e14924. [PMID: 34270178 PMCID: PMC8284248 DOI: 10.14814/phy2.14924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Disruptions to muscle protein turnover and metabolic regulation contribute to muscle wasting during the progression of cancer cachexia. The initiation of cachexia is also associated with decreased physical activity. While chronic muscle AMPK activation occurs during cachexia progression in ApcMin/+ (MIN) mice, a preclinical cachexia model, the understanding of muscle AMPK's role during cachexia initiation is incomplete. Therefore, we examined if voluntary wheel exercise could improve skeletal muscle AMPK signaling in pre-cachectic MIN mice. Next, we examined muscle AMPK's role in aberrant catabolic signaling in response to a 12-h fast in mice initiating cachexia. Male C57BL/6 (B6: N = 26) and MIN (N = 29) mice were subjected to ad libitum feeding, 12-h fast, or 4 wks. of wheel access and then a 12-h fast during the initiation of cachexia. Male tamoxifen-inducible skeletal muscle AMPKα1 α2 (KO) knockout mice crossed with ApcMin/+ and floxed controls were examined (WT: N = 8, KO: N = 8, MIN: N = 10, MIN KO: N = 6). Male mice underwent a 12-h fast and the gastrocnemius muscle was analyzed. MIN gastrocnemius mass was reduced compared to B6 mice. A 12-h fast induced MIN muscle AMPKT172 , FOXOS413 , and ULK-1S555 phosphorylation compared to B6. Wheel running attenuated these inductions. A 12-h fast induced MIN muscle MuRF-1 protein expression compared to B6 and was suppressed by wheel running. Additionally, fasting induced muscle autophagy signaling and disrupted mitochondrial quality protein expression in the MIN, which was prevented in the MIN KO. We provide evidence that increased skeletal muscle AMPK sensitivity to a 12-h fast is an adverse event in pre-cachectic MIN mice, and exercise can improve this regulation.
Collapse
Affiliation(s)
- Dennis K. Fix
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Brittany R. Counts
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Ashley J. Smuder
- Department of Applied Physiology & KinesiologyCollege of Health & Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Mark A. Sarzynski
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Ho‐Jin Koh
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - James A. Carson
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
29
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
30
|
Podpeskar A, Crazzolara R, Kropshofer G, Hetzer B, Meister B, Müller T, Salvador C. Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients 2021; 13:1800. [PMID: 34073158 PMCID: PMC8226718 DOI: 10.3390/nu13061800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malnutrition is common in children with cancer and is associated with adverse clinical outcomes. The need for supportive care is becoming ever more evident and the role of nutrition in oncology is still not sufficiently understood. In particular, the consequences of macro- and micronutrient deficiencies require further research. As epidemiological data suggest anti-tumoral properties of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), we reviewed the role of nutrition and n-3 supplementation in pediatric oncology. METHODS A comprehensive literature search was conducted on PubMed through 5 February 2021 to select meta-analyses, systematic reviews, observational studies, and individual randomized controlled trials (RCTs) on macro- and micronutrient supplementation in pediatric oncology. The search strategy included the following medical subject headings (MeSH) and keywords: "childhood cancer", "pediatric oncology", "nutritional status", "malnutrition", and "omega-3-fatty-acids". The reference lists of all relevant articles were screened to include potentially pertinent studies. RESULTS We summarize evidence about the importance of adequate nutrition in childhood cancer and the role of n-3 PUFAs and critically interpret findings. Possible effects of supplementation on the nutritional status and benefits during chemotherapy are discussed as well as strategies for primary and secondary prevention. CONCLUSION We here describe the obvious benefits of omega-3 supplementation in childhood cancer. Further large scale clinical trials are required to verify potential anti-cancer effects of n-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christina Salvador
- Department of Pediatrics I, Division of Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.P.); (R.C.); (G.K.); (B.H.); (B.M.); (T.M.)
| |
Collapse
|
31
|
Abstract
OBJECTIVES Recent evidence from the fields of microbiology and immunology, as well as a small number of human sepsis studies, suggest that epigenetic regulation may play a central role in the pathogenesis of sepsis. The term "epigenetics" refers to regulatory mechanisms that control gene expression but are not related to changes in DNA sequence. These include DNA methylation, histone modifications, and regulation of transcription via non-coding RNAs. Epigenetic modifications, occurring in response to external stressors, lead to changes in gene expression, and thus lie at the intersection between genetics and the environment. In this review, we examine data from in vitro studies, animal studies, and the existing human sepsis studies in epigenetics to demonstrate that epigenetic mechanisms are likely central to the pathogenesis of sepsis and that epigenetic therapies may have potential in the treatment of sepsis and its associated organ failures. DATA SOURCES Online search of published scientific literature via Pubmed using the term "epigenetics" in combination with the terms "sepsis", "infection", "bacterial infection", "viral infection", "critical illness", "acute respiratory distress syndrome", and "acute lung injury". STUDY SELECTION Articles were chosen for inclusion based on their relevance to sepsis, acute inflammation, sepsis-related immune suppression, and sepsis-related organ failure. Reference lists were reviewed to identify additional relevant articles. DATA EXTRACTION Relevant data was extracted and synthesized for narrative review. DATA SYNTHESIS Epigenetic regulation is a key determinant of gene expression in sepsis. At the onset of infection, host-pathogen interactions often result in epigenetic alterations to host cells that favor pathogen survival. In parallel, the host inflammatory response is characterized by epigenetic modifications in key regulatory genes, including tumor necrosis factor and interleukin-1β. In human sepsis patients, multiple epigenetic modifying enzymes show differential expression in early sepsis, suggesting a role for epigenetics in coordinating the response to infection. In the later stages of sepsis, epigenetic modifications accompany endotoxin tolerance and the immune-suppressed state. In animal models, treatment with epigenetic modifiers can mitigate the effects of sepsis and improve survival as well as reverse sepsis-associated organ injury. CONCLUSIONS Epigenetic modifications are associated with key phases of sepsis, from the host-pathogen interaction, to acute inflammation, to immune suppression. Epigenetic markers show promise in the diagnosis and prognosis of sepsis and epigenetic modifying agents show promise as therapeutic tools in animal models of sepsis. Human studies in the area of epigenetics are sorely lacking and should be a priority for sepsis researchers.
Collapse
|
32
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
33
|
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12:252-273. [PMID: 33783983 PMCID: PMC8061402 DOI: 10.1002/jcsm.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.
Collapse
Affiliation(s)
- Agnès Martin
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| | - Damien Freyssenet
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| |
Collapse
|
34
|
Auguste G, Rouhi L, Matkovich SJ, Coarfa C, Robertson MJ, Czernuszewicz G, Gurha P, Marian AJ. BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C-deficient mice. J Clin Invest 2021; 130:4740-4758. [PMID: 32484798 DOI: 10.1172/jci135922] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Mutation in the LMNA gene, encoding lamin A/C, causes a diverse group of diseases called laminopathies. Cardiac involvement is the major cause of death and manifests as dilated cardiomyopathy, heart failure, arrhythmias, and sudden death. There is no specific therapy for LMNA-associated cardiomyopathy. We report that deletion of Lmna in cardiomyocytes in mice leads to severe cardiac dysfunction, conduction defect, ventricular arrhythmias, fibrosis, apoptosis, and premature death within 4 weeks. The phenotype is similar to LMNA-associated cardiomyopathy in humans. RNA sequencing, performed before the onset of cardiac dysfunction, led to identification of 2338 differentially expressed genes (DEGs) in Lmna-deleted cardiomyocytes. DEGs predicted activation of bromodomain-containing protein 4 (BRD4), a regulator of chromatin-associated proteins and transcription factors, which was confirmed by complementary approaches, including chromatin immunoprecipitation sequencing. Daily injection of JQ1, a specific BET bromodomain inhibitor, partially reversed the DEGs, including those encoding secretome; improved cardiac function; abrogated cardiac arrhythmias, fibrosis, and apoptosis; and prolonged the median survival time 2-fold in the myocyte-specific Lmna-deleted mice. The findings highlight the important role of LMNA in cardiomyocytes and identify BET bromodomain inhibition as a potential therapeutic target in LMNA-associated cardiomyopathy, for which there is no specific effective therapy.
Collapse
Affiliation(s)
- Gaelle Auguste
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Scot J Matkovich
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Grazyna Czernuszewicz
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
35
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
36
|
Memme JM, Hood DA. Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects. Front Physiol 2021; 11:615038. [PMID: 33584337 PMCID: PMC7874077 DOI: 10.3389/fphys.2020.615038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is common to many organ system disorders, including skeletal muscle. Aging muscle and diseases of muscle are often accompanied by defective mitochondrial ATP production. This manuscript will focus on the pre-clinical evidence supporting the use of regular exercise to improve defective mitochondrial metabolism and function in skeletal muscle, through the stimulation of mitochondrial turnover. Examples from aging muscle, muscle-specific mutations and cancer cachexia will be discussed. We will also examine the effects of exercise on the important mitochondrial regulators PGC-1α, and Parkin, and summarize the effects of exercise to reverse mitochondrial dysfunction (e.g., ROS production, apoptotic susceptibility, cardiolipin synthesis) in muscle pathology. This paper will illustrate the breadth and benefits of exercise to serve as "mitochondrial medicine" with age and disease.
Collapse
Affiliation(s)
- Jonathan M. Memme
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
37
|
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12:330. [PMID: 33436614 PMCID: PMC7803748 DOI: 10.1038/s41467-020-20123-1] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing. Loss of muscle mass is associated with ageing and with a number of diseases such as cancer. Here, the authors review the signaling pathways that modulate protein synthesis and degradation and gain or loss of muscle mass, and discuss therapeutic implications and future directions for the field.
Collapse
Affiliation(s)
- Roberta Sartori
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy.,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy
| | - Vanina Romanello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Myology Center, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
38
|
Shen H, Li J, Xie X, Yang H, Zhang M, Wang B, Kent KC, Plutzky J, Guo LW. BRD2 regulation of sigma-2 receptor upon cholesterol deprivation. Life Sci Alliance 2021; 4:e201900540. [PMID: 33234676 PMCID: PMC7723276 DOI: 10.26508/lsa.201900540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma-2 receptor (S2R) has long been pharmacologically targeted for antipsychotic treatment and tumor imaging. Only recently was it known for its coding gene and for its role implicated in cholesterol homeostasis. Here, we have investigated the transcriptional control of S2R by the Bromo/ExtraTerminal epigenetic reader family (BETs, including BRD2, 3, and 4) upon cholesterol perturbation. Cholesterol deprivation was induced in ARPE19 cells using a blocker of lysosomal cholesterol export. This condition up-regulated S2R mRNA and protein, and also SREBP2 but not SREBP1, both transcription factors key to cholesterol/fatty acid metabolism. Silencing BRD2 but not BRD3 or BRD4 (though widely deemed a master regulator) averted S2R up-regulation that was induced by cholesterol deprivation. Silencing SREBP2 but not SREBP1 diminished S2R expression. Furthermore, endogenous BRD2 co-immunoprecipitated with the transcription-active N-terminal half of SREBP2, and chromatin immunoprecipitation-qPCR signified co-occupancy of BRD2, H3K27ac (histone acetylation), and SREBP2Nterm at the S2R gene promoter. In summary, this study reveals a previously unrecognized BRD2/SREBP2 cooperative regulation of S2R transcription, thus shedding new light on signaling in response to cholesterol deprivation.
Collapse
Affiliation(s)
- Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Huan Yang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
39
|
Song Y, Hu G, Jia J, Yao M, Wang X, Lu W, Hutchins AP, Chen J, Ozato K, Yao H. DNA Damage Induces Dynamic Associations of BRD4/P-TEFb With Chromatin and Modulates Gene Transcription in a BRD4-Dependent and -Independent Manner. Front Mol Biosci 2020; 7:618088. [PMID: 33344510 PMCID: PMC7746802 DOI: 10.3389/fmolb.2020.618088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The bromodomain-containing protein BRD4 has been thought to transmit epigenetic information across cell divisions by binding to both mitotic chromosomes and interphase chromatin. UV-released BRD4 mediates the recruitment of active P-TEFb to the promoter, which enhances transcriptional elongation. However, the dynamic associations between BRD4 and P-TEFb and BRD4-mediated gene regulation after UV stress are largely unknown. In this study, we found that BRD4 dissociates from chromatin within 30 min after UV treatment and thereafter recruits chromatin. However, P-TEFb binds tightly to chromatin right after UV treatment, suggesting that no interactions occur between BRD4 and P-TEFb within 30 min after UV stress. BRD4 knockdown changes the distribution of P-TEFb among nuclear soluble and chromatin and downregulates the elongation activity of RNA polymerase II. Inhibition of JNK kinase but not other MAP kinases impedes the interactions between BRD4 and P-TEFb. RNA-seq and ChIP assays indicate that BRD4 both positively and negatively regulates gene transcription in cells treated with UV stress. These results reveal previously unrecognized dynamics of BRD4 and P-TEFb after UV stress and regulation of gene transcription by BRD4 acting as either activator or repressor in a context-dependent manner.
Collapse
Affiliation(s)
- Yawei Song
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinping Jia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenliang Lu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G. BETs inhibition attenuates oxidative stress and preserves muscle integrity in Duchenne muscular dystrophy. Nat Commun 2020; 11:6108. [PMID: 33257646 PMCID: PMC7705749 DOI: 10.1038/s41467-020-19839-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.,Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (Is), Italy
| | - Roberta Szokoll
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lorenzo Nevi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, Oxford, OX3 7DQ, UK
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
41
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
42
|
ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells. Cells 2020; 9:cells9102232. [PMID: 33023189 PMCID: PMC7599914 DOI: 10.3390/cells9102232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.
Collapse
|
43
|
Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell 2020; 19:e13223. [PMID: 32857472 PMCID: PMC7576270 DOI: 10.1111/acel.13223] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is the age-related decline in muscle mass and function without any underlying disease. The exact molecular mechanisms responsible for this pathology remain unknown. The use of model organisms, such as mice, rats, flies, and worms, has advanced the field of sarcopenia research by identifying therapeutic strategies and genetic mutations that result in improved muscle mass and function of elderly animals. This review discusses molecular and therapeutic discoveries made using these model organisms and how these animals can be further utilized to better understand sarcopenia pathogenesis. In rodents, flies, and worms, dietary restriction improves muscle performance in old animals. In rodents and worms, exercise and a number of naturally occurring compounds alleviate sarcopenia. Reduction in the insulin/IGF1 receptor pathway, well known to promote longevity, improves sarcopenia in worms and flies. Mitochondrial dysfunction may contribute to the pathogenesis of sarcopenia: In rodents, there is age-dependent reduction in mitochondrial mass and a change in morphology; in nematodes, there is age-dependent fragmentation of mitochondria that precedes sarcomeric disorganization. In Drosophila and rats, components of the 26S proteasome are elevated in aged muscle. An advantage of the worm and fly models is that these organisms lack muscle stem cells, and thus processes that promote the maintenance of already assembled muscle, can be identified without the confounding influence of muscle regeneration. Zebrafish are an up and coming model of sarcopenia for future consideration. A better understanding of the molecular changes behind sarcopenia will help researchers develop better therapies to improve the muscle health of elderly individuals.
Collapse
Affiliation(s)
| | - Guy M. Benian
- Department of Pathology Emory University Atlanta Georgia USA
| |
Collapse
|
44
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
45
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
46
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
47
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
48
|
Zheng J, Zhang YW, Li TK, Bao Y, Zhang SX. [Effect of miR-204-5p on the proliferation, migration, and invasion on tongue squamous cell carcinoma SCC25 cells by targeting bromodomain-containing protein 4]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:185-192. [PMID: 32314893 PMCID: PMC7184279 DOI: 10.7518/hxkq.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/12/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to explore the target relationship between miR-204-5p and bromodomain-containing protein (BRD) 4, as well as their effects on cell proliferation, migration, and invasion in tongue squamous cell carcinoma SCC25. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to detect miR-204-5p and BRD4 expression levels in tongue squamous cell carcinoma and different cell lines. TargetScan and dual luciferase reporter assay were used to confirm the target relationship between miR-204-5p and BRD4. The effects of miR-204-5p on SCC25 cell proliferation were examined by cell counting kit (CCK) 8 assay, whereas those on SCC25 cell migration and invasion were determined by Transwell assay. RT-qPCR and Western blot were used to detect the effects of miR-204-5p mimics and inhibitors on BRD4 expression. Transwell and CCK8 assays were used to detect the effects of miR-204-5p on proliferation, migration, and invasion through BRD4 regulation. RESULTS miR-204-5p was significantly downregulated in the tissues and cells of squamous cell carcinoma, and BRD4 showed the opposite result. The increase in miR-204-5p expression can inhibit the proliferation, migration, and invasion of SCC25 cells. TargetScan and luciferase test confirmed that miR-204-5p and BRD4 had a negative regulatory relationship with BRD4, respectively. Moreover, miR-204-5p mimics can inhibit BRD4 expression, and miR-204-5p inhibitors can promote BRD4 expression upregulation. When miR-204-5p and BRD4 were overexpressed in SCC25 cells, BRD4 can make up for the inhibitory effect of miR-204-5p on SCC25 cells. CONCLUSIONS miR-204-5p could inhibit proliferation, migration and invasion in tongue squamous cell carcinoma SCC25 cells by targeting BRD4 gene.
Collapse
Affiliation(s)
- Jing Zheng
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yu-Wen Zhang
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Tian-Ke Li
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yang Bao
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Su-Xin Zhang
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
49
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
50
|
Bruscolini A, Lambiase A, Segatto M, La Cava M, Nebbioso M, Sacchetti M. Evaluation of IL8 pathway on the ocular surface: new insights in patients with ocular mucous membrane pemphigoid. Acta Ophthalmol 2020; 98:e173-e177. [PMID: 31486595 DOI: 10.1111/aos.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the expression of IL8/CXCL8 cytokine and its receptor CXCR1 in tear film and ocular surface of patients with ocular mucous membrane pemphigoid (oMMP). METHODS Ten patients with oMMP in the quiescent phase, 20 patients with primary Sjogren syndrome (pSS) and 13 age- and sex-matched healthy controls (HCs) were included in this study. All patients undergone complete eye examination including lacrimal function tests and ocular surface staining assessed by ocular staining score. Ocular mucous membrane pemphigoid (oMMP) staging according to Mondino classification and dry eye severity grade according to Dry Eye Workshop 2007 classification were recorded. Tear samples and conjunctival epithelium were collected. IL-8 tear concentration was measured by enzyme-linked immunosorbent assay, and conjunctival IL8 was analysed by Western blot; conjunctival expression of CXCR1 was evaluated by immunohistochemistry. Il-8 and CXCR1 expression in oMMP patients were compared with HCand pSS patients and correlated with ocular clinical findings. RESULTS Tear levels of IL-8 were significantly increased in patients with oMMP (260.1 ± 70 pg/ml) when compared to both HCs (98.5 ± 71.35 pg/ml; p = 0.001) and patients with pSS (96.3 ± 87.5 pg/ml; p = 0.001). Conjunctival expression of IL8 and CXCR1 was significantly increased in oMMP patients when compared to both healthy subjects and pSS patients. CONCLUSION The significant increase of tear and conjunctival IL8 and CXCR1 levels in patients with oMMP when compared to healthy subjects and patients with Sjogren syndrome suggests that changes of IL8 pathway are specific of oMMP and may represent a potential biomarker of the disease and/or therapeutic target.
Collapse
Affiliation(s)
- Alice Bruscolini
- Department of Sense Organs ‘Sapienza’ University of Rome Rome Italy
| | | | - Marco Segatto
- Department of Sense Organs ‘Sapienza’ University of Rome Rome Italy
| | - Maurizio La Cava
- Department of Sense Organs ‘Sapienza’ University of Rome Rome Italy
| | | | - Marta Sacchetti
- Department of Sense Organs ‘Sapienza’ University of Rome Rome Italy
| |
Collapse
|