1
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
2
|
Seffer MT, Kielstein JT. [Extracorporeal removal of pathogens using a biomimetic adsorber-A new treatment strategy for the intensive care unit : Seraph® 100 Microbind® Affinity Blood Filter and its fields of application]. Med Klin Intensivmed Notfmed 2024:10.1007/s00063-024-01153-9. [PMID: 38981926 DOI: 10.1007/s00063-024-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/31/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND In 2019 the World Health Organization (WHO) listed antimicrobial resistance among the top 10 threats to global health. The Seraph® 100 Microbind® Affinity blood filter (Seraph® 100) has been in use since 2019 to eliminate pathogens from the bloodstream in addition to anti-infective pharmacotherapy. It is the first device used to rapidly and efficiently reduce the number of circulating bacteria and viruses. OBJECTIVE After a background on the concept of extracorporeal pathogen removal in general, this review summarizes the preclinical and clinical data on the Seraph® 100 Affinity Blood Filter. The clinical effect of this treatment and potential therapeutic options are described. METHODS Structured PubMed review including references published up to February 2024. RESULTS Case reports, uncontrolled observational studies and data from registries show widespread clinical use of the Seraph® 100 ranging from difficult to treat bacterial (super) infections to viral infections. The treatment can be done as stand-alone hemoperfusion or in combination with all forms of kidney replacement therapy as well as in extracorporeal membrane oxygenation. CONCLUSION The use of the Seraph® 100 varies in terms of duration, concomitant therapy and clinical settings. Due to the absence of prospective controlled trials the clinical effect cannot be properly evaluated.
Collapse
Affiliation(s)
- Malin-Theres Seffer
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Deutschland
- Medizinische Klinik V Nephrologie | Rheumatologie | Blutreinigungsverfahren, Städtisches Klinikum Braunschweig, Salzdahlumer Str. 90, 38126, Braunschweig, Deutschland
| | - Jan T Kielstein
- Medizinische Klinik V Nephrologie | Rheumatologie | Blutreinigungsverfahren, Städtisches Klinikum Braunschweig, Salzdahlumer Str. 90, 38126, Braunschweig, Deutschland.
| |
Collapse
|
3
|
Ramírez-Guerrero G, de Cal M, Lorenzin A, Vigolo D, Toscano AI, Araya-Rojas M, Zanella M, Ronco C. Sorbent functionalization with vancomycin enhances bacteria killing in extracorporeal hemoadsorption. Artif Organs 2024; 48:543-549. [PMID: 38156403 DOI: 10.1111/aor.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The level of bacteremia in patients with sepsis and septic shock is a predictor of complications and mortality, regardless of the type of bacteria. Devices for bacteria, endotoxin and cytokines removal by adsorption have been recently developed. Thus, extracorporeal blood purification therapies have been proposed as adjunctive therapy in sepsis in combination with drugs. Some potentially useful drugs, however, are precluded due to their organ or metabolic toxicity. The present study represents a preliminary report on the in vitro effect of a sorbent device (minimodule with HA380 beads, Jafron medical, Zhuhai, China) in which the particles have been functionalized with vancomycin on the surface. The impact of the surface-modified beads on circulating bacteria (Staphylococcus aureus) has been tested in a simulated in vitro circulation. METHODS In vitro experiments were carried out with 800 mL of blood enriched with S. aureus species. Blood was circulated in the vancomycin-functionalized and non-functionalized mini-module cartridges in hemoadsorption setup (300 mL each) and the bactericidal effect was assessed. Also, 200 mL of blood was used as a control. RESULTS A significant increase in the time to positivity of blood cultures was observed after 60 min and also after 120 min of therapy with the mini-module functionalized with vancomycin as opposed to the non-functionalized cartridge. CONCLUSIONS These results suggest a possible way of treating sepsis by using drug- or antibiotic-functionalized cartridges without worrying about pharmacological toxicity. The prolongation of the time to bacterial culture positivity to S. aureus after a passage through a column packed with beads functionalized with vancomycin represents a proof of concept.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Department of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Massimo de Cal
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Dario Vigolo
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| | - Anna Italia Toscano
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| | | | - Monica Zanella
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| |
Collapse
|
4
|
Chen S, Bao J, Hu Z, Liu X, Cheng S, Zhao W, Zhao C. Porous Microspheres as Pathogen Traps for Sepsis Therapy: Capturing Active Pathogens and Alleviating Inflammatory Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682663 DOI: 10.1021/acsami.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by pathogen infection, while the current antibiotics mainly utilized in clinical practice to combat infection result in the release of pathogen-associated molecular patterns (PAMPs) in the body. Herein, we provide an innovative strategy for controlling sepsis, namely, capturing active pathogens by means of extracorporeal blood purification. Carbon nanotubes (CNTs) were modified with dimethyldiallylammonium chloride (DDA) through γ-ray irradiation-induced graft polymerization to confer a positive charge. Then, CNT-DDAs are blended with polyurethane (PU) to prepare porous microspheres using the electro-spraying method. The obtained microspheres with a pore diameter of 2 μm served as pathogen traps and are termed as PU-CNT-DDA microspheres. Even at a high flow rate of 50 mL·min-1, the capture efficiencies of the PU-CNT-DDAs for Escherichia coli and Staphylococcus aureus remained 94.7% and 98.8%, respectively. This approach circumvents pathogen lysis and mortality, significantly curtails the release of PAMPs, and hampers the production of pro-inflammatory cytokines. Therefore, hemoperfusion using porous PU-CNT-DDAs as pathogen traps to capture active pathogens and alleviate inflammation opens a new route for sepsis therapy.
Collapse
Affiliation(s)
- Shifan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Hu
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, PR China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Cheng Y, Ma X, Franklin T, Yang R, Moraru CI. Mechano-Bactericidal Surfaces: Mechanisms, Nanofabrication, and Prospects for Food Applications. Annu Rev Food Sci Technol 2023; 14:449-472. [PMID: 36972158 DOI: 10.1146/annurev-food-060721-022330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mechano-bactericidal (MB) nanopatterns have the ability to inactivate bacterial cells by rupturing cellular envelopes. Such biocide-free, physicomechanical mechanisms may confer lasting biofilm mitigation capability to various materials encountered in food processing, packaging, and food preparation environments. In this review, we first discuss recent progress on elucidating MB mechanisms, unraveling property-activity relationships, and developing cost-effective and scalable nanofabrication technologies. Next, we evaluate the potential challenges that MB surfaces may face in food-related applications and provide our perspective on the critical research needs and opportunities to facilitate their adoption in the food industry.
Collapse
Affiliation(s)
- Yifan Cheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA;
| | - Xiaojing Ma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Trevor Franklin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
7
|
Kielstein JT. [Hemoperfusion and plasmapheresis in the intensive care unit]. WIENER KLINISCHES MAGAZIN : BEILAGE ZUR WIENER KLINISCHEN WOCHENSCHRIFT 2023; 26:1-6. [PMID: 37359739 PMCID: PMC9975843 DOI: 10.1007/s00740-023-00486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In addition to kidney replacement procedures, several other extracorporeal procedures are employed in the intensive care unit. Hemoperfusion with activated charcoal was the predominant treatment used for removal of toxins from the 1970s until the millennium. Nowadays, this treatment does no longer play a clinically meaningful role as even strongly protein-bound toxins can be removed by effective dialysis procedures in case poisoning. The concept of a cytokine adsorber was introduced 10 years ago, which is directed towards withstanding the cytokine storm. Despite negative data from prospective randomized controlled studies, its use is steadily increasing in Germany. A totally different treatment concept is the biomimetic pathogen adsorber, which removes bacteria, viruses and fungi from the bloodstream by binding to immobilized heparin. Whether this rapid reduction of the pathogen load translates into an improvement of clinically relevant endpoints is unclear, as prospective randomized controlled studies are lacking. For the early hours of septic shock a very old procedure, plasmapheresis, has recently regained interest. The results of two large randomized controlled studies in this setting from Europe and Canada will become available in 2025/2026. The rationale to use plasma exchange in early sepsis is that this procedure not only removes cytokines but also replenishes reduced levels of protective factors, such as angiopoietin‑1, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13) and protein C, if fresh plasma is used as exchange fluid. All afore mentioned procedures do not only have a different mode of action but are also used at seperate time points of bloodstream infections and/or sepsis.
Collapse
Affiliation(s)
- Jan T. Kielstein
- Medizinische Klinik V (Nephrologie | Rheumatologie | Blutreinigungsverfahren), Städtisches Klinikum Braunschweig, Salzdahlumer Str. 90, 38126 Braunschweig, Deutschland
| |
Collapse
|
8
|
Seffer MT, Weinert M, Molinari G, Rohde M, Gröbe L, Kielstein JT, Engelmann S. Staphylococcus aureus binding to Seraph® 100 Microbind® Affinity Filter: Effects of surface protein expression and treatment duration. PLoS One 2023; 18:e0283304. [PMID: 36930680 PMCID: PMC10022791 DOI: 10.1371/journal.pone.0283304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria. OBJECTIVES The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity. RESULTS To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells. CONCLUSIONS The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.
Collapse
Affiliation(s)
- Malin-Theres Seffer
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Martin Weinert
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
| | - Gabriella Molinari
- Helmholtz Centre for Infection Research, Central Facility of Microscopy, Braunschweig Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility of Microscopy, Braunschweig Germany
| | - Lothar Gröbe
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
| | - Jan T. Kielstein
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Susanne Engelmann
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
9
|
Hämoperfusion und Plasmapherese auf der Intensivstation. DIE NEPHROLOGIE 2022. [PMCID: PMC9768770 DOI: 10.1007/s11560-022-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neben Nierenersatzverfahren werden auf der Intensivstation mehrere andere extrakorporale Verfahren eingesetzt. In den 1970er- bis 2000er-Jahren stand die Hämoperfusion mit Aktivkohlekapseln zur Entfernung von Toxinen im Vordergrund. Dies ist mittlerweile aufgrund der effektiven Dialyseverfahren, die im Vergiftungsfall auch stark proteingebundene Toxine entfernen, fast bedeutungslos geworden. Vor 10 Jahren erlebte ein Zytokinadsorber die Markteinführung, der darauf gerichtet ist, den „Zytokinsturm“ zu überstehen. Dieser erfreut sich trotz ernüchternder Daten aus prospektiven, randomisierten, kontrollierten Studien wachsender Beliebtheit. Ein gänzlich anderes Therapiekonzept ist der biomimetische Pathogenadsorber, der Bakterien, Viren und Pilze durch Bindung an immobilisiertes Heparin aus dem Blutstrom entfernt. Ob sich diese schnelle Reduktion der Pathogenlast in eine Verbesserung klinisch relevanter Endpunkte übersetzt, ist unklar, da hier prospektive, randomisierte und kontrollierte Studien gänzlich fehlen. Für ein sehr altes Verfahren, nämlich die Plasmapherese, werden wir für die Frühphase der Sepsis bis zum Jahr 2025/2026 Ergebnisse aus 2 großen randomisierten, kontrollierten Studien aus Europa und Kanada erhalten. Neben der Entfernung von Zytokinen erhofft man sich durch die Verwendung von Frischplasma als Austauschflüssigkeit auch das Wiederauffüllen reduzierter protektiver Faktoren wie Angiopoietin 1, ADAMTS13 („a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13“) und Protein C. Alle genannten Verfahren funktionieren nicht nur unterschiedlich, sondern werden auch zu unterschiedlichen Zeitpunkten der Blutstrominfektion/Sepsis eingesetzt.
Collapse
|
10
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Eden G, Schmidt JJ, Büttner S, Kümpers P, Hafer C, Rovas A, Koch BF, Schmidt BMW, Kielstein JT. Safety and efficacy of the Seraph® 100 Microbind® Affinity Blood Filter to remove bacteria from the blood stream: results of the first in human study. Crit Care 2022; 26:181. [PMID: 35715801 PMCID: PMC9205040 DOI: 10.1186/s13054-022-04044-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial burden as well as duration of bacteremia influence the outcome of patients with bloodstream infections. Promptly decreasing bacterial load in the blood by using extracorporeal devices in addition to anti-infective therapy has recently been explored. Preclinical studies with the Seraph® 100 Microbind® Affinity Blood Filter (Seraph® 100), which consists of heparin that is covalently bound to polymer beads, have demonstrated an effective binding of bacteria and viruses. Pathogens adhere to the heparin coated polymer beads in the adsorber as they would normally do to heparan sulfate on cell surfaces. Using this biomimetic principle, the Seraph® 100 could help to decrease bacterial burden in vivo.
Methods This first in human, prospective, multicenter, non-randomized interventional study included patients with blood culture positive bloodstream infection and the need for kidney replacement therapy as an adjunctive treatment for bloodstream infections. We performed a single four-hour hemoperfusion treatment with the Seraph® 100 in conjunction with a dialysis procedure. Post procedure follow up was 14 days. Results Fifteen hemodialysis patients (3F/12 M, age 74.0 [68.0–78.5] years, dialysis vintage 28.0 [11.0–45.0] months) were enrolled. Seraph® 100 treatment started 66.4 [45.7–80.6] hours after the initial positive blood culture was drawn. During the treatment with the Seraph® 100 with a median blood flow of 285 [225–300] ml/min no device or treatment related adverse events were reported. Blood pressure and heart rate remained stable while peripheral oxygen saturation improved during the treatment from 98.0 [92.5–98.0] to 99.0 [98.0–99.5] %; p = 0.0184. Four patients still had positive blood culture at the start of Seraph® 100 treatment. In one patient blood cultures turned negative during treatment. The time to positivity (TTP) was increased between inflow and outflow blood cultures by 36 [− 7.2 to 96.3] minutes. However, overall TTP increase was not statistical significant. Conclusions Seraph® 100 treatment was well tolerated. Adding Seraph® 100 to antibiotics early in the course of bacteremia might result in a faster resolution of bloodstream infections, which has to be evaluated in further studies. Trail registration: ClinicalTrials.gov Identifier: NCT02914132, first posted September 26, 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04044-7.
Collapse
|
12
|
Dsouza A, Constantinidou C, Arvanitis TN, Haddleton DM, Charmet J, Hand RA. Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47323-47344. [PMID: 36222596 PMCID: PMC9614723 DOI: 10.1021/acsami.2c08582] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are cross-linked networks of hydrophilic polymer chains with a three-dimensional structure. Owing to their unique features, the application of hydrogels for bacterial/antibacterial studies and bacterial infection management has grown in importance in recent years. This trend is likely to continue due to the rise in bacterial infections and antimicrobial resistance. By exploiting their physicochemical characteristics and inherent nature, hydrogels have been developed to achieve bacterial capture and detection, bacterial growth or elimination, antibiotic delivery, or bacterial sensing. Traditionally, the development of hydrogels for bacterial/antibacterial studies has focused on achieving a single function such as antibiotic delivery, antibacterial activity, bacterial growth, or bacterial detection. However, recent studies demonstrate the fabrication of multifunctional hydrogels, where a single hydrogel is capable of performing more than one bacterial/antibacterial function, or composite hydrogels consisting of a number of single functionalized hydrogels, which exhibit bacterial/antibacterial function synergistically. In this review, we first highlight the hydrogel features critical for bacterial studies and infection management. Then, we specifically address unique hydrogel properties, their surface/network functionalization, and their mode of action for bacterial capture, adhesion/growth, antibacterial activity, and bacterial sensing, respectively. Finally, we provide insights into different strategies for developing multifunctional hydrogels and how such systems can help tackle, manage, and understand bacterial infections and antimicrobial resistance. We also note that the strategies highlighted in this review can be adapted to other cell types and are therefore likely to find applications beyond the field of microbiology.
Collapse
Affiliation(s)
- Andrea Dsouza
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | - Theodoros N. Arvanitis
- Institute
of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - David M. Haddleton
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Jérôme Charmet
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
- Warwick
Medical School, The University of Warwick, Coventry, United Kingdom CV4 7AL
- School
of Engineering—HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Rachel A. Hand
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
13
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
14
|
Tian T, Yi J, Liu Y, Li B, Liu Y, Qiao L, Zhang K, Liu B. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens Bioelectron 2022; 197:113778. [PMID: 34798500 DOI: 10.1016/j.bios.2021.113778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The rapid and accurate bacterial testing is a critical step for the management of infectious diseases, but challenges remain largely due to a lack of advanced sensing tools. Here we report the development of highly plasmon-active, biofunctional nanoparticle arrays for simultaneous capture, identification, and differentiation of bacteria by surface-enhanced Raman scattering (SERS). The nanoarrays were facilely prepared through an electrostatic mechanism-controlled self-assembly of metallic nanoparticles at liquid-liquid interfaces, and exhibited high SERS sensitivity beyond femtomole, good reproducibility (relative standard deviation of 2.7%) and stability. Modification of the nanoarrays with concanavalin A allowed to effective capture of both Gram-positive and Gram-negative bacteria (bacterial-capture efficiency maintained beyond 50%) at bacterial concentrations ranging from 50 to 2000 CFU mL-1, as determined by the plate-counting method. Moreover, single-cell Raman fingerprinting and discrimination of eight different bacteria species with high signal-to-noise ratio, excellent spectral reproducibility, and a total assay time of 1.5 h was achieved under fairly mild conditions (24 μW, acquisition time: 1 s). Collectively, we believe that our biofunctionalized, SERS-based self-assembled nanoarrays have great potential to help in rapid and label-free bacterial diagnosis and phenotyping study.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yujie Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Baohong Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
15
|
Ongwae GM, Chordia MD, Cawley JL, Dalesandro BE, Wittenberg NJ, Pires MM. Targeting of Pseudomonas aeruginosa cell surface via GP12, an Escherichia coli specific bacteriophage protein. Sci Rep 2022; 12:721. [PMID: 35031652 PMCID: PMC8760310 DOI: 10.1038/s41598-021-04627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
Bacteriophages are highly abundant molecular machines that have evolved proteins to target the surface of host bacterial cells. Given the ubiquity of lipopolysaccharides (LPS) on the outer membrane of Gram-negative bacteria, we reasoned that targeting proteins from bacteriophages could be leveraged to target the surface of Gram-negative pathogens for biotechnological applications. To this end, a short tail fiber (GP12) from the T4 bacteriophage, which infects Escherichia coli (E. coli), was isolated and tested for the ability to adhere to whole bacterial cells. We found that, surprisingly, GP12 effectively bound the surface of Pseudomonas aeruginosa cells despite the established preferred host of T4 for E. coli. In efforts to elucidate why this binding pattern was observed, it was determined that the absence of the O-antigen region of LPS on E. coli improved cell surface tagging. This indicated that O-antigens play a significant role in controlling cell adhesion by T4. Probing GP12 and LPS interactions further using deletions of the enzymes involved in the biosynthetic pathway of LPS revealed the inner core oligosaccharide as a possible main target of GP12. Finally, we demonstrated the potential utility of GP12 for biomedical applications by showing that GP12-modified agarose beads resulted in the depletion of pathogenic bacteria from solution.
Collapse
Affiliation(s)
- George M Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
16
|
Takahashi H, Baba Y, Yasui T. Oxide nanowire microfluidics addressing previously-unattainable analytical methods for biomolecules towards liquid biopsy. Chem Commun (Camb) 2021; 57:13234-13245. [PMID: 34825908 DOI: 10.1039/d1cc05096f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanowire microfluidics using a combination of self-assembly and nanofabrication technologies is expected to be applied to various fields due to its unique properties. We have been working on the fabrication of nanowire microfluidic devices and the development of analytical methods for biomolecules using the unique phenomena generated by the devices. The results of our research are not just limited to the development of nanospace control with "targeted dimensions" in "targeted arrangements" with "targeted materials/surfaces" in "targeted spatial locations/structures" in microfluidic channels, but also cover a wide range of analytical methods for biomolecules (extraction, separation/isolation, and detection) that are impossible to achieve with conventional technologies. Specifically, we are working on the extraction technology "the cancer-related microRNA extraction method in urine," the separation technology "the ultrafast and non-equilibrium separation method for biomolecules," and the detection technology "the highly sensitive electrical measurement method." These research studies are not just limited to the development of biomolecule analysis technology using nanotechnology, but are also opening up a new academic field in analytical chemistry that may lead to the discovery of new pretreatment, separation, and detection principles.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
17
|
Gerlt MS, Ruppen P, Leuthner M, Panke S, Dual J. Acoustofluidic medium exchange for preparation of electrocompetent bacteria using channel wall trapping. LAB ON A CHIP 2021; 21:4487-4497. [PMID: 34668506 PMCID: PMC8577197 DOI: 10.1039/d1lc00406a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 06/02/2023]
Abstract
Comprehensive integration of process steps into a miniaturised version of synthetic biology workflows remains a crucial task in automating the design of biosystems. However, each of these process steps has specific demands with respect to the environmental conditions, including in particular the composition of the surrounding fluid, which makes integration cumbersome. As a case in point, transformation, i.e. reprogramming of bacteria by delivering exogenous genetic material (such as DNA) into the cytoplasm, is a key process in molecular engineering and modern biotechnology in general. Transformation is often performed by electroporation, i.e. creating pores in the membrane using electric shocks in a low conductivity environment. However, cell preparation for electroporation can be cumbersome as it requires the exchange of growth medium (high-conductivity) for low-conductivity medium, typically performed via multiple time-intensive centrifugation steps. To simplify and miniaturise this step, we developed an acoustofluidic device capable of trapping the bacterium Escherichia coli non-invasively for subsequent exchange of medium, which is challenging in acoustofluidic devices due to detrimental acoustic streaming effects. With an improved etching process, we were able to produce a thin wall between two microfluidic channels, which, upon excitation, can generate streaming fields that complement the acoustic radiation force and therefore can be utilised for trapping of bacteria. Our novel design robustly traps Escherichia coli at a flow rate of 10 μL min-1 and has a cell recovery performance of 47 ± 3% after washing the trapped cells. To verify that the performance of the medium exchange device is sufficient, we tested the electrocompetence of the recovered cells in a standard transformation procedure and found a transformation efficiency of 8 × 105 CFU per μg of plasmid DNA. Our device is a low-volume alternative to centrifugation-based methods and opens the door for miniaturisation of a plethora of microbiological and molecular engineering protocols.
Collapse
Affiliation(s)
- M S Gerlt
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - P Ruppen
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - M Leuthner
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - S Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - J Dual
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
18
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
19
|
Shen Y, Yi J, Song M, Li D, Wu Y, Liu YJ, Yang M, Qiao L. Highly efficient enrichment and identification of pathogens using a herringbone microfluidic chip and by MALDI-TOF mass spectrometry. Analyst 2021; 146:4146-4153. [PMID: 33973585 DOI: 10.1039/d1an00335f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections cause considerable morbidity and expensive healthcare costs. The prescription of broad-spectrum antimicrobial drugs results in failure of treatment or overtreatment and exacerbates the spread of multidrug-resistant pathogens. There is an emergent demand for rapid and accurate methods to identify pathogens and conduct personalized therapy. Here, we develop a herringbone microfluidic chip integrated with vancomycin modified magnetic beads (herringbone-VMB microchip) to enrich pathogens. The enriched pathogens are identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The herringbone-VMB microchip applies passive mixing of bacterial samples by generating microvortices, which significantly enhances the interaction between bacteria and vancomycin modified magnetic beads and leads to more efficient enrichment compared to in-tube extraction. Four common pathogens in urinary tract infections are utilized to validate the method, and the capture efficiency of the bacteria from urine is up to 90%. The whole procedure takes 1.5 hours from enrichment to identification. This method shows potential in shortening the turnaround time in the clinical diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Yueqing Shen
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China. and Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Jia Yi
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Minghui Song
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| | - Dandan Li
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Yi Wu
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Yan-Jun Liu
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Meicheng Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| | - Liang Qiao
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
20
|
Burns JR. Introducing Bacteria and Synthetic Biomolecules along Engineered DNA Fibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100136. [PMID: 33960622 DOI: 10.1002/smll.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology enables user-defined structures to be built with unrivalled control. The approach is currently restricted across the nanoscale, yet the ability to generate macroscopic DNA structures has enormous potential with applications spanning material, physical, and biological science. To address this need, I employed DNA nanotechnology and developed a new macromolecular nanoarchitectonic assembly method to produce DNA fibers with customizable properties. The process involves coalescing DNA nanotubes under high salt conditions to yield filament superstructures. Using this strategy, fibers over 100 microns long, with stiffnesses 10 times greater than cytoskeletal actin filaments can be fabricated. The DNA framework enables fibers to be functionalized with advanced synthetic molecules, including, aptamers, origami, nanoparticles, and vesicles. In addition, the fibers can act as bacterial extracellular scaffolds and adhere Escherichia coli cells in a controllable fashion. These results showcase the opportunities offered from DNA nanotechnology across the macroscopic scale. The new biophysical approach should find widespread use, from the generation of hybrid-fabric materials, smart analytical devices in biomedicine, and platforms to study cell-cell interactions.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
21
|
Liu Z, Zhao X, Yu B, Zhao N, Zhang C, Xu FJ. Rough Carbon-Iron Oxide Nanohybrids for Near-Infrared-II Light-Responsive Synergistic Antibacterial Therapy. ACS NANO 2021; 15:7482-7490. [PMID: 33856198 DOI: 10.1021/acsnano.1c00894] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infections caused by multidrug resistant bacteria are still a serious threat to human health. It is of great significance to explore effective alternative antibacterial strategies. Herein, carbon-iron oxide nanohybrids with rough surfaces (RCF) are developed for NIR-II light-responsive synergistic antibacterial therapy. RCF with excellent photothermal property and peroxidase-like activity could realize synergistic photothermal therapy (PTT)/chemodynamic therapy (CDT) in the NIR-II biowindow with improved penetration depth and low power density. More importantly, RCF with rough surfaces shows increased bacterial adhesion, thereby benefiting both CDT and PTT through effective interaction between RCF and bacteria. In vitro antibacterial experiments demonstrate a broad-spectrum synergistic antibacterial effect of RCF against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus), and methicillin-resistant Staphylococcus aureus (MRSA). In addition, satisfactory biocompatibility makes RCF a promising antibacterial agent. Notably, the synergistic antibacterial performances in vivo could be achieved employing the rat wound model with MRSA infection. The current study proposes a facile strategy to construct antibacterial agents for practical antibacterial applications by the rational design of both composition and morphology. RCF with low power density NIR-II light responsive synergistic activity holds great potential in the effective treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiwen Liu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Zhang
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Kim KH, Hwang A, Song Y, Lee WS, Moon J, Jeong J, Bae NH, Jung YM, Jung J, Ryu S, Lee SJ, Choi BG, Kang T, Lee KG. 3D Hierarchical Nanotopography for On-Site Rapid Capture and Sensitive Detection of Infectious Microbial Pathogens. ACS NANO 2021; 15:4777-4788. [PMID: 33502164 DOI: 10.1021/acsnano.0c09411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability. Moreover, the nuclease-responsive DNA probe enables the highly sensitive and extremely fast (<1 min) detection of bacteria. The bacterial capturing nanotopographical trap (b-CNT) facilitates the on-site capture and detection of notorious infectious pathogens (Escherichia coli O157:H7, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus) from kitchen tools and food samples. Accordingly, the usefulness of the b-CNT is confirmed as a simple, fast, sensitive, portable, and robust on-site capture and detection tool for point-of-care testing.
Collapse
Affiliation(s)
- Kyung Hoon Kim
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Younseong Song
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nam Ho Bae
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127240. [PMID: 33052192 PMCID: PMC7536174 DOI: 10.1016/j.cej.2020.127240] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 05/09/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127240. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
25
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
26
|
Abstract
The properties and performance of solid nanomaterials in heterogeneous chemical reactions are significantly influenced by the interface between the nanomaterial and environment. Oriented tailoring of interfacial dynamics, that is, modifying the shared boundary for mass and energy exchange has become a common goal for scientists. Although researchers have designed and constructed an abundance of nanomaterials with excellent performances for the tailoring of reaction dynamics, a complete understanding of the mechanism of nanomaterial-environment interfacial interaction still remains elusive. To predictively understand the nanomaterial-environment relationship over a wide range of time scale, a deep and dynamic insight is required urgently. In this Account, our recent works including advances in the design and construction of nanoassembled interfaces and understanding the dynamic interaction mechanisms between different combinations of nanoparticle (NP) assembly environment interfaces for tailoring the reaction dynamics.NP assemblies with well-defined structures and compositions are inherently suitable for replacing bulk-type nanomaterials for the research on interfaces. We primarily introduced two most relevant nanoassembled surfaces that were fabricated in our laboratory, namely, ordered self-assembly interface and animate nanoassembled interface. The disordered nanoparticles can be arranged into an ordered superlattice based on the self-assembly method and patterned-assembly method. In addition, we used NPs with flexible properties to construct three-dimensional (3D) animate assemblies. On the basis of a thorough understanding of the structure-property correlation, a series of nanoassembled interfaces with various structures have been developed for practice. In comparison with traditional nanomaterial-environment interfaces, the nanoassembled interfaces can change the mode of contact between the nanomaterial and environment, thereby maximizing the number of active sites and driving interferent/product off the nanoassembled interface. The geometry, porosity, and deformable/motional properties in the nanoassembled interface can be applied to enhance the mass transfer dynamics in the chemical reaction. Moreover, the nanoassembled interface can be used to strengthen the affinity between the NP assemblies and targets, thereby enhancing the adsorption efficiency. As shown in these examples, the nanoassembled interface can effectively change the speed, intensity, and mode of interactions between the NP assemblies and environment in spatiotemporal scales.The overall performance of the interfacial dynamics can be improved by the nanoassembled interface, thereby facilitating practical application in flowing systems. We have extended the applications of nanoassembled interfaces from simple adsorption to complex reactions in flowing systems, including in vivo magnetic resonance imaging, electrocatalytic gas evolution reaction, bacterial capture, sensing of exhaled volatile organic compounds, and heterogeneous catalysis. Our current endeavors to explore the applicability of animate nanoassembled interfaces for dynamic tailoring have widened the scope of research, and attempts to construct intelligent interfaces for applications are underway.
Collapse
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology. Tianjin 300384, P. R. China
| |
Collapse
|
27
|
Kim H, Lee S, Seo HW, Kang B, Moon J, Lee KG, Yong D, Kang H, Jung J, Lim EK, Jeong J, Park HG, Ryu CM, Kang T. Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Surface-Enhanced Raman Scattering Assay for Multidrug-Resistant Bacteria. ACS NANO 2020; 14:17241-17253. [PMID: 33216524 DOI: 10.1021/acsnano.0c07264] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surface-enhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed via a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles. This assay detects three multidrug-resistant (MDR) bacteria, species Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae, without purification or gene amplification steps. Furthermore, MDR A. baumannii-infected mice were successfully diagnosed using the assay. Finally, we demonstrate the on-site capture and detection of MDR bacteria through a combination of the three-dimensional nanopillar array swab and CRISPR-mediated SERS assay. This method may prove effective for the accurate diagnosis of MDR bacterial pathogens, thus preventing severe infection by ensuring appropriate antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jeong Moon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Nanobio Application Team, National NanoFab Center (NNFC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | | | | | | | | | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | | |
Collapse
|
28
|
Yang Y, Zeng B, Guo J, Li Y, Yang Y, Yuan Q. Two-Dimensional Device with Light-Controlled Capability for Treatment of Cancer-Relevant Infection Diseases. Anal Chem 2020; 92:10162-10168. [PMID: 32578424 DOI: 10.1021/acs.analchem.0c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concurrent infection in cancer treatment is the leading cause of high cancer mortality that requires urgent action. Currently developed diagnostic methods are hindered by the difficulty of rapidly and reliably screening small amounts of pathogens in the blood and then release pathogens for downstream analysis, limiting the advance of cancer concurrent infection diseases diagnosis and targeted treatment. Herein, we present a near-infrared (NIR) light-responsive black phosphorus (BP)-based device that effectively captures and releases pathogen for downstream drug-resistance analysis. The aptamer-modified BP nanostructures exhibit enhanced topographical interactions and binding capabilities with pathogen, enabling highly efficient and selective capture of pathogen in serum. NIR light irradiation induces BP nanostructure to generate a local thermal effect, which regulates the three-dimensional structure of the aptamer and causes efficient release of pathogen from the substrate surface. The released pathogen is resistant to ampicillin as demonstrated by downstream genetic analysis. The design of the functionalized light-controlled device for monitoring pathogen behavior shows great potential for assisting in cancer therapy and promoting personalized healthcare.
Collapse
Affiliation(s)
- Yanbing Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bo Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yingxue Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yujie Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Liu L, Chen S, Zhang X, Xue Z, Cui S, Hua X, Yang B, Yan H, Liu C, Wang J, Zhang Z, Yu W, Wu F, Xu W, Lehto VP, Yue T, Liu Y, Yu Y, Wang T, Wang J. Mechanical penetration of β-lactam-resistant Gram-negative bacteria by programmable nanowires. SCIENCE ADVANCES 2020; 6:6/27/eabb9593. [PMID: 32937461 PMCID: PMC7458454 DOI: 10.1126/sciadv.abb9593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/20/2020] [Indexed: 05/14/2023]
Abstract
β-Lactam-resistant (BLR) Gram-negative bacteria that are difficult or impossible to treat are causing a global health threat. However, the development of effective nanoantibiotics is limited by the poor understanding of changes in the physical nature of BLR Gram-negative bacteria. Here, we systematically explored the nanomechanical properties of a range of Gram-negative bacteria (Salmonella, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) with different degrees of β-lactam resistance. Our observations indicated that the BLR bacteria had cell stiffness values almost 10× lower than that of β-lactam-susceptible bacteria, caused by reduced peptidoglycan biosynthesis. With the aid of numerical modeling and experimental measurements, we demonstrated that these stiffness findings can be used to develop programmable, stiffness-mediated antimicrobial nanowires that mechanically penetrate the BLR bacterial cell envelope. We anticipate that these stiffness-related findings will aid in the discovery and development of novel treatment strategies for BLR Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Lizhi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Sheng Chen
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengjie Cui
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huiling Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zengfeng Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Li L, Wang C, Nie Y, Yao B, Hu H. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Schmidt JJ, Eden G, Seffer MT, Winkler M, Kielstein JT. In vitro elimination of anti-infective drugs by the Seraph ® 100 Microbind ® affinity blood filter. Clin Kidney J 2020; 13:421-424. [PMID: 32699622 PMCID: PMC7367135 DOI: 10.1093/ckj/sfaa063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/27/2020] [Indexed: 01/12/2023] Open
Abstract
Background In August 2019, the European Union licensed the first ever haemoperfusion device aimed to reduce pathogens in the blood. The core of the adsorber consists of ultra-high molecular weight polyethylene beads with endpoint-attached heparin. These beads utilize pathogen inherent adhesion mechanisms to reduce pathogen load. So far, it is unknown whether the device has an effect on anti-infective drug concentrations. The aim of this study was to investigate the in vitro adsorption of multiple anti-infective drugs from human plasma. Methods In this in vitro study, 18 anti-infective drugs were administered to human donor plasma and pumped through the heparin-coated pathogen adsorber (Seraph® 100 Microbind®Affinity Blood Filter; ExThera Medical Corp., Martinez, CA, USA) at a plasma flow rate of 250 mL/min for 60 min. Pre- and post-adsorber plasma samples were quantified after 5, 15, 30 and 60 min. Results We found a reduction ratio (RR) in anti-infective plasma levels between −1% and 62%. This decrease occurred mainly in the first 5 min of the experiment (RR0–5 −4 to 62%). Mean plasma clearance rates ranged between –11.93 mL/min (fluconazole) and 4.86 mL/min (clindamycin). The highest RRs were measured for aminoglycosides (tobramycin 62% and gentamycin 59%). Conclusions The elimination of anti-infective drugs by the Seraph is neglectable in all but 2 of 18 of the investigated substances. Aminoglycosides may be adsorbed by the device during their first pass.
Collapse
Affiliation(s)
- Julius J Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Gabriele Eden
- Medical Clinic V, Nephrology
- Rheumatology
- Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Malin-Theres Seffer
- Medical Clinic V, Nephrology
- Rheumatology
- Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Manuela Winkler
- Medical Clinic V, Nephrology
- Rheumatology
- Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Jan T Kielstein
- Medical Clinic V, Nephrology
- Rheumatology
- Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| |
Collapse
|
32
|
Huang C, Chen X, Xue Z, Wang T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. SCIENCE ADVANCES 2020; 6:eaba1321. [PMID: 32426506 PMCID: PMC7220353 DOI: 10.1126/sciadv.aba1321] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 05/03/2023]
Abstract
Nanoparticle (NP) assemblies are among the foremost achievements of nanoscience and nanotechnology because their interparticle interactions overcome the weaknesses displayed by individual NPs. However, previous studies have considered NP assemblies as inanimate, which had led to their dynamic properties being overlooked. Animate properties, i.e., those mimicking biological properties, endow NP ensembles with unique and unexpected functionalities for practical applications. In this critical review, we highlight recent advances in our understanding of the properties of NP assemblies, particularly their animate properties. Key examples are used to illustrate critical concepts, and special emphasis is placed on animate property-dependent applications. Last, we discuss the barriers to further advances in this field.
Collapse
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author.
| |
Collapse
|
33
|
Pardoux É, Boturyn D, Roupioz Y. Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review. Molecules 2020; 25:E1998. [PMID: 32344585 PMCID: PMC7221689 DOI: 10.3390/molecules25081998] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance is becoming a global issue due to its rapid growth. Potential new drugs as antimicrobial peptides (AMPs) are considered for several decades as promising candidates to circumvent this threat. Nonetheless, AMPs have also been used more recently in other settings such as molecular probes grafted on biosensors able to detect whole bacteria. Rapid, reliable and cost-efficient diagnostic tools for bacterial infection could prevent the spread of the pathogen from the earliest stages. Biosensors based on AMPs would enable easy monitoring of potentially infected samples, thanks to their powerful versatility and integrability in pre-existent settings. AMPs, which show a broad spectrum of interactions with bacterial membranes, can be tailored in order to design ubiquitous biosensors easily adaptable to clinical settings. This review aims to focus on the state of the art of AMPs used as the recognition elements of whole bacteria in label-free biosensors with a particular focus on the characteristics obtained in terms of threshold, volume of sample analysable and medium, in order to assess their workability in real-world applications.
Collapse
Affiliation(s)
- Éric Pardoux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
| |
Collapse
|
34
|
Huang C, Guo Z, Zheng X, Chen X, Xue Z, Zhang S, Li X, Guan B, Li X, Hu G, Wang T. Deformable Metal–Organic Framework Nanosheets for Heterogeneous Catalytic Reactions. J Am Chem Soc 2020; 142:9408-9414. [DOI: 10.1021/jacs.0c02272] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zheng
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Xiao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Xiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
| | - Guoqing Hu
- Department of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Lee KS, Song Y, Kim CH, Kim YT, Kang T, Lee SJ, Choi BG, Lee KG. Development of zinc oxide-based sub-micro pillar arrays for on-site capture and DNA detection of foodborne pathogen. J Colloid Interface Sci 2020; 563:54-61. [DOI: 10.1016/j.jcis.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
|
36
|
Sande MG, Çaykara T, Silva CJ, Rodrigues LR. New solutions to capture and enrich bacteria from complex samples. Med Microbiol Immunol 2020; 209:335-341. [PMID: 32025887 PMCID: PMC7248023 DOI: 10.1007/s00430-020-00659-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Current solutions to diagnose bacterial infections though reliable are often time-consuming, laborious and need a specific laboratory setting. There is an unmet need for bedside accurate diagnosis of infectious diseases with a short turnaround time. Moreover, low-cost diagnostics will greatly benefit regions with poor resources. Immunoassays and molecular techniques have been used to develop highly sensitive diagnosis solutions but retaining many of the abovementioned limitations. The detection of bacteria in a biological sample can be enhanced by a previous step of capture and enrichment. This will ease the following process enabling a more sensitive detection and increasing the possibility of a conclusive identification in the downstream diagnosis. This review explores the latest developments regarding the initial steps of capture and enrichment of bacteria from complex samples with the ultimate goal of designing low cost and reliable diagnostics for bacterial infections. Some solutions use specific ligands tethered to magnetic constructs for separation under magnetic fields, microfluidic platforms and engineered nano-patterned surfaces to trap bacteria. Bulk acoustics, advection and nano-filters comprise some of the most innovative solutions for bacteria enrichment.
Collapse
Affiliation(s)
- Maria G Sande
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tugçe Çaykara
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
| | - Carla Joana Silva
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
37
|
Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, Ren J, Qu X. Defect-Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. Angew Chem Int Ed Engl 2019; 58:16236-16242. [PMID: 31456332 DOI: 10.1002/anie.201908289] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Indexed: 12/31/2022]
Abstract
Nanozymes have emerged as a new generation of antibiotics with exciting broad-spectrum antimicrobial properties and negligible biotoxicities. However, their antibacterial efficacies are unsatisfactory due to their inability to trap bacteria and their low catalytic activity. Herein, we report nanozymes with rough surfaces and defect-rich active edges. The rough surface increases bacterial adhesion and the defect-rich edges exhibit higher intrinsic peroxidase-like activity compared to pristine nanozymes due to their lower adsorption energies of H2 O2 and desorption energy of OH*, as well as the larger exothermic process for the whole reaction. This was demonstrated using drug-resistant Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in vitro and in vivo. This strategy can be used to engineer nanozymes with enhanced antibacterial function and will pave a new way for the development of alternative antibiotics.
Collapse
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Nan Gao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
38
|
Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, Ren J, Qu X. Defect‐Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Nan Gao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|
39
|
Li L, Tian F, Chang H, Zhang J, Wang C, Rao W, Hu H. Interactions of Bacteria With Monolithic Lateral Silicon Nanospikes Inside a Microfluidic Channel. Front Chem 2019; 7:483. [PMID: 31355180 PMCID: PMC6640657 DOI: 10.3389/fchem.2019.00483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 01/31/2023] Open
Abstract
This paper presents a new strategy of integrating lateral silicon nanospikes using metal-assisted chemical etching (MacEtch) on the sidewall of micropillars for on-chip bacterial study. Silicon nanospikes have been reported to be able to kill bacteria without using chemicals and offer a new route to kill bacteria and can prevent the overuse of antibiotics to reduce bacteria. We demonstrated a new methodology to fabricate a chip with integrated silicon nanospikes onto the sidewalls of micropillars inside the microfluidic channel and attested its interactions with the representative gram-negative bacteria Escherichia coli. The results of colony-forming unit (CFU) calculation showed that 80% bacteria lost their viability after passing through the chip. Moreover, the results of adenosine triphosphate (ATP) measurement indicated that the chip with lateral silicon nanospikes could extract more than two times ATP contents compared with the chip without lateral silicon nanospikes, showing potential for using the chip with lateral silicon nanospikes as a bacterial lysing module.
Collapse
Affiliation(s)
- Lei Li
- CAS Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Feng Tian
- ZJU-UIUC Institute (ZJUI), Zhejiang University, Haining, China.,College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Hao Chang
- CAS Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Wei Rao
- CAS Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Hu
- ZJU-UIUC Institute (ZJUI), Zhejiang University, Haining, China.,College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Lv D, Jiao H, Dong J, Sheng L, Liu J, Dong H, Su A, Zhang M, Xia Z, Oswald JT, Pang D, Liu J, Ouyang H. Biomimetic Octopus-like Particles for Ultraspecific Capture and Detection of Pathogens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22164-22170. [PMID: 31149791 DOI: 10.1021/acsami.9b05666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infectious diseases caused by pathogenic bacteria (such as sepsis and meningitis) seriously threaten public health; therefore, rapid and accurate identification of the target bacteria is urgently needed to prevent and treat bacterial infections. Although technologies including plate-counting and polymerase chain reaction have been established to detect the pathogenic bacteria, they are either time-consuming or sophisticated. Herein, a biomimetic octopus-like structure integrating merits of multiarm and multivalent interaction is designed for ultraspecific capture and detection of pathogens. The flexible polymeric arms and multivalent ligands work together to mimic the arm-sucker coordination of an octopus to effectively grasp the target pathogens, leading to remarkably high capacity and specificity for the target capture (above 98%, 10 CFU mL-1) without a nonspecific absorption of background pathogens. The captured bacteria can be identified as a point of care by the surface-enhanced Raman spectroscopy method with a detection limit of 10 cells mL-1.
Collapse
Affiliation(s)
- Dongmei Lv
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Huping Jiao
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Jianwei Dong
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Li Sheng
- Petrochemical Research Institute , PetroChina , Beijing 102206 , China
| | - Jinsong Liu
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Haisi Dong
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Ang Su
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Mingjun Zhang
- College of Animal Science , Jilin University , Changchun 130062 , China
| | - Zhiping Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary , Changchun 130122 , China
| | - James T Oswald
- School of Nanotechnology & Chemical Engineering , University of Waterloo , Waterloo , ON N2L 3G1 , Canada
| | - Daxin Pang
- College of Animal Science , Jilin University , Changchun 130062 , China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Hongsheng Ouyang
- College of Animal Science , Jilin University , Changchun 130062 , China
| |
Collapse
|
41
|
Wang L, Chen S, Li W, Wang K, Lou Z, Shen G. Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804583. [PMID: 30484929 DOI: 10.1002/adma.201804583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Indexed: 05/13/2023]
Abstract
The development of materials with high efficiency and stable signal output in a bent state is important for flexible electronics. Grain boundaries provide lasting inspiration and a promising avenue for designing advanced functionalities using nanomaterials. Combining bulk defects in polycrystalline materials is shown to result in rich new electronic structures, catalytic activities, and mechanical properties for many applications. However, direct evidence that grain boundaries can create new physicochemical properties in flexible electronics is lacking. Here, a combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystalline wires for real-time detection of chemical analytes. The existence of a grain boundary improves the electronic and mechanical properties, which activate and stabilize materials, and allow new opportunities to design highly sensitive, flexible chemical sensors.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shuai Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, China
| | - Kang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Duncan R, Grigorenko E, Fisher C, Hockman D, Lanning B. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls - an update. Expert Rev Mol Diagn 2018; 19:15-25. [DOI: 10.1080/14737159.2019.1559055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Robert Duncan
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - Carolyn Fisher
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - Bryan Lanning
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| |
Collapse
|
43
|
Yuan Z, Li Y, Zhao D, Zhang K, Wang F, Wang C, Wen Y. High efficiency 3D nanofiber sponge for bilirubin removal used in hemoperfusion. Colloids Surf B Biointerfaces 2018; 172:161-169. [DOI: 10.1016/j.colsurfb.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|