1
|
Georgiou E, Cabello-Garcia J, Xing Y, Howorka S. DNA Origami - Lipid Membrane Interactions Controlled by Nanoscale Sterics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404720. [PMID: 39162223 DOI: 10.1002/smll.202404720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Indexed: 08/21/2024]
Abstract
DNA nanostructures designed to interact with bilayer membranes are of fundamental interest as they mimic biological cytoskeletons and other membrane-associated proteins for applications in synthetic biology, biosensing, and biological research. Yet, there is limited insight into how the binary interactions are influenced by steric effects produced by 3D geometries of DNA structures and membranes. This work uses a 3D DNA nanostructure with membrane anchors in four different steric environments to elucidate the interaction with membrane vesicles of varying sizes and different local bilayer morphology. It is found that interactions are significantly affected by the steric environments of the anchors -often against predicted accessibility- as well as local nanoscale morphology of bilayers rather than on the usually considered global vesicle size. Furthermore, anchor-mediated bilayer interactions are co-controlled by weak contacts with non-lipidated DNA regions, as showcased by pioneering size discrimination between 50 and 200 nm vesicles. This study extends DNA nanotechnology to controlled bilayer interactions and can facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.
Collapse
Affiliation(s)
- Elena Georgiou
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Javier Cabello-Garcia
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
2
|
Büber E, Yaadav R, Schröder T, Franquelim HG, Tinnefeld P. DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer. Angew Chem Int Ed Engl 2024:e202408295. [PMID: 39248369 DOI: 10.1002/anie.202408295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Interacting with living systems typically involves the ability to address lipid membranes of cellular systems. The first step of interaction of a nanorobot with a cell will thus be the detection of binding to a lipid membrane. Utilizing DNA origami, we engineered a biosensor with single-molecule Fluorescence Resonance Energy Transfer (smFRET) as transduction mechanism for precise lipid vesicle detection and cargo delivery. The system hinges on a hydrophobic ATTO647N modified single-stranded DNA (ssDNA) leash, protruding from a DNA origami nanostructure. In a vesicle-free environment, the ssDNA coils, ensuring high FRET efficiency. Upon vesicle binding to cholesterol anchors on the DNA origami, hydrophobic ATTO647N induces the ssDNA to stretch towards the lipid bilayer, reducing FRET efficiency. As the next step, the sensing strand serves as molecular cargo that can be transferred to the vesicle through a triggered strand displacement reaction. Depending on the number of cholesterols on the displacer strands, we either induce a diffusive release of the fluorescent load towards neighboring vesicles or a stoichiometric release of a single cargo-unit to the vesicle on the nanosensor. Ultimately, our multi-functional liposome interaction and detection platform opens up pathways for innovative biosensing applications and stoichiometric loading of vesicles with single-molecule control.
Collapse
Affiliation(s)
- Ece Büber
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Renukka Yaadav
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Tim Schröder
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Henri G Franquelim
- Interfaculty Centre for Bioactive Matter, Leipzig University, Deutscher Platz 5 (BBZ), 04103, Leipzig, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Ma H, Wang Y, Li YX, Xie BK, Hu ZL, Yu RJ, Long YT, Ying YL. Label-Free Mapping of Multivalent Binding Pathways with Ligand-Receptor-Anchored Nanopores. J Am Chem Soc 2024. [PMID: 39180483 DOI: 10.1021/jacs.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Understanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions. Using a four-state Markov chain model, we clarify two concentration-dependent binding pathways for the Omicron spike protein (Omicron S) and soluble angiotensin-converting enzyme 2 (sACE2): sequential and concurrent. Real-time kinetic analysis at the single-monomeric subunit level reveals that three S1 monomers of Omicron S exhibit a consistent and robust binding affinity toward sACE2 (-13.1 ± 0.2 kcal/mol). These results highlight the enhanced infectivity of Omicron S compared to other homologous spike proteins (WT S and Delta S). Notably, the preceding binding of sACE2 to Omicron S facilitates the subsequent binding steps, which was previously obscured in bulk measurements. Our single-molecule studies resolve the controversy over the disparity between the measured spike protein binding affinity with sACE2 and the viral infectivity, offering valuable insights for drug design and therapies.
Collapse
Affiliation(s)
- Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yongyong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Xue Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zheng-Li Hu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ru-Jia Yu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Zhan P, Yang J, Ding L, Jing X, Hipp K, Nussberger S, Yan H, Liu N. 3D DNA origami pincers that multitask on giant unilamellar vesicles. SCIENCE ADVANCES 2024; 10:eadn8903. [PMID: 39151012 PMCID: PMC11328896 DOI: 10.1126/sciadv.adn8903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Proteins self-assemble to function in living cells. They may execute essential tasks in the form of monomers, complexes, or supramolecular cages via oligomerization, achieving a sophisticated balance between structural topology and functional dynamics. The modularity and programmability make DNA origami unique in mimicking these key features. Here, we demonstrate three-dimensional reconfigurable DNA origami pincers (DOPs) that multitask on giant unilamellar vesicles (GUVs). By programmably adjusting their pinching angle, the DOPs can dynamically control the degree of GUV remodeling. When oligomerized on the GUV to form origami cages, the DOP units interact with one another and undergo reorganization, resulting in the capture, compartmentalization, and detachment of lipid fragments. This oligomerization process is accompanied with membrane disruptions, enabling the passage of cargo across the membrane. We envisage that interfacing synthetic cells with engineered, multifunctional DNA nanostructures may help to confer customized cellular properties, unleashing the potential of both fields.
Collapse
Affiliation(s)
- Pengfei Zhan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022 Hangzhou, Zhejiang, China
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Juanjuan Yang
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Xinxin Jing
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Katharina Hipp
- Electron Microscopy, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Truong-Quoc C, Lee JY, Kim KS, Kim DN. Prediction of DNA origami shape using graph neural network. NATURE MATERIALS 2024; 23:984-992. [PMID: 38486095 DOI: 10.1038/s41563-024-01846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2024] [Indexed: 07/10/2024]
Abstract
Unlike proteins, which have a wealth of validated structural data, experimentally or computationally validated DNA origami datasets are limited. Here we present a graph neural network that can predict the three-dimensional conformation of DNA origami assemblies both rapidly and accurately. We develop a hybrid data-driven and physics-informed approach for model training, designed to minimize not only the data-driven loss but also the physics-informed loss. By employing an ensemble strategy, the model can successfully infer the shape of monomeric DNA origami structures almost in real time. Further refinement of the model in an unsupervised manner enables the analysis of supramolecular assemblies consisting of tens to hundreds of DNA blocks. The proposed model enables an automated inverse design of DNA origami structures for given target shapes. Our approach facilitates the real-time virtual prototyping of DNA origami, broadening its design space.
Collapse
Affiliation(s)
- Chien Truong-Quoc
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
| | - Kyung Soo Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea.
- Institute of Engineering Research, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Weakly HMJ, Keller SL. Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools. Biophys J 2024; 123:1329-1341. [PMID: 38160256 PMCID: PMC11163299 DOI: 10.1016/j.bpj.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.
Collapse
Affiliation(s)
- Heidi M J Weakly
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington.
| |
Collapse
|
7
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
9
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Curr Opin Cell Biol 2024; 88:102377. [PMID: 38823338 PMCID: PMC11193448 DOI: 10.1016/j.ceb.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Reinsalu O, Ernits M, Linko V. Liposome-based hybrid drug delivery systems with DNA nanostructures and metallic nanoparticles. Expert Opin Drug Deliv 2024; 21:905-920. [PMID: 38962823 DOI: 10.1080/17425247.2024.2375389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications. AREAS COVERED We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond. EXPERT OPINION Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.
Collapse
Affiliation(s)
- Olavi Reinsalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ernits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Veikko Linko
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| |
Collapse
|
11
|
Jiang Q, Shang Y, Xie Y, Ding B. DNA Origami: From Molecular Folding Art to Drug Delivery Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301035. [PMID: 37715333 DOI: 10.1002/adma.202301035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Indexed: 09/17/2023]
Abstract
DNA molecules that store genetic information in living creatures can be repurposed as building blocks to construct artificial architectures, ranging from the nanoscale to the microscale. The precise fabrication of self-assembled DNA nanomaterials and their various applications have greatly impacted nanoscience and nanotechnology. More specifically, the DNA origami technique has realized the assembly of various nanostructures featuring rationally predesigned geometries, precise addressability, and versatile programmability, as well as remarkable biocompatibility. These features have elevated DNA origami from academic interest to an emerging class of drug delivery platform for a wide range of diseases. In this minireview, the latest advances in the burgeoning field of DNA-origami-based innovative platforms for regulating biological functions and delivering versatile drugs are presented. Challenges regarding the novel drug vehicle's safety, stability, targeting strategy, and future clinical translation are also discussed.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
| | - Yiming Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574656. [PMID: 38260424 PMCID: PMC10802412 DOI: 10.1101/2024.01.08.574656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or other similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
14
|
Nambiar N, Loyd ZA, Abel SM. Particle Deformability Enables Control of Interactions between Membrane-Anchored Nanoparticles. J Chem Theory Comput 2024; 20:1732-1739. [PMID: 37844420 DOI: 10.1021/acs.jctc.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanoparticles adsorbed on a membrane can induce deformations of the membrane that give rise to effective interactions between the particles. Previous studies have focused primarily on rigid nanoparticles with fixed shapes. However, DNA origami technology has enabled the creation of deformable nanostructures with controllable shapes and mechanical properties, presenting new opportunities to modulate interactions between particles adsorbed on deformable surfaces. Here we use coarse-grained molecular dynamics simulations to investigate deformable, hinge-like nanostructures anchored to lipid membranes via cholesterol anchors. We characterize deformations of the particles and membrane as a function of the hinge stiffness. Flexible particles adopt open configurations to conform to a flat membrane, whereas stiffer particles induce deformations of the membrane. We further show that particles spontaneously aggregate and that cooperative effects lead to changes in their shape when they are close together. Using umbrella sampling methods, we quantify the effective interaction between two particles and show that stiffer hinge-like particles experience stronger and longer-ranged attraction. Our results demonstrate that interactions between deformable, membrane-anchored nanoparticles can be controlled by modifying mechanical properties of the particles, suggesting new ways to modulate the self-assembly of particles on deformable surfaces.
Collapse
Affiliation(s)
- Nikhil Nambiar
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zachary A Loyd
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
15
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
16
|
Jahnke K, Göpfrich K. Engineering DNA-based cytoskeletons for synthetic cells. Interface Focus 2023; 13:20230028. [PMID: 37577007 PMCID: PMC10415745 DOI: 10.1098/rsfs.2023.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Zhang Z, Feng Z, Zhao X, Jean D, Yu Z, Chapman ER. Functionalization and higher-order organization of liposomes with DNA nanostructures. Nat Commun 2023; 14:5256. [PMID: 37644062 PMCID: PMC10465589 DOI: 10.1038/s41467-023-41013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Small unilamellar vesicles (SUVs) are indispensable model membranes, organelle mimics, and drug and vaccine carriers. However, the lack of robust techniques to functionalize or organize preformed SUVs limits their applications. Here we use DNA nanostructures to coat, cluster, and pattern sub-100-nm liposomes, generating distance-controlled vesicle networks, strings and dimers, among other configurations. The DNA coating also enables attachment of proteins to liposomes, and temporal control of membrane fusion driven by SNARE protein complexes. Such a convenient and versatile method of engineering premade vesicles both structurally and functionally is highly relevant to bottom-up biology and targeted delivery.
Collapse
Affiliation(s)
- Zhao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Zhaomeng Feng
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaowei Zhao
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Dominique Jean
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Zheng H, Li H, Li M, Zhai T, Xie X, Li C, Jing X, Liang C, Li Q, Zuo X, Li J, Fan J, Shen J, Peng X, Fan C. A Membrane Tension-Responsive Mechanosensitive DNA Nanomachine. Angew Chem Int Ed Engl 2023; 62:e202305896. [PMID: 37438325 DOI: 10.1002/anie.202305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Membrane curvature reflects physical forces operating on the lipid membrane, which plays important roles in cellular processes. Here, we design a mechanosensitive DNA (MSD) nanomachine that mimics natural mechanosensitive PIEZO channels to convert the membrane tension changes of lipid vesicles with different sizes into fluorescence signals in real time. The MSD nanomachine consists of an archetypical six-helix-bundle DNA nanopore, cholesterol-based membrane anchors, and a solvatochromic fluorophore, spiropyran (SP). We find that the DNA nanopore effectively amplifies subtle variations of the membrane tension, which effectively induces the isomerization of weakly emissive SP into highly emissive merocyanine isomers for visualizing membrane tension changes. By measuring the membrane tension via the fluorescence of MSD nanomachine, we establish the correlation between the membrane tension and the curvature that follows the Young-Laplace equation. This DNA nanotechnology-enabled strategy opens new routes to studying membrane mechanics in physiological and pathological settings.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinxin Jing
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chengpin Liang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Wang W, Hayes PR, Ren X, Taylor RE. Synthetic Cell Armor Made of DNA Origami. NANO LETTERS 2023; 23:7076-7085. [PMID: 37463308 PMCID: PMC10416349 DOI: 10.1021/acs.nanolett.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Indexed: 07/20/2023]
Abstract
The bioengineering applications of cells, such as cell printing and multicellular assembly, are directly limited by cell damage and death due to a harsh environment. Improved cellular robustness thus motivates investigations into cell encapsulation, which provides essential protection. Here we target the cell-surface glycocalyx and cross-link two layers of DNA nanorods on the cellular plasma membrane to form a modular and programmable nanoshell. We show that the DNA origami nanoshell modulates the biophysical properties of cell membranes by enhancing the membrane stiffness and lowering the lipid fluidity. The nanoshell also serves as armor to protect cells and improve their viability against mechanical stress from osmotic imbalance, centrifugal forces, and fluid shear stress. Moreover, it enables mediated cell-cell interactions for effective and robust multicellular assembly. Our results demonstrate the potential of the nanoshell, not only as a cellular protection strategy but also as a platform for cell and cell membrane manipulation.
Collapse
Affiliation(s)
- Weitao Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Peter R. Hayes
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Ren
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebecca E. Taylor
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
21
|
Yang J, Jahnke K, Xin L, Jing X, Zhan P, Peil A, Griffo A, Škugor M, Yang D, Fan S, Göpfrich K, Yan H, Wang P, Liu N. Modulating Lipid Membrane Morphology by Dynamic DNA Origami Networks. NANO LETTERS 2023. [PMID: 37440701 DOI: 10.1021/acs.nanolett.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ling Xin
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Xinxin Jing
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Pengfei Zhan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Andreas Peil
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Alessandra Griffo
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Marko Škugor
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
| | - Sisi Fan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheime Feld 329, 69120 Heidelberg, Germany
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
22
|
Ahmad K, Javed A, Lanphere C, Coveney PV, Orlova EV, Howorka S. Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations. Nat Commun 2023; 14:3630. [PMID: 37336895 DOI: 10.1038/s41467-023-38681-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.
Collapse
Affiliation(s)
- Katya Ahmad
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK
| | - Abid Javed
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Conor Lanphere
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK
| | - Peter V Coveney
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK.
- Advanced Research Computing Centre, University College London, London, WC1H 0AJ, UK.
- Informatics Institute, University of Amsterdam, Amsterdam, 1090 GH, The Netherlands.
| | - Elena V Orlova
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK.
| |
Collapse
|
23
|
Rubio-Sánchez R, Mognetti BM, Cicuta P, Di Michele L. DNA-Origami Line-Actants Control Domain Organization and Fission in Synthetic Membranes. J Am Chem Soc 2023; 145:11265-11275. [PMID: 37163977 PMCID: PMC10214452 DOI: 10.1021/jacs.3c01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Indexed: 05/12/2023]
Abstract
Cells can precisely program the shape and lateral organization of their membranes using protein machinery. Aiming to replicate a comparable degree of control, here we introduce DNA-origami line-actants (DOLAs) as synthetic analogues of membrane-sculpting proteins. DOLAs are designed to selectively accumulate at the line-interface between coexisting domains in phase-separated lipid membranes, modulating the tendency of the domains to coalesce. With experiments and coarse-grained simulations, we demonstrate that DOLAs can reversibly stabilize two-dimensional analogues of Pickering emulsions on synthetic giant liposomes, enabling dynamic programming of membrane lateral organization. The control afforded over membrane structure by DOLAs extends to three-dimensional morphology, as exemplified by a proof-of-concept synthetic pathway leading to vesicle fission. With DOLAs we lay the foundations for mimicking, in synthetic systems, some of the critical membrane-hosted functionalities of biological cells, including signaling, trafficking, sensing, and division.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, United Kingdom
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bortolo Matteo Mognetti
- Interdisciplinary
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Boulevard
du Triomphe, B-1050 Brussels, Belgium
| | - Pietro Cicuta
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, United Kingdom
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
24
|
Cao S, Lin L, Zhao Y, Guo L, Zhu Y, Wang L, Li J. Programming Aggregate States of DNA Nanorods with Sub-10 nm Hydrophobic Patterns for Tunable Cell Entry. JACS AU 2023; 3:1004-1009. [PMID: 37124296 PMCID: PMC10131207 DOI: 10.1021/jacsau.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
The intracellular application of DNA nanodevices is challenged by their inadequate cellular entry efficiency, which may be addressed by the development of amphiphilic DNA nanostructures. However, the impact of the spatial distribution of hydrophobicity in cell entry has not been fully explored. Here, we program a spectrum of amphiphilic DNA nanostructures displaying diverse sub-10 nm patterns of cholesterol, which result in distinct aggregate states in the aqueous solution and thus varied cell entry efficiencies. We find that the hydrophobic patterns can lead to discrete aggregate states, from monomers to low-number oligomers (n = 1-6). We demonstrate that the monomers or oligomers with moderate hydrophobic density are preferred for cell entry, with up to ∼174-fold improvement relative to unmodified ones. Our study provides a new clue for the rational design of amphiphilic DNA nanostructures for intracellular applications.
Collapse
Affiliation(s)
- Shuting Cao
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Lixuan Lin
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Yan Zhao
- Institute
of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Linjie Guo
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
- Institute
of Materials Biology, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
- Institute
of Materials Biology, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
- Institute
of Materials Biology, Shanghai University, Shanghai 200444, China
| | - Jiang Li
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
- Institute
of Materials Biology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
25
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Uchida N, Ryu Y, Takagi Y, Yoshizawa K, Suzuki K, Anraku Y, Ajioka I, Shimokawa N, Takagi M, Hoshino N, Akutagawa T, Matsubara T, Sato T, Higuchi Y, Ito H, Morita M, Muraoka T. Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery. J Am Chem Soc 2023; 145:6210-6220. [PMID: 36853954 PMCID: PMC10037323 DOI: 10.1021/jacs.2c12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yunosuke Ryu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuichiro Takagi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ken Yoshizawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kotono Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masamune Morita
- National Institute of Advanced Industrial Science and Technology, Center 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
27
|
Maingi V, Zhang Z, Thachuk C, Sarraf N, Chapman ER, Rothemund PWK. Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers. Nat Commun 2023; 14:1532. [PMID: 36941256 PMCID: PMC10027858 DOI: 10.1038/s41467-023-36996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Interactions between membrane proteins are essential for cell survival but are often poorly understood. Even the biologically functional ratio of components within a multi-subunit membrane complex-the native stoichiometry-is difficult to establish. Here we demonstrate digital nanoreactors that can control interactions between lipid-bound molecular receptors along three key dimensions: stoichiometric, spatial, and temporal. Each nanoreactor is based on a DNA origami ring, which both templates the synthesis of a liposome and provides tethering sites for DNA-based receptors (modelling membrane proteins). Receptors are released into the liposomal membrane using strand displacement and a DNA logic gate measures receptor heterodimer formation. High-efficiency tethering of receptors enables the kinetics of receptors in 1:1 and 2:2 absolute stoichiometries to be observed by bulk fluorescence, which in principle is generalizable to any ratio. Similar single-molecule-in-bulk experiments using DNA-linked membrane proteins could determine native stoichiometry and the kinetics of membrane protein interactions for applications ranging from signalling research to drug discovery.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| | - Zhao Zhang
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Chris Thachuk
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Namita Sarraf
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Paul W K Rothemund
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation + Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
28
|
Gene-encoding DNA origami for mammalian cell expression. Nat Commun 2023; 14:1017. [PMID: 36823187 PMCID: PMC9950468 DOI: 10.1038/s41467-023-36601-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
DNA origami may enable more versatile gene delivery applications through its ability to create custom nanoscale objects with specific targeting, cell-invading, and intracellular effector functionalities. Toward this goal here we describe the expression of genes folded in DNA origami objects delivered to mammalian cells. Genes readily express from custom-sequence single-strand scaffolds folded within DNA origami objects, provided that the objects can denature in the cell. We demonstrate enhanced gene expression efficiency by including and tuning multiple functional sequences and structures, including virus-inspired inverted-terminal repeat-like (ITR) hairpin motifs upstream or flanking the expression cassette. We describe gene-encoding DNA origami bricks that assemble into multimeric objects to enable stoichiometrically controlled co-delivery and expression of multiple genes in the same cells. Our work provides a framework for exploiting DNA origami for gene delivery applications.
Collapse
|
29
|
Shi Q, Wu Y, Xu Y, Bao M, Chen X, Huang K, Yang Q, Yang Y. Virus Mimetic Framework DNA as a Non-LNP Gene Carrier for Modulated Cell Endocytosis and Apoptosis. ACS NANO 2023; 17:2460-2471. [PMID: 36693051 DOI: 10.1021/acsnano.2c09772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mimicking the size and shape of spherical viruses, we constructed a soccer-ball shaped virus-inspired DNA origami (ViDO) framework as a programmable non-LNP (lipid nanoparticle) gene carrier. The DNA framework was decorated with precisely controlled recognition molecules outside and loaded with adequate genetic molecules inside. Five variants were constructed to systematically investigate their cell uptake and modulated gene silencing efficiency. Cellular uptake was enhanced with an increasing number of aptamers, while with a median number of aptamer supply, dispersed distribution performed better than the clustered pattern. Intriguingly, the transfection efficiency was maximized using the ViDO with clustered five aptamers, which exhibited a competitive RNA silencing effect induced by Lipo2000 with low cytotoxicity. Our results revealed the effects of aptamer distribution patterns on endocytosis and transfection, thus providing a programmable platform for meticulous optimization of the gene delivery system.
Collapse
Affiliation(s)
- Qian Shi
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuanyuan Wu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Bao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao Chen
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiulan Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
30
|
Iwabuchi S, Nomura SIM, Sato Y. Surfactant-Assisted Purification of Hydrophobic DNA Nanostructures. Chembiochem 2023; 24:e202200568. [PMID: 36470849 DOI: 10.1002/cbic.202200568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Purification of functional DNA nanostructures is an essential step in achieving intended functions because misfolded structures and the remaining free DNA strands in a solution can interact and affect their behavior. However, due to hydrophobicity-mediated aggregation, it is difficult to purify DNA nanostructures modified with hydrophobic molecules by conventional methods. Herein, we report the purification of cholesterol-modified DNA nanostructures by using a novel surfactant-assisted gel extraction. The addition of sodium cholate (SC) to the sample solution before structure folding prevented aggregation; this was confirmed by gel electrophoresis. We also found that adding sodium dodecyl sulfate (SDS) to the sample inhibited structural folding. The cholesterol-modified DNA nanostructures prepared with SC were successfully purified by gel extraction, and their ability to bind to the lipid membrane surfaces was maintained. This method will facilitate the purification of DNA nanostructures modified with hydrophobic molecules and expand their applicability in the construction of artificial cell-like systems.
Collapse
Affiliation(s)
- Shoji Iwabuchi
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 kawazu, lizuka, 820-8502, Japan
| |
Collapse
|
31
|
Büber E, Schröder T, Scheckenbach M, Dass M, Franquelim HG, Tinnefeld P. DNA Origami Curvature Sensors for Nanoparticle and Vesicle Size Determination with Single-Molecule FRET Readout. ACS NANO 2023; 17:3088-3097. [PMID: 36735241 DOI: 10.1021/acsnano.2c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle size is an important characteristic of materials with a direct effect on their physicochemical features. Besides nanoparticles, particle size and surface curvature are particularly important in the world of lipids and cellular membranes as the cell membrane undergoes conformational changes in many biological processes which leads to diverging local curvature values. On account of that, it is important to develop cost-effective, rapid and sufficiently precise systems that can measure the surface curvature on the nanoscale that can be translated to size for spherical particles. As an alternative approach for particle characterization, we present flexible DNA nanodevices that can adapt to the curvature of the structure they are bound to. The curvature sensors use Fluorescence Resonance Energy Transfer (FRET) as the transduction mechanism on the single-molecule level. The curvature sensors consist of segmented DNA origami structures connected via flexible DNA linkers incorporating a FRET pair. The activity of the sensors was first demonstrated with defined binding to different DNA origami geometries used as templates. Then the DNA origami curvature sensors were applied to measure spherical silica beads having different size, and subsequently on lipid vesicles. With the designed sensors, we could reliably distinguish different sized nanoparticles within a size range of 50-300 nm as well as the bending angle range of 50-180°. This study helps with the development of more advanced modular-curvature sensing devices that are capable of determining the sizes of nanoparticles and biological complexes.
Collapse
Affiliation(s)
- Ece Büber
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Michael Scheckenbach
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, 80539Munich, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152Martinsried, Germany
- Interfaculty Centre for Bioactive Matter, Leipzig University, c/o Deutscher Platz 5 (BBZ), 04109Leipzig, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| |
Collapse
|
32
|
Abstract
Hierarchical assembly of programmable DNA frameworks─such as DNA origami─paves the way for versatile nanometer-precise parallel nanopatterning up to macroscopic scales. As of now, the rapid evolution of the DNA nanostructure design techniques and the accessibility of these methods provide a feasible platform for building highly ordered DNA-based assemblies for various purposes. So far, a plethora of different building blocks based on DNA tiles and DNA origami have been introduced, but the dynamics of the large-scale lattice assembly of such modules is still poorly understood. Here, we focus on the dynamics of two-dimensional surface-assisted DNA origami lattice assembly at mica and lipid substrates and the techniques for prospective three-dimensional assemblies, and finally, we summarize the potential applications of such systems.
Collapse
Affiliation(s)
- Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
33
|
Mao D, Paluzzi VE, Zhang C, Mao C. DNA conformational equilibrium enables continuous changing of curvatures. NANOSCALE 2023; 15:470-475. [PMID: 36515101 DOI: 10.1039/d2nr05404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.
Collapse
Affiliation(s)
- Dake Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Victoria E Paluzzi
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Cuizheng Zhang
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Chengde Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Khmelinskaia A, Schwille P, Franquelim HG. Binding and Characterization of DNA Origami Nanostructures on Lipid Membranes. Methods Mol Biol 2023; 2639:231-255. [PMID: 37166721 DOI: 10.1007/978-1-0716-3028-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA origami is an extremely versatile nanoengineering tool with widespread applicability in various fields of research, including membrane physiology and biophysics. The possibility to easily modify DNA strands with lipophilic moieties enabled the recent development of a variety of membrane-active DNA origami devices. Biological membranes, as the core barriers of the cells, display vital structural and functional roles. Therefore, lipid bilayers are widely popular targets of DNA origami nanotechnology for synthetic biology and biomedical applications. In this chapter, we summarize the typical experimental methods used to investigate the interaction of DNA origami with synthetic membrane models. Herein, we present detailed protocols for the production of lipid model membranes and characterization of membrane-targeted DNA origami nanostructures using different microscopy approaches.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Max Planck Institute of Biochemistry, Munich, Germany
- Institute of Protein Design, University of Washington, Seattle, WA, USA
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Munich, Germany.
- Interfaculty Centre for Bioactive Matter (b-ACTmatter), Leipzig University, Leipzig, Germany.
| |
Collapse
|
35
|
Meadowcroft B, Palaia I, Pfitzner AK, Roux A, Baum B, Šarić A. Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS 2022; 129:268101. [PMID: 36608212 DOI: 10.1103/physrevlett.129.268101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The sequential exchange of filament composition to increase filament curvature was proposed as a mechanism for how some biological polymers deform and cut membranes. The relationship between the filament composition and its mechanical effect is lacking. We develop a kinetic model for the assembly of composite filaments that includes protein-membrane adhesion, filament mechanics and membrane mechanics. We identify the physical conditions for such a membrane remodeling and show this mechanism of sequential polymer assembly lowers the energetic barrier for membrane deformation.
Collapse
Affiliation(s)
- Billie Meadowcroft
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
36
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
37
|
De Franceschi N, Pezeshkian W, Fragasso A, Bruininks BMH, Tsai S, Marrink SJ, Dekker C. Synthetic Membrane Shaper for Controlled Liposome Deformation. ACS NANO 2022; 17:966-978. [PMID: 36441529 PMCID: PMC9878720 DOI: 10.1021/acsnano.2c06125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Shape defines the structure and function of cellular membranes. In cell division, the cell membrane deforms into a "dumbbell" shape, while organelles such as the autophagosome exhibit "stomatocyte" shapes. Bottom-up in vitro reconstitution of protein machineries that stabilize or resolve the membrane necks in such deformed liposome structures is of considerable interest to characterize their function. Here we develop a DNA-nanotechnology-based approach that we call the synthetic membrane shaper (SMS), where cholesterol-linked DNA structures attach to the liposome membrane to reproducibly generate high yields of stomatocytes and dumbbells. In silico simulations confirm the shape-stabilizing role of the SMS. We show that the SMS is fully compatible with protein reconstitution by assembling bacterial divisome proteins (DynaminA, FtsZ:ZipA) at the catenoidal neck of these membrane structures. The SMS approach provides a general tool for studying protein binding to complex membrane geometries that will greatly benefit synthetic cell research.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Weria Pezeshkian
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
- The
Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 17DK-2100Copenhagen, Denmark
| | - Alessio Fragasso
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Bart M. H. Bruininks
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Sean Tsai
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
38
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Liu L, Xiong Q, Xie C, Pincet F, Lin C. Actuating tension-loaded DNA clamps drives membrane tubulation. SCIENCE ADVANCES 2022; 8:eadd1830. [PMID: 36223466 PMCID: PMC9555772 DOI: 10.1126/sciadv.add1830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Membrane dynamics in living organisms can arise from proteins adhering to, assembling on, and exerting force on cell membranes. Programmable synthetic materials, such as self-assembled DNA nanostructures, offer the capability to drive membrane-remodeling events that resemble protein-mediated dynamics but with user-defined outcomes. An illustrative example is the tubular deformation of liposomes by DNA nanostructures with purposely designed shapes, surface modifications, and self-assembling properties. However, stimulus-responsive membrane tubulation mediated by DNA reconfiguration remains challenging. Here, we present the triggered formation of membrane tubes in response to specific DNA signals that actuate membrane-bound DNA clamps from an open state to various predefined closed states, releasing prestored energy to activate membrane deformation. We show that the timing and efficiency of vesicle tubulation, as well as the membrane tube widths, are modulated by the conformational change of DNA clamps, marking a solid step toward spatiotemporal control of membrane dynamics in an artificial system.
Collapse
Affiliation(s)
- Longfei Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Qiancheng Xiong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Chun Xie
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Laboratoire de Physique de l’Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
40
|
Abstract
Over the past 40 years, structural and dynamic DNA nanotechnologies have undoubtedly demonstrated to be effective means for organizing matter at the nanoscale and reconfiguring equilibrium structures, in a predictable fashion and with an accuracy of a few nanometers. Recently, novel concepts and methodologies have been developed to integrate nonequilibrium dynamics into DNA nanostructures, opening the way to the construction of synthetic materials that can adapt to environmental changes and thus acquire new properties. In this Review, we summarize the strategies currently applied for the construction of synthetic DNA filaments and conclude by reporting some recent and most relevant examples of DNA filaments that can emulate typical structural and dynamic features of the cytoskeleton, such as compartmentalization in cell-like vesicles, support for active transport of cargos, sustained or transient growth, and responsiveness to external stimuli.
Collapse
|
41
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
42
|
Xu Y, Shi Q, Huang K, Yang Y. DNA Soccer-Ball Framework Templated Liposome Formation with Precisely Regulated Nucleation Seeds. ACS NANO 2022; 16:11004-11010. [PMID: 35776553 DOI: 10.1021/acsnano.2c03575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A soccer-ball-shaped three-dimensional DNA origami framework was assembled to serve as an exoskeleton and to direct liposome growth inside. With up to 90 available inner modification sites, cholesterol moieties were introduced as nucleation seeds, and the vesicle templating efficiency was systematically investigated with precisely regulated seed numbers and arrangements. We confirmed that a nonsaturated optimum number (n = 30) of nucleation seeds with relatively even spatial distribution was essential for achieving well-templated and highly uniform liposomes. The seed arrangement principles and effects and the liposome formation mechanisms are thoroughly discussed. The revealed key factors in the design and optimization of 3D DNA nanoframes for functional liposome production could benefit the fields of nanotechnology and molecular medicine.
Collapse
Affiliation(s)
- Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Shi
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
43
|
Baumann KN, Schröder T, Ciryam PS, Morzy D, Tinnefeld P, Knowles TPJ, Hernández-Ainsa S. DNA-Liposome Hybrid Carriers for Triggered Cargo Release. ACS APPLIED BIO MATERIALS 2022; 5:3713-3721. [PMID: 35838663 PMCID: PMC9382633 DOI: 10.1021/acsabm.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The design of simple and versatile synthetic routes to
accomplish
triggered-release properties in carriers is of particular interest
for drug delivery purposes. In this context, the programmability and
adaptability of DNA nanoarchitectures in combination with liposomes
have great potential to render biocompatible hybrid carriers for triggered
cargo release. We present an approach to form a DNA mesh on large
unilamellar liposomes incorporating a stimuli-responsive DNA building
block. Upon incubation with a single-stranded DNA trigger sequence,
a hairpin closes, and the DNA building block is allowed to self-contract.
We demonstrate the actuation of this building block by single-molecule
Förster resonance energy transfer (FRET), fluorescence recovery
after photobleaching, and fluorescence quenching measurements. By
triggering this process, we demonstrate the elevated release of the
dye calcein from the DNA–liposome hybrid carriers. Interestingly,
the incubation of the doxorubicin-laden active hybrid carrier with
HEK293T cells suggests increased cytotoxicity relative to a control
carrier without the triggered-release mechanism. In the future, the
trigger could be provided by peritumoral nucleic acid sequences and
lead to site-selective release of encapsulated chemotherapeutics.
Collapse
Affiliation(s)
- Kevin N Baumann
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Prashanth S Ciryam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Government of Aragon, ARAID Foundation, Zaragoza 50018, Spain
| |
Collapse
|
44
|
Xie C, Hu Y, Chen Z, Chen K, Pan L. Tuning curved DNA origami structures through mechanical design and chemical adducts. NANOTECHNOLOGY 2022; 33:405603. [PMID: 35772292 DOI: 10.1088/1361-6528/ac7d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures fromin silicoandin vitroaspects.In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions.In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, People's Republic of China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
45
|
Masukawa M, Sato Y, Yu F, Tsumoto K, Yoshikawa K, Takinoue M. Water-in-water droplets selectively uptake self-assembled DNA nano/microstructures: a versatile method for purification in DNA nanotechnology. Chembiochem 2022; 23:e202200240. [PMID: 35686962 PMCID: PMC9544409 DOI: 10.1002/cbic.202200240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Indexed: 11/10/2022]
Abstract
DNA is an excellent material for constructing self-assembled nano/microstructures. Owing to the widespread use of DNA as a building block in laboratories and industry, it is desirable to increase the efficiency of all steps involved in producing self-assembled DNA structures. One of the bottlenecks is the purification required to separate the excess components from the target structures. This paper describes a purification method based on the fractionation by water-in-water (W/W) droplets composed of phase-separated dextran-rich droplets in a polyethylene glycol (PEG)-rich continuous phase. The dextran-rich droplets facilitate the selective uptake of self-assembled DNA nano/microstructures and allow the separation of the target structure. This study investigates the ability to purify DNA origami, DNA hydrogels, and DNA microtubes. The W/W-droplet fractionation allows the purification of structures of a broad size spectrum without changes to the protocol. By quantifying the activity of deoxyribozyme-modified DNA origami after W/W-droplet purification, this study demonstrates that this method sufficiently preserves the accessibility to the surface of a functional DNA nanostructure. It is considered that the W/W-droplet fractionation could become one of the standard methods for the purification of self-assembled DNA nano/microstructures for biomedical and nanotechnology applications owing to its low cost and simplicity.
Collapse
Affiliation(s)
- Marcos Masukawa
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Computer Science, JAPAN
| | - Yusuke Sato
- Kyushu Institute of Technology - Iizuka Campus: Kyushu Kogyo Daigaku - Iizuka Campus, Intelligent and Control Systems, JAPAN
| | - Fujio Yu
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Computer Science, JAPAN
| | - Kanta Tsumoto
- Mie University: Mie Daigaku, Chemistry for Materials, JAPAN
| | - Kenichi Yoshikawa
- Kyoto University: Kyoto Daigaku, Center for Integrative Medicine and Physics, Institute for Advanced Study, JAPAN
| | - Masahiro Takinoue
- Tokyo Institute of Technology, Department of Computer Science, 4259-J2-36 Nagatsuta-cho, Midori-ku, 226-8502, Yokohama, JAPAN
| |
Collapse
|
46
|
Jahnke K, Huth V, Mersdorf U, Liu N, Göpfrich K. Bottom-Up Assembly of Synthetic Cells with a DNA Cytoskeleton. ACS NANO 2022; 16:7233-7241. [PMID: 35377150 PMCID: PMC9134502 DOI: 10.1021/acsnano.1c10703] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cytoskeletal elements, like actin and myosin, have been reconstituted inside lipid vesicles toward the vision to reconstruct cells from the bottom up. Here, we realize the de novo assembly of entirely artificial DNA-based cytoskeletons with programmed multifunctionality inside synthetic cells. Giant unilamellar lipid vesicles (GUVs) serve as cell-like compartments, in which the DNA cytoskeletons are repeatedly and reversibly assembled and disassembled with light using the cis-trans isomerization of an azobenzene moiety positioned in the DNA tiles. Importantly, we induced ordered bundling of hundreds of DNA filaments into more rigid structures with molecular crowders. We quantify and tune the persistence length of the bundled filaments to achieve the formation of ring-like cortical structures inside GUVs, resembling actin rings that form during cell division. Additionally, we show that DNA filaments can be programmably linked to the compartment periphery using cholesterol-tagged DNA as a linker. The linker concentration determines the degree of the cortex-like network formation, and we demonstrate that the DNA cortex-like network can deform GUVs from within. All in all, this showcases the potential of DNA nanotechnology to mimic the diverse functions of a cytoskeleton in synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Vanessa Huth
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ulrike Mersdorf
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Na Liu
- 2nd
Physics Institute, University of Stuttgart, Im Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
47
|
Hao P, Niu L, Luo Y, Wu N, Zhao Y. Surface Engineering of Lipid Vesicles Based on DNA Nanotechnology. Chempluschem 2022; 87:e202200074. [PMID: 35604011 DOI: 10.1002/cplu.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Pengyan Hao
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Liqiong Niu
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Yuanyuan Luo
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Na Wu
- Xi'an Jiaotong University School of Life Science and Technology No.28, West Xianning Road 710049 Xi'an CHINA
| | - Yongxi Zhao
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| |
Collapse
|
48
|
Suzuki Y, Kawamata I, Watanabe K, Mano E. Lipid bilayer-assisted dynamic self-assembly of hexagonal DNA origami blocks into monolayer crystalline structures with designed geometries. iScience 2022; 25:104292. [PMID: 35573202 PMCID: PMC9097702 DOI: 10.1016/j.isci.2022.104292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
The DNA origami technique is used to construct custom-shaped nanostructures that can be used as components of two-dimensional crystalline structures with user-defined structural patterns. Here, we designed an Mg2+-responsive hexagonal 3D DNA origami block with self-shape-complementary ruggedness on the sides. Hexagonal DNA origami blocks were electrostatically adsorbed onto a fluidic lipid bilayer membrane surface to ensure lateral diffusion. A subsequent increase in the Mg2+ concentration in the surrounding environment induced the self-assembly of the origami blocks into lattices with prescribed geometries based on a self-complementary shape fit. High-speed atomic force microscopy (HS-AFM) images revealed dynamic events involved in the self-assembly process, including edge reorganization, defect splitting, diffusion, and filling, which provide a glimpse into how the lattice structures are self-improved. Lipid bilayer-assisted self-assembly of 3D DNA origami blocks was achieved Time-lapse AFM imaging of the self-assembly processes was performed Different assembly patterns were achieved from a single DNA origami design
Collapse
Affiliation(s)
- Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Corresponding author
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kotaro Watanabe
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
49
|
Raschke S, Heuer A. Frame-guided assembly from a theoretical perspective. J Chem Phys 2022; 156:164905. [DOI: 10.1063/5.0084210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The molecular self-assembly of various structures such as micelles and vesicles has been the subject of comprehensive studies. Recently, a new approach to design these structures, the frame-guided assembly, has been developed to progress towards fabrics of predefined shape and size, following an initially provided frame of guiding elements. Here we study frame-guided assembly into a two-dimensional membrane via computer simulations, based on a single-bead coarse grained surfactant model in continuous space. In agreement with the experiment the assembly process already starts for surfactant concentrations below the critical micelle concentration. Furthermore, upon increasing temperature the formation process gets more delocalized. Additionally, the assembly process of the resulting membrane plane is modelled by a lattice gas model. It displays a similar phenomenology but additionally allows the derivation of analytical mean-field predictions. In this way a fundamental understanding of frame-guided assembly can be gained.
Collapse
Affiliation(s)
- Simon Raschke
- Institute for Physical Chemistry, WWU Münster, Germany
| | - Andreas Heuer
- Physical Chemistry, Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie, Germany
| |
Collapse
|
50
|
Li B, Abel SM. Membrane-mediated interactions between hinge-like particles. SOFT MATTER 2022; 18:2742-2749. [PMID: 35311882 DOI: 10.1039/d2sm00094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption of nanoparticles on a membrane can give rise to interactions between particles, mediated by membrane deformations, that play an important role in self-assembly and membrane remodeling. Previous theoretical and experimental research has focused on nanoparticles with fixed shapes, such as spherical, rod-like, and curved nanoparticles. Recently, hinge-like DNA origami nanostructures have been designed with tunable mechanical properties. Inspired by this, we investigate the equilibrium properties of hinge-like particles adsorbed on an elastic membrane using Monte Carlo and umbrella sampling simulations. The configurations of an isolated particle are influenced by competition between bending energies of the membrane and the particle, which can be controlled by changing adsorption strength and hinge stiffness. When two adsorbed particles interact, they effectively repel one another when the strength of adhesion to the membrane is weak. However, a strong adhesive interaction induces an effective attraction between the particles, which drives their aggregation. The configurations of the aggregate can be tuned by adjusting the hinge stiffness: tip-to-tip aggregation occurs for flexible hinges, whereas tip-to-middle aggregation also occurs for stiffer hinges. Our results highlight the potential for using the mechanical features of deformable nanoparticles to influence their self-assembly when the particles and membrane mutually influence one another.
Collapse
Affiliation(s)
- Bing Li
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| |
Collapse
|