1
|
Parfenov OE, Averyanov DV, Sokolov IS, Mihalyuk AN, Kondratev OA, Taldenkov AN, Tokmachev AM, Storchak VG. Pushing an Altermagnet to the Ultimate 2D Limit: Symmetry Breaking in Monolayers of GdAlSi. J Am Chem Soc 2025; 147:5911-5920. [PMID: 39910746 DOI: 10.1021/jacs.4c14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Altermagnets have emerged as a class of materials combining ferromagnetic properties with vanishing net magnetization. This combination is highly promising for spintronics, especially if a material can be brought to the nanoscale. However, experimental studies of the 2D limit of the altermagnets are lacking. Here, we study epitaxial films on silicon of the Weyl altermagnet GdAlSi ranging from more than a hundred unit cells to a single unit cell. The films do not show any discernible net magnetic moments. Electron transport studies reveal a remarkable transformation. Thick films exhibit the chiral anomaly, whereas symmetry restrictions prevent observation of the anomalous Hall effect in our electron transport measurements. In ultrathin films, a spontaneous anomalous Hall effect manifests itself, indicating a nonrelativistic spin splitting. The transformation is associated with crystal symmetry breaking accompanying the 3D-to-2D crossover. The work highlights the role of dimensionality in altermagnetism and provides a platform for studies aiming at ultracompact spintronics.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexey N Mihalyuk
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
2
|
Molle A, Yuhara J, Yamada-Takamura Y, Sofer Z. Synthesis of Xenes: physical and chemical methods. Chem Soc Rev 2025; 54:1845-1869. [PMID: 39846726 PMCID: PMC11756347 DOI: 10.1039/d4cs00999a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/24/2025]
Abstract
Since the debut of silicene in the experimental stage more than a decade ago, the family of two-dimensional elementary layers beyond graphene, called Xenes or transgraphenes, has rapidly expanded to include elements from groups II to VI of the periodic table. This expansion has opened pathways for the engineering of elementary monolayers that are inherently different from their bulk counterparts in terms of fundamental physical properties. Common guidelines for synthesizing Xenes can be categorized into well-defined methodological approaches. On the one hand, bottom-up methods, such as physical epitaxial methods, enable the growth of monolayers, multilayers, and heterostructured Xenes. On the other hand, top-down chemical methods, including topotactic deintercalation and liquid-phase exfoliation, are gaining prominence due to the possibility of massive production. This review provides an extensive view of the currently available synthesis routes for Xenes, highlighting the full range of Xenes reported to date, along with the most relevant identification techniques.
Collapse
Affiliation(s)
- Alessandro Molle
- CNR-IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, I-20864, Italy.
| | - Junji Yuhara
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yukiko Yamada-Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Hu Y, Song YL, Huang YH, Cao SY, Yang Y. First-principles predictions of two-dimensional Ce-based ferromagnetic semiconductors: CeF 2 and CeFCl monolayers. RSC Adv 2025; 15:2163-2174. [PMID: 39850088 PMCID: PMC11755109 DOI: 10.1039/d4ra06728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
Two-dimensional (2D) ferromagnetic (FM) semiconductors hold great promise for the next generation spintronics devices. By performing density functional theory first-principles calculations, both CeF2 and CeFCl monolayers are studied, our calculation results show that CeF2 is a FM semiconductor with sizable magneto-crystalline anisotropy energy (MAE) and high Curie temperature (290 K), but a smaller band gap and thermal instability indicate that it is not applicable at higher temperature. Its isoelectronic analogue, the CeFCl monolayer, is a bipolar FM semiconductor, its dynamics, elastic, and thermal stability are confirmed, our results demonstrate promising applications of the CeFCl monolayer for next-generation spintronic devices owing to its high Curie temperature (200 K), stable semiconducting features, and stability. Under biaxial strain from -5% to 5%, the CeFCl monolayer is a semiconductor with sizable MAE, its Curie temperature can increase to 240 K, the easy magnetization axes for CeFCl monolayer are still along the out-of-plane directions because the couplings between Cef y(3x 2-y 2) and f x(x 2-3y 2) orbitals in the different spin channels contribute most to the MAE according to second-order perturbation theory.
Collapse
Affiliation(s)
- Y Hu
- School of Electronic Information, Huzhou College Huzhou 313000 China
- Huzhou Key Laboratory for Urban Multidimensional Perception and Intelligent Computing, Huzhou College Huzhou 313000 China
| | - Y L Song
- College of Physics and Electronic Engineering, Nanyang Normal University Nanyang 473061 China
| | - Y H Huang
- School of Physics & Information Technology, Shaanxi Normal University Xi'an 710119 Shaanxi China
| | - S Y Cao
- School of Physics and Electronic Information, Yan'an University Yan'an 716000 China
| | - Y Yang
- School of Electronic Information, Huzhou College Huzhou 313000 China
| |
Collapse
|
4
|
Zhang Z, Sun R, Wang Z. Recent Advances in Two-Dimensional Ferromagnetic Materials-Based van der Waals Heterostructures. ACS NANO 2025; 19:187-228. [PMID: 39760296 DOI: 10.1021/acsnano.4c14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications. Consequently, 2D vdW ferromagnetic materials-based heterostructures offer a platform to tailor magnetic properties and explore advanced spintronic devices. This review aims to provide an overview of recent developments in emerging 2D vdW ferromagnetic materials-based heterostructures and devices. The fabrication approaches for 2D ferromagnetic vdW heterostructures are primarily summarized, followed by a review of two categories of heterostructures: ferromagnetic/ferroic and ferromagnetic/nonferroic vdW heterostructures. Subsequently, the progress made in modulating magnetic properties and emergence of various phenomena in these heterostructures is highlighted. Furthermore, the applications of such heterostructures in spintronic devices are discussed along with their future perspectives and potential directions in this exciting field.
Collapse
Affiliation(s)
- Zhiheng Zhang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Zhongchang Wang
- School of Chemistry, Beihang University, Beijing 100191, China
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Parfenov OE, Averyanov DV, Sokolov IS, Mihalyuk AN, Kondratev OA, Taldenkov AN, Tokmachev AM, Storchak VG. Monolayer Magnetic Metal with Scalable Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412321. [PMID: 39648532 DOI: 10.1002/adma.202412321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
2D magnets have emerged as a class of materials highly promising for studies of quantum phenomena and applications in ultra-compact spintronics. Current research aims at design of 2D magnets with particular functional properties. A formidable challenge is to produce metallic monolayers: the material landscape of layered magnetic systems is strongly dominated by insulators; rare metallic magnets, such as Fe3GeTe2, become insulating as they approach the monolayer limit. Here, electron transport measurements demonstrate that the recently discovered 2D magnet GdAlSi - graphene-like AlSi layers coupled to layers of Gd atoms - remains metallic down to a single monolayer. Band structure analysis indicates the material to be an electride, which may stabilize the metallic state. Remarkably, the sheet conductance of 2D GdAlSi is proportional to the number of monolayers - a manifestation of scalable conductivity. The GdAlSi layers are epitaxially integrated with silicon, facilitating applications in electronics.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Alexey N Mihalyuk
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690950, Russia
- Institute of Automation and Control Processes FEB RAS, Vladivostok, 690041, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| |
Collapse
|
6
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Kondratev OA, Tokmachev AM, Storchak VG. Emerging 2D Ferromagnetism in Graphenized GdAlSi. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402189. [PMID: 38973106 DOI: 10.1002/smll.202402189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Indexed: 07/09/2024]
Abstract
2D magnets are expected to give new insights into the fundamentals of magnetism, host novel quantum phases, and foster development of ultra-compact spintronics. However, the scarcity of 2D magnets often makes a bottleneck in the research efforts, prompting the search for new magnetic systems and synthetic routes. Here, an unconventional approach is adopted to the problem, graphenization - stabilization of layered honeycomb materials in the 2D limit. Tetragonal GdAlSi, stable in the bulk, in ultrathin films gives way to its layered counterpart - graphene-like anionic AlSi layers coupled to Gd cations. A series of inch-scale films of layered GdAlSi on silicon is synthesized, down to a single monolayer, by molecular beam epitaxy. Graphenization induces an easy-plane ferromagnetic order in GdAlSi. The magnetism is controlled by low magnetic fields, revealing its 2D nature. Remarkably, it exhibits a non-monotonic evolution with the number of monolayers. The results provide a fresh platform for research on 2D magnets by design.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| |
Collapse
|
7
|
Bai M, Wan H, Zhang Y, Chen S, Lu C, Liu X, Chen G, Zhang N, Ma R. Two-dimensional nanomaterials based on rare earth elements for biomedical applications. Chem Sci 2024; 15:d4sc02625j. [PMID: 39360014 PMCID: PMC11441461 DOI: 10.1039/d4sc02625j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
As a kind of star materials, two-dimensional (2D) nanomaterials have attracted tremendous attention for their unique structures, excellent performance and wide applications. In recent years, layered rare earth-based or doped nanomaterials have become a new important member of the 2D nanomaterial family and have attracted significant interest, especially layered rare earth hydroxides (LREHs) and layered rare earth-doped perovskites with anion-exchangeability and exfoliative properties. In this review, we systematically summarize the synthesis, exfoliation, fabrication and biomedical applications of 2D rare earth nanomaterials. Upon exfoliation, the LREHs and layered rare earth-doped perovskites can be dimensionally reduced to ultrathin nanosheets which feature high anisotropy and flexibility. Subsequent fabrication, especially superlattice assembly, enables rare earth nanomaterials with diverse compositions and structures, which further optimizes or even creates new properties and thus expands the application fields. The latest progress in biomedical applications of the 2D rare earth-based or doped nanomaterials and composites is also reviewed in detail, especially drug delivery and magnetic resonance imaging (MRI). Moreover, at the end of this review, we provide an outlook on the opportunities and challenges of the 2D rare earth-based or doped nanomaterials. We believe this review will promote increasing interest in 2D rare earth materials and provide more insight into the artificial design of other nanomaterials based on rare earth elements for functional applications.
Collapse
Affiliation(s)
- Mingjun Bai
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Siqi Chen
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Chunyin Lu
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
8
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Larionov KV, Sorokin PB, Kondratev OA, Tokmachev AM, Storchak VG. Engineering of a Layered Ferromagnet via Graphitization: An Overlooked Polymorph of GdAlSi. J Am Chem Soc 2024; 146:15761-15770. [PMID: 38825888 DOI: 10.1021/jacs.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Layered magnets are stand-out materials because of their range of functional properties that can be controlled by external stimuli. Regretfully, the class of such compounds is rather narrow, prompting the search for new members. Graphitization─stabilization of layered graphitic structures in the 2D limit─is being discussed for cubic materials. We suggest the phenomenon to extend beyond cubic structures; it can be employed as a viable route to a variety of layered materials. Here, the idea of graphitization is put into practice to produce a new layered magnet, GdAlSi. The honeycomb material, based on graphene-like layers AlSi, is studied both experimentally and theoretically. Epitaxial films of GdAlSi are synthesized on silicon; the critical thickness for the stability of the layered polymorph is around 20 monolayers. Notably, the layered polymorph of GdAlSi demonstrates ferromagnetism, in contrast to the nonlayered, tetragonal polymorph. The ferromagnetism is further supported by electron transport measurements revealing negative magnetoresistance and the anomalous Hall effect. The results show that graphitization can be a powerful tool in the design of functional layered materials.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Konstantin V Larionov
- Laboratory of Digital Materials Science, National University of Science and Technology MISIS, Leninskiy prospect 4, 119049 Moscow, Russia
| | - Pavel B Sorokin
- Laboratory of Digital Materials Science, National University of Science and Technology MISIS, Leninskiy prospect 4, 119049 Moscow, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
9
|
Mattiat H, Schneider L, Reiser P, Poggio M, Sahafi P, Jordan A, Budakian R, Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Kondratev OA, Tokmachev AM, Storchak VG. Mapping the phase-separated state in a 2D magnet. NANOSCALE 2024; 16:5302-5312. [PMID: 38372414 DOI: 10.1039/d3nr06550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states. In 4f 2D materials, magnetic phase separation is expressed in various experiments; however, the experimental evidence is circumstantial. Here, we employ a high-sensitivity MFM technique to probe the spatial distribution of magnetic states in the paradigmatic 4f 2D ferromagnet EuGe2. Below the ferromagnetic transition temperature, we discover the phase-separated state and follow its evolution with temperature and magnetic field. The characteristic length-scale of magnetic domains amounts to hundreds of nanometers. These observations strongly shape our understanding of the magnetic states in 2D materials at the monolayer limit and contribute to engineering of ultra-compact spintronics.
Collapse
Affiliation(s)
- Hinrich Mattiat
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Lukas Schneider
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Patrick Reiser
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Martino Poggio
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Pardis Sahafi
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| |
Collapse
|
10
|
Wu HJ, Wang D, Geng HY, Chen XR. Electronic structure and magnetothermal properties of two-dimensional ScCl. Phys Chem Chem Phys 2024; 26:8515-8527. [PMID: 38411591 DOI: 10.1039/d4cp00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Two-dimensional ferromagnetic materials with intrinsic half-metallic properties have strong application advantages in nanoscale spintronics. Herein, density functional theory calculations show that monolayer ScCl is a ferromagnetic metallic material when undoped (n = 0), and the transition from metal to half-metal occurs with the continuous doping of holes. On the contrary, as the concentration of doped electrons increases, the system will exhibit metallic characteristics, which is particularly evident from a variation in spin polarizability. Furthermore, we have discussed how doped carriers affect the shape of the Fermi surface and the Fermi velocity of electrons. Most importantly, Monte Carlo simulations show that the ScCl monolayer is particularly regulated by carrier concentration (n) and magnetic field (h). Additionally, trends in energy and magnetic exchange coupling in different magnetic configurations (AFM phase and FM phase) with different doping concentrations are presented. When n < -0.16, the material is not only a half-metallic material that easily flips the magnetic axis, but also proves to be a candidate ferromagnetic material that works stably at room temperature in terms of dynamic stability. In addition, the origin of magnetocrystalline anisotropy is analyzed, and the contribution of different orbitals to spin-orbit coupling is presented. Moreover, we note that when magnetic field is small (h < 1 T), the change in size has a significant effect on ferromagnetic phase transition. However, when the system size is large (size >15 nm), TC is less sensitive to magnetic field. In addition, hole doping and size effect will greatly affect the hC of the system, but when the hole doping exceeds the critical value (n = -0.16), its influence on the hysteresis loop is no longer obvious. These interesting magnetic phenomena and easily adjustable physical properties show us that monolayer ScCl will be a promising functional material.
Collapse
Affiliation(s)
- Hao-Jia Wu
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Dan Wang
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Hua-Yun Geng
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Liu S, Teng Y, Zhang Z, Lai J, Hu Z, Zhang W, Zhang W, Zhu J, Wang X, Li Y, Zhao J, Zhang Y, Qiu S, Zhou W, Cao K, Chen Q, Kang L, Li Q. Interlayer Charge Transfer Induced Electrical Behavior Transition in 1D AgI@sSWCNT van der Waals Heterostructures. NANO LETTERS 2024; 24:741-747. [PMID: 38166145 DOI: 10.1021/acs.nanolett.3c04298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The emergence of one-dimensional van der Waals heterostructures (1D vdWHs) opens up potential fields with unique properties, but precise synthesis remains a challenge. The utilization of mixed conductive types of carbon nanotubes as templates has imposed restrictions on the investigation of the electrical behavior and interlayer interaction of 1D vdWHs. In this study, we efficiently encapsulated silver iodide in high-purity semiconducting single-walled carbon nanotubes (sSWCNTs), forming 1D AgI@sSWCNT vdWHs. We characterized the semiconductor-metal transition and increased the carrier concentration of individual AgI@sSWCNTs via sensitive dielectric force microscopy and confirmed the results through electrical device tests. The electrical behavior transition was attributed to an interlayer charge transfer, as demonstrated by Kelvin probe force microscopy. Furthermore, we showed that this method of synthesizing 1D heterostructures can be extended to other metal halides. This work opens the door for the further exploration of the electrical properties of 1D vdWHs.
Collapse
Affiliation(s)
- Shuai Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Yu Teng
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
- School of Nano Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Zhen Zhang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Junqi Lai
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Ziyi Hu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Wendi Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wujun Zhang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Juntong Zhu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xiujun Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Yunfei Li
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Jintao Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
- School of Nano Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yong Zhang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Song Qiu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Kecheng Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Qi Chen
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Lixing Kang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Qingwen Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| |
Collapse
|
12
|
Xiong T, Chen Y, Qiu R, Yuan H. Excellent 5f-electron magnet of actinide atom decorated gh-C 3N 4 monolayer. Phys Chem Chem Phys 2023; 25:28020-28033. [PMID: 37823441 DOI: 10.1039/d3cp02954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Atomic functionality of two-dimensional (2D) materials, typically with a controllable doping route for offering regular atomic arrangement as well as excellent magnetism, is crucial for both fundamental studies and spintronic applications. Here, the adsorptions of the 5f-electron actinide series (An = Ac-Am) on porous graphene-like carbon-nitride (gh-C3N4) layers are explored to determine their structural stabilities, electronic nature and magnetic properties using the combination of density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD), Monte Carlo (MC) simulations and chemical bonding analyses. Our investigations reveal that each An atom can be individually adsorbed at the vacancy site of gh-C3N4 sheet with high energetic, thermal and dynamical stabilities, which are rooted in the major interactions of ionic An-N bonding as well as the minor interactions of covalent bonding of An-5f6d states with N-2s2p states. The delocalization of a very few 5f electrons is dependent on whether they occupy the suborbitals that are matching and conducive to hybridize with the ligand orbitals forming the 5f-2s2p covalent bonds. We propose that the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism plays a determining role for the inter-atomic 5f-5f magnetic exchange via the 6d electrons as the conduction electrons. Large magnetic moment and magnetic anisotropy energy (MAE) from the localized 5f electrons, together with the metallic characteristics owing to the delocalized 6d electrons, render these An-based 2D materials excellent metallic magnets, especially for the U@gh-C3N4 system with the modest magnetic moment of 0.6 μB, large MAE of 53 meV and high Curie temperature (TC) of 538 K.
Collapse
Affiliation(s)
- Tao Xiong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Yaqing Chen
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, China.
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Matetskiy AV, Milotti V, Sheverdyaeva PM, Moras P, Carbone C, Mihalyuk AN. Interplay between magnetic order and electronic band structure in ultrathin GdGe 2 metalloxene films. NANOSCALE 2023; 15:16080-16088. [PMID: 37750836 DOI: 10.1039/d3nr03398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.
Collapse
Affiliation(s)
- Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Valeria Milotti
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Carlo Carbone
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| |
Collapse
|
14
|
Averyanov DV, Sokolov IS, Parfenov OE, Taldenkov AN, Karateev IA, Kondratev OA, Tokmachev AM, Storchak VG. Thickness-Dependent Superconductivity in a Layered Electride on Silicon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302065. [PMID: 37259278 DOI: 10.1002/smll.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Layered materials exhibit a plethora of fascinating properties. The challenge is to make the materials into epitaxial films, preferably integrated with mature technological platforms to facilitate their potential applications. Progress in this direction can establish the film thickness as a valuable parameter to control various phenomena, superconductivity in particular. Here, a synthetic route to epitaxial films of SrAlSi, a layered superconducting electride, on silicon is designed. A set of films ranging in thickness is synthesized employing a silicene-based template. Their structure and superconductivity are explored by a combination of techniques. Two regimes of TC dependence on the film thickness are identified, the coherence length being the crossover parameter. The results can be extended to syntheses of other honeycomb-lattice ternary compounds on Si or Ge exhibiting superconducting, magnetic, and other properties.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| |
Collapse
|
15
|
Gao Z, Yin Y, Wang Y, Cui Z, Cao T, Shi J, Fan X. Tunable electrical properties and multiple-phases of ferromagnetic GdS 2, GdSe 2 and Janus GdSSe monolayers. Phys Chem Chem Phys 2023; 25:22782-22793. [PMID: 37584079 DOI: 10.1039/d3cp02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
With the continuous miniaturization and integration of spintronic devices, the two-dimensional (2D) ferromagnet coupling of ferromagnetic and diverse electrical properties has become increasingly important. Herein, we report three ferromagnetic monolayers: GdS2, GdSe2 and Janus GdSSe. They are bipolar magnetic semiconductors and demonstrate ferroelasticity with a large reversible strain of 73.2%. Three monolayers all hold large magnetic moments of about 8μB f.u.-1 and large spin-flip energy gaps in both the conduction and valence bands, which are highly desirable for applications in bipolar field effect spin filters and spin valves. Our calculations have testified to the feasibility of the experimental achievement of the three monolayers and their stability. Additionally, intrinsic valley polarization occurs in the three monolayers owing to the cooperative interplay between spin-orbit coupling and magnetic exchange interaction. Moreover, we identified square lattices for GdS2 and GdSe2 monolayers. The new and stable square lattices of GdS2 and GdSe2 monolayers show robust ferromagnetism with high Curie temperatures of 648 and 312 K, respectively, and the characteristics of spin-gapless semiconductors. Overall, these findings render GdS2, GdSe2 and Janus GdSSe monolayers promising candidate materials for multifunctional spintronic devices at the nanoscale.
Collapse
Affiliation(s)
- Zhihao Gao
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Yuehao Yin
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China
| | - Yuwan Wang
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Zichun Cui
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Tengfei Cao
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Xiaoli Fan
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
16
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Karateev IA, Kondratev OA, Tokmachev AM, Storchak VG. Intrinsic exchange bias state in silicene and germanene materials EuX 2. NANOSCALE HORIZONS 2023; 8:803-811. [PMID: 36987577 DOI: 10.1039/d3nh00009e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
2D magnets have recently emerged as a host for unconventional phases and related phenomena. The prominence of 2D magnetism stems from its high amenability to external stimuli and structural variations. The low dimensionality facilitates competition between magnetic orders which may give rise to exchange bias, in particular in magnetic heterostructures. Here, we propose a strategy for the search of exchange bias state in 2D individual compounds. We track the evolution of magnetic orders driven by the number of monolayers in a system exhibiting antiferromagnetism in the multilayer and ferromagnetism in the monolayer limit. The material, EuSi2, has the structure of multilayer silicene intercalated by Eu. A strong intrinsic exchange bias effect accompanies the dimensional crossover. Comparison with silicene-based GdSi2 and germanene-based EuGe2 suggests the competition between magnetic orders to be a common property of this class of materials that may be useful in spintronic applications.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| |
Collapse
|
17
|
Sokolov IS, Averyanov DV, Parfenov OE, Taldenkov AN, Rybin MG, Tokmachev AM, Storchak VG. Proximity Coupling of Graphene to a Submonolayer 2D Magnet. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301295. [PMID: 36971277 DOI: 10.1002/smll.202301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Imprinting magnetism into graphene may lead to unconventional electron states and enable the design of spin logic devices with low power consumption. The ongoing active development of 2D magnets suggests their coupling with graphene to induce spin-dependent properties via proximity effects. In particular, the recent discovery of submonolayer 2D magnets on surfaces of industrial semiconductors provides an opportunity to magnetize graphene coupled with silicon. Here, synthesis and characterization of large-area graphene/Eu/Si(001) heterostructures combining graphene with a submonolayer magnetic superstructure of Eu on silicon are reported. Eu intercalation at the interface of the graphene/Si(001) system results in a Eu superstructure different from those formed on pristine Si in terms of symmetry. The resulting system graphene/Eu/Si(001) exhibits 2D magnetism with the transition temperature controlled by low magnetic fields. Negative magnetoresistance and the anomalous Hall effect in the graphene layer provide evidence for spin polarization of the carriers. Most importantly, the graphene/Eu/Si system seeds a class of graphene heterostructures based on submonolayer magnets aiming at applications in graphene spintronics.
Collapse
Affiliation(s)
- Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Maxim G Rybin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow, 123182, Russia
| |
Collapse
|
18
|
Zhang H, Weinert M, Li L. Giant Periodic Pseudomagnetic Fields in Strained Kagome Magnet FeSn Epitaxial Films on SrTiO 3(111) Substrate. NANO LETTERS 2023; 23:2397-2404. [PMID: 36912449 PMCID: PMC10037333 DOI: 10.1021/acs.nanolett.3c00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Quantum materials, particularly Dirac materials with linearly dispersing bands, can be effectively tuned by strain-induced lattice distortions leading to a pseudomagnetic field that strongly modulates their electronic properties. Here, we grow kagome magnet FeSn films, consisting of alternatingly stacked Sn2 honeycomb (stanene) and Fe3Sn kagome layers, on SrTiO3(111) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we show that the Sn honeycomb layer can be periodically deformed by epitaxial strain for a film thickness below 10 nm, resulting in differential conductance peaks consistent with Landau levels generated by a pseudomagnetic field greater than 1000 T. Our findings demonstrate the feasibility of strain engineering the electronic properties of topological magnets at the nanoscale.
Collapse
Affiliation(s)
- Huimin Zhang
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
- State
Key Laboratory of Structural Analysis, Optimization and CAE Software
for Industrial Equipment, Dalian University
of Technology, Dalian, 116024, China
| | - Michael Weinert
- Department
of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, United States
| | - Lian Li
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
19
|
Wan W, Fu B, Liu C, Ge Y, Liu Y. Two-dimensional XY ferromagnetism above room temperature in Janus monolayer V 2XN (X = P, As). Phys Chem Chem Phys 2023; 25:9311-9319. [PMID: 36920148 DOI: 10.1039/d3cp00088e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Two-dimensional (2D) XY magnets with easy magnetization planes support the nontrivial topological spin textures whose dissipationless transport is highly desirable for 2D spintronic devices. Here, we predicted that Janus monolayer V2XN (X = P, As) with a square lattice is a 2D-XY ferromagnet using first-principles calculations. Both magnetocrystalline anisotropy and magnetic shape anisotropy favor an in-plane magnetization, leading to an easy magnetization xy-plane in Janus monolayer V2XN. With the help of the Monte Carlo simulations, we observed the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in monolayer V2XN with the transition temperature TBKT being above room temperature. In particular, monolayer V2AsN has a magnetic anisotropy energy (MAE) of 292.0 μeV per V atom and a TBKT of 434 K, which is larger than that of monolayer V2PN. Moreover, a tensile strain of 5% can further improve the TBKT of monolayer V2XN to be above 500 K. Our results indicated that Janus monolayer V2XN (X = P, As) can be candidate materials to realize high-temperature 2D-XY ferromagnetism for spintronics applications.
Collapse
Affiliation(s)
- Wenhui Wan
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Botao Fu
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, China
| | - Chang Liu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Yanfeng Ge
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
20
|
Yang J, Gao B, Liu W, Du J, Xu Q. Supercritical CO 2 -induced New Chemical Bond of C-O-Si in Graphdiyne to Achieve Robust Room-Temperature Ferromagnetism. Chemphyschem 2023; 24:e202200793. [PMID: 36806422 DOI: 10.1002/cphc.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
The realization of ferromagnetic ordering of two-dimensional (2D) carbon material graphdiyne (GDY) has attracted great attention due to its promising application in spin semiconductor devices. However, the absence of localized spins makes the pristine GDY intrinsically nonferromagnetic. Herein, we report the realization of robust room-temperature (RT) ferromagnetism (FM) with Curie temperature (TC ) up to 325 K for GDY Nanosheets (GDYNs) by supercritical CO2 (SC CO2 ). Experimental and theoretical calculations reveal that the new chemical bond of C-O-Si can be formed because of the unique effect of SC CO2 , which help to enhance the charge transfer and generates long-range ferromagnetic order. The RT saturation magnetization (MS ) reaches 1.125 emu/g, which is much higher than that of carbon-based materials reported up to now. Meanwhile, by changing the conditions of SC CO2 such as pressure, ferromagnetic responses can be manipulated, which is great for potential spintronics applications of GDY.
Collapse
Affiliation(s)
- Jian Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jiang Du
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China.,College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
21
|
Guzman R, Ning S, Zhang R, Liu H, Ma Y, Zhang YY, Bao L, Yang H, Du S, Bosman M, Pennycook SJ, Gao HJ, Zhou W. Collective Magnetic Behavior in Vanadium Telluride Induced by Self-Intercalation. ACS NANO 2023; 17:2450-2459. [PMID: 36716185 DOI: 10.1021/acsnano.2c09762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.
Collapse
Affiliation(s)
- Roger Guzman
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Shoucong Ning
- Department of Materials Science and Engineering, National University of Singapore, 117575Singapore, Singapore
| | - Ruizi Zhang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Hongtao Liu
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Yinhang Ma
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Yu-Yang Zhang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Lihong Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Haitao Yang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Michel Bosman
- Department of Materials Science and Engineering, National University of Singapore, 117575Singapore, Singapore
| | - Stephen J Pennycook
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing100190, People's Republic of China
| | - Wu Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- CAS Centre for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
22
|
Wu C, Zhao Y, Zhang G, Liu C. Giant thermal switching in ferromagnetic VSe 2 with programmable switching temperature. NANOSCALE HORIZONS 2023; 8:202-210. [PMID: 36484168 DOI: 10.1039/d2nh00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Active and reversible modulation of thermal conductivity can realize efficient heat energy management in many applications such as thermoelectrics. Using first-principles calculations, this study reports a giant thermal switching ratio of 12, much higher than previously reported values, in monolayer 2H-VSe2 above room temperature. Detailed analysis indicates that the high thermal switching ratio is dominated by the ferromagnetic ordering induced phonon bandgap, which significantly suppresses the phonon-phonon scattering phase space across the entire vibration spectrum. The thermal switching in bulk 2H-VSe2 is also investigated and the thermal switching ratio reaches 9.2 at the magnetic transition temperature. Both the phonon-phonon scattering space phase and phonon anharmonicity are responsible for the 9.2-fold thermal switching. This study advances the understanding of heat energy transport in two-dimensional ferromagnets, and also provides new insight into heat energy control and conversion.
Collapse
Affiliation(s)
- Chao Wu
- Micro- and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China.
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China
| | - Yunshan Zhao
- NNU-SULI Thermal Energy Research Center (NSTER) & Center for Quantum Transport and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Gang Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore.
| | - Chenhan Liu
- Micro- and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China.
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Karateev IA, Kondratev OA, Tokmachev AM, Storchak VG. Exchange Bias State at the Crossover to 2D Ferromagnetism. ACS NANO 2022; 16:19482-19490. [PMID: 36278843 DOI: 10.1021/acsnano.2c09452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The inherent malleability of 2D magnetism provides access to unconventional quantum phases, in particular those with coexisting magnetic orders. Incidentally, in a number of materials, the magnetic state in the bulk undergoes a fundamental change when the system is pushed to the monolayer limit. Therefore, a competition of magnetic states can be expected in the crossover region. Here, an exchange bias state is observed at the crossover from 3D antiferromagnetism to 2D ferromagnetism driven by the number of monolayers in the metalloxene GdSi2. The material constitutes a stack of alternating monolayers of Gd and silicene, the Si analogue of graphene. The exchange bias manifests itself as a shift of the hysteresis loop signifying coupling of magnetic systems, as evidenced by magnetization studies. Two features distinguish the phenomenon: (i) it is intrinsic, i.e. it is detected in an individual compound; (ii) the exchange bias field, 1.5 kOe, is unusually high, which is conducive to applications. The results suggest magnetic derivatives of 2D-Xenes to be prospective materials for ultracompact spintronics.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| |
Collapse
|
24
|
Parfenov OE, Taldenkov AN, Averyanov DV, Sokolov IS, Kondratev OA, Borisov MM, Yakunin SN, Karateev IA, Tokmachev AM, Storchak VG. Layer-controlled evolution of electron state in the silicene intercalation compound SrSi 2. MATERIALS HORIZONS 2022; 9:2854-2862. [PMID: 36056695 DOI: 10.1039/d2mh00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silicene, a Si-based analogue of graphene, holds a high promise for electronics because of its exceptional properties but a high chemical reactivity makes it a very challenging material to work with. The silicene lattice can be stabilized by active metals to form stoichiometric compounds MSi2. Being candidate topological semimetals, these materials provide an opportunity to probe layer dependence of unconventional electronic structures. It is demonstrated here that in the silicene compound SrSi2, the number of monolayers controls the electronic state. A series of films ranging from bulk-like multilayers down to a single monolayer have been synthesized on silicon and characterized with a combination of techniques - from electron and X-ray diffraction to high-resolution electron microscopy. Transport measurements reveal evolution of the chiral anomaly in bulk SrSi2 to weak localization in ultrathin films down to 3 monolayers followed by 3D and 2D strong localization in 2 and 1 monolayers, respectively. The results outline the range of stability of the chiral state, important for practical applications, and shed light on the localization phenomena in the limit of a few monolayers.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Mikhail M Borisov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Sergey N Yakunin
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| |
Collapse
|
25
|
Kalwar BA, Fangzong W, Saeed MH, Bhutto AA, Tunio MA, Bhagat K. Geometric, spintronic, and opto‐electronic properties of 3d transition metals doped silicene: An ab initio study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Basheer Ahmed Kalwar
- College of Electrical Engineering and New Energy China Three Gorges University Yichang China
- Department of Electrical Engineering Mehran University of Engineering and Technology, SZAB Campus Khairpur Mirs Pakistan
| | - Wang Fangzong
- College of Electrical Engineering and New Energy China Three Gorges University Yichang China
| | - Muhammad Hammad Saeed
- College of Electrical Engineering and New Energy China Three Gorges University Yichang China
| | - Aqeel Ahmed Bhutto
- Department of Mechanical Engineering Mehran University of Engineering and Technology, SZAB Campus Khairpur Mirs Pakistan
| | - Mohsin Ali Tunio
- Department of Electrical Engineering Mehran University of Engineering and Technology, SZAB Campus Khairpur Mirs Pakistan
| | - Kalsoom Bhagat
- Department of Electrical Engineering Mehran University of Engineering and Technology, SZAB Campus Khairpur Mirs Pakistan
| |
Collapse
|
26
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Tokmachev AM, Storchak VG. 2D magnetic phases of Eu on Ge(110). NANOSCALE 2022; 14:12377-12385. [PMID: 35972030 DOI: 10.1039/d2nr02777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2D magnetic materials are at the forefront of research on fundamentals of magnetism; they exhibit unconventional phases and properties controlled by external stimuli. 2D magnets offer a solution to the problem of miniaturization of spintronic devices. A technological target of materials science is to find suitable magnetic materials and scale their thickness down as much as possible, a single monolayer being a natural limit. However, magnetism does not halt at one monolayer - it may persist beyond this boundary, to sparse but regular lattices of magnetic atoms. Here, we report 2D magnetic phases of Eu on the Ge(110) surface. We synthesized two submonolayer structures Eu/Ge(110) employing molecular beam epitaxy. The phases, identified by electron diffraction, differ in the surface density of Eu atoms. At low temperature, they exhibit magnetic ordering with magnetic moments lying in-plane. Strong dependence of the effective magnetic transition temperature on weak magnetic fields points at the 2D nature of the observed magnetism. The results are set against those on the Eu/Si system. The study of Eu/Ge(110) magnets demonstrates that a variety of substrates of different structure and symmetry can host submonolayer 2D magnetic phases, suggesting the phenomenon to be rather general.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| |
Collapse
|
27
|
Lozovoy KA, Izhnin II, Kokhanenko AP, Dirko VV, Vinarskiy VP, Voitsekhovskii AV, Fitsych OI, Akimenko NY. Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2221. [PMID: 35808055 PMCID: PMC9268513 DOI: 10.3390/nano12132221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications.
Collapse
Affiliation(s)
- Kirill A. Lozovoy
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Ihor I. Izhnin
- Scientific Research Company “Electron-Carat”, Stryjska St. 202, 79031 Lviv, Ukraine;
| | - Andrey P. Kokhanenko
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Vladimir V. Dirko
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Vladimir P. Vinarskiy
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Alexander V. Voitsekhovskii
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Olena I. Fitsych
- P. Sagaidachny National Army Academy, Gvardijska St. 32, 79012 Lviv, Ukraine;
| | - Nataliya Yu. Akimenko
- Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia;
| |
Collapse
|
28
|
Yu S, Tang J, Wang Y, Xu F, Li X, Wang X. Recent advances in two-dimensional ferromagnetism: strain-, doping-, structural- and electric field-engineering toward spintronic applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:140-160. [PMID: 35185390 PMCID: PMC8856075 DOI: 10.1080/14686996.2022.2030652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 05/27/2023]
Abstract
Since the first report on truly two-dimensional (2D) magnetic materials in 2017, a wide variety of merging 2D magnetic materials with unusual physical characteristics have been discovered and thus provide an effective platform for exploring the associated novel 2D spintronic devices, which have been made significant progress in both theoretical and experimental studies. Herein, we make a comprehensive review on the recent scientific endeavors and advances on the various engineering strategies on 2D ferromagnets, such as strain-, doping-, structural- and electric field-engineering, toward practical spintronic applications, including spin tunneling junctions, spin field-effect transistors and spin logic gate, etc. In the last, we discuss on current challenges and future opportunities in this field, which may provide useful guidelines for scientists who are exploring the fundamental physical properties and practical spintronic devices of low-dimensional magnets.
Collapse
Affiliation(s)
- Sheng Yu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Junyu Tang
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Feixiang Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
29
|
Yang G, Chai JS, Bu K, Xu LF, Wang JT. Structural, magnetic, and electronic properties of EuSi2 thin films on Si(111) surface. Phys Chem Chem Phys 2022; 24:6782-6787. [DOI: 10.1039/d1cp05913k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Searching for magnetic silicide thin films has long been a hot topic in condensed matter physics and materials science based on its fundamental physics and promising device applications. Here we...
Collapse
|
30
|
Tan H, Shan G, Pacchioni G. Prediction of 2D ferromagnetism and monovalent europium ions in EuBr/graphene heterojunctions. Phys Chem Chem Phys 2021; 23:25500-25506. [PMID: 34730141 DOI: 10.1039/d1cp02218k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Europium, one of the rare-earth elements, exhibits +2 and +3 valence states and has been widely used for the magnetic modification of materials. Based on density functional theory calculations, we predicted 2D EuBr/graphene heterojunctions to exhibit metallicity, huge intrinsic-ferromagnetism nearly 7.0 μB per Eu and the special monovalent Eu ions. Electron localization function (ELF), difference charge densities and Bader charge analyses demonstrated that there are cation-π interactions between the EuBr films and graphene. Graphene works as a substrate to enable the stability of EuBr monolayer crystals, where EuBr plays an important role to yield ferromagnetism and enhance metallicity in the heterojunctions. Monte Carlo simulations were used to estimate a Curie temperature of about 7 K, which, together with magnetic configurations, can be further modulated by external strains and charge-carrier doping. In general, our theoretical work predicts the properties of novel 2D ferromagnetic EuBr/graphene heterojunctions, suggesting the possibility of combining 2D intrinsic-ferromagnetic metal halide crystals and graphene, and opening up a new perspective in next-generation electronic, spintronic devices and high-performance sensors.
Collapse
Affiliation(s)
- Haoyi Tan
- School of Instrumentation Science and Opto-electronics Engineering & Institute of Precision Instrument and Quantum Sensing, Beihang University, Beijing 100191, China.
| | - Guangcun Shan
- School of Instrumentation Science and Opto-electronics Engineering & Institute of Precision Instrument and Quantum Sensing, Beihang University, Beijing 100191, China. .,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, 20125 Milano, Italy
| |
Collapse
|
31
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
32
|
Krawiec M, Stępniak-Dybala A, Bobyk A, Zdyb R. Magnetism in Au-Supported Planar Silicene. NANOMATERIALS 2021; 11:nano11102568. [PMID: 34685008 PMCID: PMC8540306 DOI: 10.3390/nano11102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
The adsorption and substitution of transition metal atoms (Fe and Co) on Au-supported planar silicene have been studied by means of first-principles density functional theory calculations. The structural, energetic and magnetic properties have been analyzed. Both dopants favor the same atomic configurations with rather strong binding energies and noticeable charge transfer. The adsorption of Fe and Co atoms do not alter the magnetic properties of Au-supported planar silicene, unless a full layer of adsorbate is completed. In the case of substituted system only Fe is able to produce magnetic ground state. The Fe-doped Au-supported planar silicene is a ferromagnetic structure with local antiferromagnetic ordering. The present study is the very first and promising attempt towards ferromagnetic epitaxial planar silicene and points to the importance of the substrate in structural and magnetic properties of silicene.
Collapse
Affiliation(s)
- Mariusz Krawiec
- Institute of Physics, M. Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland; (A.S.-D.); (R.Z.)
- Correspondence: ; Tel.: +48-81-537-6146
| | - Agnieszka Stępniak-Dybala
- Institute of Physics, M. Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland; (A.S.-D.); (R.Z.)
| | - Andrzej Bobyk
- Institute of Computer Science, M. Curie-Sklodowska University, ul. Akademicka 9, 20-031 Lublin, Poland;
| | - Ryszard Zdyb
- Institute of Physics, M. Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland; (A.S.-D.); (R.Z.)
| |
Collapse
|
33
|
Parfenov OE, Averyanov DV, Sokolov IS, Taldenkov AN, Karateev IA, Tokmachev AM, Storchak VG. High Carrier Mobility in a Layered Antiferromagnet Integrated with Silicon. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41926-41932. [PMID: 34436853 DOI: 10.1021/acsami.1c13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coupling various functional properties in one material is always a challenge, more so if the material should be nanostructured for practical applications. Magnetism and high carrier mobility are key components for spintronic applications but rather difficult to bundle together. Here, we establish EuAl2Si2 as a layered antiferromagnet supporting high carrier mobility. Its topotactic synthesis via a sacrificial two-dimensional template results in epitaxial nanoscale films on silicon. Their outstanding structural quality and atomically sharp interfaces are demonstrated by diffraction and microscopy techniques. EuAl2Si2 films exhibit extreme magnetoresistance and a carrier mobility of above 10,000 cm2 V-1 s-1. The marriage of these properties and magnetism makes EuAl2Si2 a promising spintronic material. Importantly, the seamless integration of EuAl2Si2 with silicon technology is particularly appealing for applications.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
34
|
Tokmachev AM, Averyanov DV, Taldenkov AN, Sokolov IS, Karateev IA, Parfenov OE, Storchak VG. Two-Dimensional Magnets beyond the Monolayer Limit. ACS NANO 2021; 15:12034-12041. [PMID: 34128650 DOI: 10.1021/acsnano.1c03312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsic two-dimensional (2D) magnetism has been demonstrated in various materials scaled down to a single monolayer. However, the question is whether 2D magnetism extends beyond the monolayer limit, to chemical species formed by sparse but regular 2D arrays of magnetic atoms. Here we show that sub-monolayer superstructures of Eu atoms self-assembled on the silicon surface exhibit strong magnetic signals. Robust easy-plane magnetism is discovered in both one- and two-dimensionally ordered structures with Eu coverage of half monolayer and above. The emergence of 2D magnetism manifests itself by a strong dependence of the effective transition temperature on weak magnetic fields. The results constitute a versatile platform for miniaturization of 2D magnetic systems and seed an expandable class of atomically thin magnets for applications in information technologies.
Collapse
Affiliation(s)
- Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
| |
Collapse
|
35
|
Chai JS, Yang G, Xu J, Wang WW, Xu LF, Wang JT. La induced Si 3 trimer bilayer on the Si(111) surface. Phys Chem Chem Phys 2021; 23:11466-11471. [PMID: 33959738 DOI: 10.1039/d1cp01351c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using first-principles calculations, we identify a robust R30° reconstruction of a Si3 trimer bilayer on the Si(111) surface with a La coverage of 2/3 monolayer. Each surface unit cell contains two Si3 trimers and two La atoms, where the upper Si3 trimer is located just above the lower one with a rotation of about 60°, while two La atoms with different heights are distributed between the Si3 trimers and located on the T4 top site of the Si(111) surface, forming a honeycomb-like network structure. We find that the two La atoms have different valence states, La2+ and La3+, respectively. The high structural stability is attributed to the lower La atom saturating all the three dangling bonds of the upper Si3 trimer, while the higher La atom compensates two electrons to the lower Si3 trimer. The electronic band structure and band-decomposed charge density distribution show a semiconducting characteristic with a small surface band gap of 42 meV. Moreover, simulated STM images show a good structural match with the recent experimental observations.
Collapse
Affiliation(s)
- Jun-Shuai Chai
- Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China. and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xu
- Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Wen-Wu Wang
- Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China. and College of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Fang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
36
|
Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W, He L, Zhang R, Xu Y. Light-Tunable Ferromagnetism in Atomically Thin Fe_{3}GeTe_{2} Driven by Femtosecond Laser Pulse. PHYSICAL REVIEW LETTERS 2020; 125:267205. [PMID: 33449751 DOI: 10.1103/physrevlett.125.267205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 05/16/2023]
Abstract
The recent discovery of intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has opened up a new arena for spintronics, raising an opportunity of achieving tunable intrinsic 2D vdW magnetism. Here, we show that the magnetization and the magnetic anisotropy energy (MAE) of few-layered Fe_{3}GeTe_{2} (FGT) is strongly modulated by a femtosecond laser pulse. Upon increasing the femtosecond laser excitation intensity, the saturation magnetization increases in an approximately linear way and the coercivity determined by the MAE decreases monotonically, showing unambiguously the effect of the laser pulse on magnetic ordering. This effect observed at room temperature reveals the emergence of light-driven room-temperature (300 K) ferromagnetism in 2D vdW FGT, as its intrinsic Curie temperature T_{C} is ∼200 K. The light-tunable ferromagnetism is attributed to the changes in the electronic structure due to the optical doping effect. Our findings pave a novel way to optically tune 2D vdW magnetism and enhance the T_{C} up to room temperature, promoting spintronic applications at or above room temperature.
Collapse
Affiliation(s)
- Bo Liu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shanshan Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Long Yang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhendong Chen
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Enze Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Zihan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Jing Wu
- York-Nanjing Joint Center in Spintronics, Department of Electronic Engineering and Department of Physics, The University of York, York YO10 5DD, United Kingdom
| | - Xuezhong Ruan
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, People's Republic of China
| | - Wenqing Liu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
- Department of Electronic Engineering, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Liang He
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Rong Zhang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yongbing Xu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
- York-Nanjing Joint Center in Spintronics, Department of Electronic Engineering and Department of Physics, The University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Coughlin AL, Xie D, Yao Y, Zhan X, Chen Q, Hewa-Walpitage H, Zhang X, Guo H, Zhou H, Lou J, Wang J, Li YS, Fertig HA, Zhang S. Near Degeneracy of Magnetic Phases in Two-Dimensional Chromium Telluride with Enhanced Perpendicular Magnetic Anisotropy. ACS NANO 2020; 14:15256-15266. [PMID: 33124799 DOI: 10.1021/acsnano.0c05534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of atomically thin van der Waals magnets (e.g., CrI3 and Cr2Ge2Te6) has triggered a renaissance in the study of two-dimensional (2D) magnetism. Most of the 2D magnetic compounds discovered so far host only one single magnetic phase unless the system is at a phase boundary. In this work, we report the near degeneracy of magnetic phases in ultrathin chromium telluride (Cr2Te3) layers with strong perpendicular magnetic anisotropy highly desired for stabilizing 2D magnetic order. Single-crystalline Cr2Te3 nanoplates with a trigonal structure (space group P3̅1c) were grown by chemical vapor deposition. The bulk magnetization measurements suggest a ferromagnetic (FM) order with an enhanced perpendicular magnetic anisotropy, as evidenced by a coercive field as large as ∼14 kOe when the field is applied perpendicular to the basal plane of the thin nanoplates. Magneto-optical Kerr effect studies confirm the intrinsic ferromagnetism and characterize the magnetic ordering temperature of individual nanoplates. First-principles density functional theory calculations suggest the near degeneracy of magnetic orderings with a continuously varying canting from the c-axis FM due to their comparable energy scales, explaining the zero-field kink observed in the magnetic hysteresis loops. Our work highlights Cr2Te3 as a promising 2D Ising system to study magnetic phase coexistence and switches for ultracompact information storage and processing.
Collapse
Affiliation(s)
- Amanda L Coughlin
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
| | - Dongyue Xie
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Yue Yao
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Xun Zhan
- Electron Microscope Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Qiang Chen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Heshan Hewa-Walpitage
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Xiaohang Zhang
- Center for Nanophysics & Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - Hua Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Haidong Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jian Wang
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Yan S Li
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Herbert A Fertig
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Shixiong Zhang
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Dang S, Kang SD, Dai T, Ma XY, Li HW, Zhou WQ, Wang GL, Hu P, Sun Y, He ZH, Yu FM, Zhou X, Wu SX, Li SW. Piezoelectric modulation of broadband photoresponse of flexible tellurium nanomesh photodetectors. NANOTECHNOLOGY 2020; 31:095502. [PMID: 31675732 DOI: 10.1088/1361-6528/ab53b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible photodetector shows great potential applications in intelligent wearable devices, health monitoring, and biological sensing. In this work, single crystal β-tellurium nanowires were grown on flexible muscovite by molecular beam epitaxy, constructing high-density ordered nanomesh structure. The prepared photodetectors based on tellurium nanomesh exhibit excellent mechanical flexibility, fast response in a broad range from ultraviolet to near-infrared, and good photosensitivity. We found that the flexible photodetectors with Shottky contact drastically suppressed dark current, while the response speed was lowered in comparison to the devices with ohmic contact, as holes would take a long time to tunnel through the Shottky barrier between metal and p-type Te. Moreover, the photoresponse of flexible Shottky photodetectors can be modulated by piezoelectricity of tellurium, and pronounced photocurrent increase after bending many times. Under external stress, polarization charges could tune Shottky barrier height of the metal/tellurium, resulting in variation of photocurrent. This research not only explores the broadband photoresponse and piezoelectric effect of tellurium nanomesh, but also promotes the integration and development of broadband flexible optoelectronic devices.
Collapse
Affiliation(s)
- S Dang
- School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang P, Zhang P, Xu S, Wang H, Zhang X, Zhang H. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. NANOSCALE 2020; 12:2309-2327. [PMID: 31930261 DOI: 10.1039/c9nr08890c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) ferromagnetism is critical for both scientific investigation and technological development owing to its low-dimensionality that brings in quantization of electronic states as well as free axes for device modulation. However, the scarcity of high-temperature 2D ferromagnets has been the obstacle of many research studies, such as the quantum anomalous Hall effect (QAHE) and thin-film spintronics. Indeed, in the case of the isotropic Heisenberg model with finite-range exchange interactions as an example, low-dimensionality is shown to be contraindicated with ferromagnetism. However, the advantages of low-dimensionality for micro-scale patterning could enhance the Curie temperature (TC) of 2D ferromagnets beyond the TC of bulk materials, opening the door for designing high-temperature ferromagnets in the 2D limit. In this paper, we review the recent advances in the field of 2D ferromagnets, including their material systems, physical properties, and potential device applications.
Collapse
Affiliation(s)
- Pu Huang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peng Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shaogang Xu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huide Wang
- Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Zhang
- Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
40
|
Zhu H, Ni N, Govindarajan S, Ding X, Leong DT. Phototherapy with layered materials derived quantum dots. NANOSCALE 2020; 12:43-57. [PMID: 31799539 DOI: 10.1039/c9nr07886j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) originating from two-dimensional (2D) sheets of graphitic carbon nitride (g-C3N4), graphene, hexagonal boron nitride (h-BN), monoatomic buckled crystals (phosphorene), germanene, silicene and transition metal dichalcogenides (TMDCs) are emerging zero-dimensional materials. These QDs possess diverse optical properties, are chemically stable, have surprisingly excellent biocompatibility and are relatively amenable to surface modifications. It is therefore not difficult to see that these QDs have potential in a variety of bioapplications, including biosensing, bioimaging and anticancer and antimicrobial therapy. In this review, we briefly summarize the recent progress of these exciting QD based nanoagents and strategies for phototherapy. In addition, we will discuss about the current limitations, challenges and future prospects of QDs in biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xianguang Ding
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
41
|
Quantitative determination of atomic buckling of silicene by atomic force microscopy. Proc Natl Acad Sci U S A 2019; 117:228-237. [PMID: 31871150 DOI: 10.1073/pnas.1913489117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomic buckling in 2D "Xenes" (such as silicene) fosters a plethora of exotic electronic properties such as a quantum spin Hall effect and could be engineered by external strain. Quantifying the buckling magnitude with subangstrom precision is, however, challenging, since epitaxially grown 2D layers exhibit complex restructurings coexisting on the surface. Here, we characterize using low-temperature (5 K) atomic force microscopy (AFM) with CO-terminated tips assisted by density functional theory (DFT) the structure and local symmetry of each prototypical silicene phase on Ag(111) as well as extended defects. Using force spectroscopy, we directly quantify the atomic buckling of these phases within 0.1-Å precision, obtaining corrugations in the 0.8- to 1.1-Å range. The derived band structures further confirm the absence of Dirac cones in any of the silicene phases due to the strong Ag-Si hybridization. Our method paves the way for future atomic-scale analysis of the interplay between structural and electronic properties in other emerging 2D Xenes.
Collapse
|
42
|
Grazianetti C, Molle A. Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology. RESEARCH 2019; 2019:8494606. [PMID: 31912047 PMCID: PMC6944516 DOI: 10.34133/2019/8494606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/21/2019] [Indexed: 11/06/2022]
Abstract
Two-dimensional materials are today a solid reality in condensed matter physics due to the disruptive discoveries about graphene. The class of the X-enes, namely, graphene-like single element artificial crystals, is quickly emerging driven by the high-momentum generated by silicene. Silicene, in addition to the graphene properties, shows up incidentally at the end of Moore's law debate in the electronic era. Indeed, silicene occurs as the crafted shrunk version of silicon long yearned by device manufacturers to improve the performances of their chips. Despite the periodic table kinship with graphene, silicene and the X-enes must deal with the twofold problem of their metastable nature, i.e., the stabilization on a substrate and out of vacuum environment. Synthesis on different substrates and deep characterization through electronic and optical techniques of silicene in the early days have been now following by the tentative steps towards reliable integration of silicene into devices. Here, we review three paradigmatic cases of silicene grown by molecular beam epitaxy showing three different possible applications, aiming at extending the exploitation of silicene out of the nanoelectronics field and thus keeping silicon a key player in nanotechnology, just in a thinner fashion.
Collapse
Affiliation(s)
- Carlo Grazianetti
- CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Alessandro Molle
- CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| |
Collapse
|
43
|
Li H, Ruan S, Zeng YJ. Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900065. [PMID: 31069896 DOI: 10.1002/adma.201900065] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Indexed: 05/22/2023]
Abstract
2D van der Waals (vdW) magnets, which present intrinsic ferromagnetic/antiferromagnetic ground states at finite temperatures down to atomic-layer thicknesses, open a new horizon in materials science and enable the potential development of new spin-related applications. The layered structure of vdW magnets facilitates their atomic-layer cleavability and magnetic anisotropy, which counteracts spin fluctuations, thereby providing an ideal platform for theoretically and experimentally exploring magnetic phase transitions in the 2D limit. With reduced dimensions, the susceptibility of 2D magnets to a large variety of external stimuli also makes them more promising than their bulk counterpart in various device applications. Here, the current status of characterization and tuning of the magnetic properties of 2D vdW magnets, particularly the atomic-layer thickness, is presented. Various state-of-the-art optical and electrical techniques have been applied to reveal the magnetic states of 2D vdW magnets. Other emerging 2D vdW magnets and future perspectives on the stacking strategy are also given; it is believed that they will excite more intensive research and provide unprecedented opportunities in the field of spintronics.
Collapse
Affiliation(s)
- Hui Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shuangchen Ruan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Jia Zeng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
44
|
Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Understanding the Thermal Treatment Effect of Two-Dimensional Siloxene Sheets and the Origin of Superior Electrochemical Energy Storage Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:624-633. [PMID: 30474949 DOI: 10.1021/acsami.8b15323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional siloxene sheets are an emerging class of materials with an eclectic range of potential applications including electrochemical energy conversion and storage sectors. Here, we demonstrated the dehydrogenation/dehydroxylation of siloxene sheets by thermal annealing at high temperature (HT) and investigated their supercapacitive performances using ionic liquid electrolyte. The X-ray diffraction analysis, spectroscopic (Fourier transform infrared, laser Raman, and X-ray photoelectron spectroscopy) studies, and morphological analysis of HT-siloxene revealed the removal of functional groups at the edges/basal planes of siloxene, and preservation of oxygen-interconnected Si6 rings with sheet-like structures. The HT-siloxene symmetric supercapacitor (SSC) operates over a wide potential window (0-3.0 V), delivers a high specific capacitance (3.45 mF cm-2), high energy density of about 15.53 mJ cm-2 (almost 2-fold higher than that of the as-prepared siloxene SSC), and low equivalent series resistance (compared to reported silicon-based SSCs) with excellent rate capability and long cycle life over 10 000 cycles.
Collapse
|
45
|
Mohamed MA, Abd-Elsalam KA. Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:95-108. [DOI: 10.1007/978-3-030-16439-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Parfenov OE, Averyanov DV, Tokmachev AM, Karateev IA, Taldenkov AN, Kondratev OA, Storchak VG. Interface-Induced Anomalous Hall Conductivity in a Confined Metal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35589-35598. [PMID: 30247015 DOI: 10.1021/acsami.8b10962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mature silicon technological platform is actively explored for spintronic applications. Metal silicides are an integral part of the Si technology used as interconnects, gate electrodes, and diffusion barriers; their epitaxial integration with Si results in premier contacts. Recent studies highlight the exceptional role of electronic discontinuities at interfaces in the spin-dependent transport properties. Here, we report a new type of Hall conductivity driven by sharp interfaces of Eu silicide, an antiferromagnetic metal, sandwiched between two insulators - Si and SiO x. Quasi-ballistic transport probes spin-orbit coupling at the interfaces, in particular, charge-spin interconversion. Transverse magnetic field results in anomalous Hall effect signals of an unusual line shape. The interplay between opposite-sign signals from the two interfaces allows efficient control over the magnitude and sign of the overall effect. Selective engineering of interfaces singles out a particular spin signal. The two-channel nature of the effect and its high tunability offer new functional possibilities for future spintronic devices.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| |
Collapse
|
47
|
Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D. Silicene, silicene derivatives, and their device applications. Chem Soc Rev 2018; 47:6370-6387. [PMID: 30065980 DOI: 10.1039/c8cs00338f] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silicene, the ultimate scaling of a silicon atomic sheet in a buckled honeycomb lattice, represents a monoelemental class of two-dimensional (2D) materials similar to graphene but with unique potential for a host of exotic electronic properties. Nonetheless, there is a lack of experimental studies largely due to the interplay between material degradation and process portability issues. This review highlights the state-of-the-art experimental progress and future opportunities in the synthesis, characterization, stabilization, processing and experimental device examples of monolayer silicene and its derivatives. The electrostatic characteristics of the Ag-removal silicene field-effect transistor exhibit ambipolar charge transport, corroborating with theoretical predictions on Dirac fermions and Dirac cone in the band structure. The electronic structure of silicene is expected to be sensitive to substrate interaction, surface chemistry, and spin-orbit coupling, holding great promise for a variety of novel applications, such as topological bits, quantum sensing, and energy devices. Moreover, the unique allotropic affinity of silicene with single-crystalline bulk silicon suggests a more direct path for the integration with or revolution to ubiquitous semiconductor technology. Both the materials and process aspects of silicene research also provide transferable knowledge to other Xenes like stanene, germanene, phosphorene, and so forth.
Collapse
Affiliation(s)
- Alessandro Molle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Microelettronica e Microsistemi (IMM), unit of Agrate Brianza, via C. Olivetti 2, 20864 Agrate Brianza, MB, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Averyanov DV, Sokolov IS, Tokmachev AM, Parfenov OE, Karateev IA, Taldenkov AN, Storchak VG. High-Temperature Magnetism in Graphene Induced by Proximity to EuO. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20767-20774. [PMID: 29806934 DOI: 10.1021/acsami.8b04289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Addition of magnetism to spectacular properties of graphene may lead to novel topological states and design of spin logic devices enjoying low power consumption. A significant progress is made in defect-induced magnetism in graphene-selective elimination of p z orbitals (by vacancies or adatoms) at triangular sublattices tailors graphene magnetism. Proximity to a magnetic insulator is a less invasive way, which is being actively explored now. Integration of graphene with the ferromagnetic semiconductor EuO has much to offer, especially in terms of proximity-induced spin-orbit interactions. Here, we synthesize films of EuO on graphene using reactive molecular beam epitaxy. Their quality is attested by electron and X-ray diffraction, cross-sectional electron microscopy, and Raman and magnetization measurements. Studies of electron transport reveal a magnetic transition at TC* ≈ 220 K, well above the Curie temperature 69 K of EuO. Up to TC*, the dependence R xy( B) is strongly nonlinear, suggesting the presence of the anomalous Hall effect. The role of synthesis conditions is highlighted by studies of an overdoped structure. The results justify the use of the EuO/graphene system in spintronics.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Igor A Karateev
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute" , Kurchatov Sq. 1 , Moscow 123182 , Russia
| |
Collapse
|