1
|
Vahdat-Lasemi F, Farhoudi L, Hosseinikhah SM, Santos RD, Sahebkar A. Angiopoietin-like protein inhibitors: Promising agents for the treatment of familial hypercholesterolemia and atherogenic dyslipidemia. Atherosclerosis 2025; 405:119235. [PMID: 40344904 DOI: 10.1016/j.atherosclerosis.2025.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIMS This review examines the physiological functions of Angiopoietin-like proteins (ANGPTLs) in lipid metabolism and the epidemiology of atherosclerotic cardiovascular disease (ASCVD), while discussing their potential as therapies for dyslipidemias. METHODS A review of contemporary literature on ANGPTLs was conducted. RESULTS ANGPTLs comprise eight secreted proteins that share structural similarities with the angiopoietin family and serve as key regulators of various physiological and biochemical functions. Notably, ANGPTL3, ANGPTL4, and ANGPTL8 act as physiological inhibitors of lipoprotein lipase (LPL), playing a crucial role in lipoprotein and triglyceride metabolism in response to the body's nutritional status. A deficiency in these proteins is linked to hypolipidemia, characterized by a decrease in all lipid fractions, and genetic studies indicate a reduced risk of ASCVD in individuals with loss-of-function variants in ANGPTL3 and ANGPTL4. Conversely, elevated levels of ANGPTL3, ANGPTL4, and ANGPTL8 seem to increase the risk of cardiovascular disease. The role of ANGPTLs in regulating lipid metabolism underscores their potential in targeted therapies for managing dyslipidemias and lowering ASCVD risk, particularly in patients with difficult-to-control dyslipidemia phenotypes, such as homozygous Familial Hypercholesterolemia and mixed dyslipidemia. CONCLUSIONS The development of ANGPTL inhibitors could provide an effective strategy for preventing ASCVD.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Cummings BB, Joing MP, Bouchard PR, Milton MN, Moesta PF, Ramanan V, Lane A, Hirman J, Trauger JW, Maratos-Flier E, Voznesensky A, Splawski I, Nimonkar AV, Flaherty MM, Yi BA, Meyers D, Huet F, Sahambi SK, Yates DP, Hom D, Hinder M, Basson CT, O'Donnell C, Siegelman ES, Garrett CE, Lehrer-Graiwer J, Juliano RA, Weiss EJ. Safety and efficacy of a novel ANGPTL4 inhibitory antibody for lipid lowering: results from phase 1 and phase 1b/2a clinical studies. Lancet 2025; 405:1923-1934. [PMID: 40383129 DOI: 10.1016/s0140-6736(25)00825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Genetic studies have established angiopoietin-related protein 4 (ANGPTL4) as a key regulator of triglyceride metabolism and a promising target to reduce atherosclerotic cardiovascular disease (ASCVD) risk beyond traditional risk factors. Human ANGPTL4 loss-of-function shows no adverse consequences and is associated with reduced triglycerides and remnant cholesterol, and a reduced risk of type 2 diabetes and ASCVD. Nonetheless, development of ANGPTL4 inhibitors has been delayed due to adverse findings in ANGPTL4-knockout mice fed a high saturated fat diet, including lipid accumulation in mesenteric lymph nodes, systemic inflammation, adverse clinical signs, and reduced survival. We previously reported the development and preclinical characterisation of MAR001, an ANGPTL4 inhibitory antibody. Here, we report a comprehensive safety assessment of ANGPTL4 inhibition, including novel analysis of genetic ANGPTL4 loss on mesenteric lymph node architecture in humans and two early-phase clinical trials. METHODS MAR001 was evaluated in a first-in-human, randomised, placebo-controlled, single-ascending-dose phase 1 study with three parts in which participants received a single subcutaneous injection of MAR001 or placebo. The study was developed and conducted by Novartis Biomedical Research (Cambridge, MA, USA). Eligible participants enrolled in part 1A were healthy men and women aged between 18 years and 65 years with a bodyweight of at least 50 kg and a BMI of 18-30 kg/m2. Participants in part 1B weighed at least 70 kg and had a BMI of 30-40 kg/m2. Participants in part 1C weighed at least 59 kg and had fasting triglycerides in the range of 200-500 mg/dL. The primary objectives were to assess the safety and tolerability of a single subcutaneous injection of MAR001 up to and including 141 days post-dose and to assess the pharmacokinetics of single-dose subcutaneous administration in healthy participants. MAR001 was subsequently assessed in a randomised, double-blind, placebo-controlled phase 1b/2a study in participants with metabolic dysfunction. The study was done at two sites in Australia. Eligible participants were adults with hypertriglyceridaemia (in the screening range of ≥1·7 mmol/L and ≤5·6 mmol/L; ≥151 mg/dL and ≤496 mg/dL) and a history of type 2 diabetes, or a screening homeostatic model assessment for insulin resistance (HOMA-IR) value greater than 2·2 and abdominal obesity (defined as waist circumference >88 cm for women and >102 cm for men; > 80 cm for Asian women and >90 cm for Asian men). The primary objective was to characterise the safety and tolerability of multiple doses of MAR001 in participants with metabolic dysfunction. The phase 1b/2a study is registered with ClinicalTrials.gov, NCT05896254. FINDINGS We found no evidence of clinical adversity in human germline ANGPTL4 loss-of-function, adding to preclinical support for initiating human studies. Between Nov 20, 2017, and Sept 10, 2019, in the first-in-human, randomised, placebo-controlled, single-ascending-dose phase 1 study, part 1A enrolled 32 healthy participants: six each received 15 mg, 50 mg, 150 mg, or 450 mg of MAR001, and eight received placebo. Part 1B enrolled 12 participants: nine received 450 mg of MAR001 and three received placebo. Part 1C enrolled 12 participants: eight received 450 mg of MAR001 and four received placebo. Between Nov 24, 2013, and July 1, 2024, in the multidose phase 1b/2a randomised, double-blind, placebo-controlled study, 55 participants were randomly assigned to receive subcutaneous injections of placebo (19 participants) or MAR001 at doses of 150 mg (ten participants), 300 mg (nine participants), or 450 mg (17 participants), followed by a 12-week safety follow-up period. MAR001 was safe and generally well tolerated, and we observed no treatment-related systemic inflammatory biomarker elevations or changes in mesenteric lymph node size or inflammation assessed by MRI. MAR001 (450 mg) yielded placebo-adjusted week 12 mean reductions in triglycerides of 52·7% (90% CI -77·0 to -28·3) and in remnant cholesterol of 52·5% (-76·1 to -28·9). INTERPRETATION ANGPTL4 inhibition with MAR001 can safely and effectively reduce circulating triglycerides and remnant cholesterol. The findings of these trials support further research and development of MAR001 as a promising potential lipid-lowering therapy to reduce risk of ASCVD. FUNDING Marea Therapeutics.
Collapse
Affiliation(s)
| | | | - Page R Bouchard
- Marea Therapeutics, San Francisco, CA, USA; Novartis Biomedical Research, Cambridge, MA, USA
| | - Mark N Milton
- Marea Therapeutics, San Francisco, CA, USA; Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Joe Hirman
- Marea Therapeutics, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Douglas Hom
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Evan S Siegelman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
3
|
Wulff AB. Safely lowering triglycerides through ANGPTL4 inhibition. Lancet 2025; 405:1885-1887. [PMID: 40383130 DOI: 10.1016/s0140-6736(25)00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark.
| |
Collapse
|
4
|
Wen Y, Wang Q. Cardiac endothelial cells and cardiomyocytes alter their communication properties in diabetic mice. Biol Res 2025; 58:23. [PMID: 40296165 PMCID: PMC12036212 DOI: 10.1186/s40659-025-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE We aimed to explore the heterogeneities and communication properties of cardiac CMs and ECs in diabetes. METHODS GSE213337 dataset was retrieved from NCBI Gene Expression Omnibus, containing the single-cell RNA sequencing data of hearts from the control and streptozotocin-induced diabetic mice. Cell cluster analysis was performed to identify the cell atlas. Data of CMs and ECs were extracted individually for re-cluster analysis, functional enrichment analysis and trajectory analysis. Cell communication analysis was conducted to explore the altered signals and significant ligand-receptor interactions. RESULTS Eleven cell types were identified in the heart tissue. CMs were re-clustered into four subclusters, and cluster 4 was dominant in diabetic condition and enriched in cellular energy metabolism processes. ECs were re-clustered into six subclusters, and clusters 2, 4 and 5 were dominant in the diabetic condition and mainly enriched in cellular energy metabolism and lipid transport processes. The cellular communication network was altered in the diabetic heart. ECs dominated the overall signaling and notably increased the ANGPTL and SEMA4 signals in the diabetic heart. Four significant ligand-receptor pairs implicating the two signals contributed to the communication between ECs and other cell types, including Angptl1-(Itga1 + Itgb1), Angptl4-Cdh5, Angptl4-Sdc3, and Sema4a-(Nrp + Plxna2). The ligand Angptl4 engaged in ECs-CMs communication in a paracrine manner. CONCLUSION Single-cell sequencing analysis revealed heterogeneities of ECs and CMs in diabetes, Angptl4-Cdh5 and Angptl4-Sdc3 were involved in the communication between ECs and CMs in diabetes.
Collapse
Affiliation(s)
- Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xian-tai street, 130033, Changchun, JiLin, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xian-tai street, 130033, Changchun, JiLin, China.
| |
Collapse
|
5
|
Wulff AB, Nordestgaard BG. Genetics of remnant cholesterol. Curr Opin Lipidol 2025:00041433-990000000-00119. [PMID: 40277396 DOI: 10.1097/mol.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
PURPOSE OF REVIEW Remnant cholesterol is receiving increasing attention as a target to reduce residual atherosclerotic cardiovascular disease (ASCVD) risk in individuals already treated with statins. New therapeutic options as antisense oligonucleotides, small interfering RNA, and monoclonal antibodies allow specific targeting of genes and proteins to counter pathological pathways promoted by these genes. Identifying genetic determinants of remnant cholesterol and relating these to risk of ASCVD is thus an appealing path to identifying and evaluating new and existing drug targets. RECENT FINDINGS Human genetic epidemiology has identified several genetic variants in genes involved in lipoprotein metabolism with effect on plasma concentrations of remnant cholesterol. Lipoprotein lipase (LPL) is central to the metabolism of remnant lipoproteins and plasma concentrations of remnant cholesterol, and several genes, including APOC3, ANGPTL3 and ANGPTL4, whose gene products regulate activity of LPL, are important determinants of remnant cholesterol. SUMMARY Current opinion is that remnant cholesterol is a likely causal factor in the development of ASCVD. Human genetic studies have identified several genes, many involved in LPL function, affecting remnant cholesterol concentrations, some of which are already used as therapeutic targets, and others which are subject to investigation of their remnant cholesterol and triglyceride-lowering effect in clinical trials.
Collapse
Affiliation(s)
- Anders B Wulff
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Gagnon E, Gill D, Chabot D, Cronjé HT, Yuan S, Brennan S, Thériault S, Burgess S, Arsenault BJ, Dib MJ. Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e004933. [PMID: 40052268 PMCID: PMC7617573 DOI: 10.1161/circgen.124.004933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Therapies targeting the LPL (lipoprotein lipase) pathway are under development for cardiometabolic disease. Insights into their efficacy-both alone and in combination with existing lipid-lowering therapies-modes of action, and safety of these agents are essential to inform clinical development. Using Mendelian randomization, we aimed to (1) evaluate efficacy, (2) explore shared mechanisms, (3) assess additive effects with approved lipid-lowering drugs, and (4) identify secondary indications and potential adverse effects. METHODS We selected triglyceride-lowering genetic variants located in the genes encoding ANGPTL3 (angiopoietin-like 3), ANGPTL4 (angiopoietin-like 4), APOC3 (apolipoprotein C3), and LPL and conducted drug target Mendelian randomization on primary outcomes including coronary artery disease and type 2 diabetes, and secondary outcomes, including apolipoprotein B, waist-to-hip ratio, body mass index, and 233 metabolic biomarkers. We conducted interaction Mendelian randomization analyses in 488 139 UK Biobank participants to test the effect of combination therapy targeting the LPL and LDLR (low-density lipoprotein receptor) pathways. Finally, we investigated potential secondary indications and adverse effects by leveraging genetic association data on 1204 disease end points. RESULTS Genetically predicted triglyceride lowering through the perturbation of LPL pathway activation targets ANGPTL4, APOC3, and LPL was associated with a lower risk of coronary artery disease and type 2 diabetes and lower apolipoprotein B. Genetically predicted triglyceride lowering through ANGPTL4 was associated with a lower waist-to-hip ratio, suggestive of a favorable body fat distribution. There was no evidence of a multiplicative interaction between genetically proxied perturbation of ANGPTL4, APOC3, and LPL and that of HMGCR (HMG-CoA reductase) and PCSK9 (proprotein convertase subtilisin/kexin type 9) on coronary artery disease and type 2 diabetes, consistent with additive effects. Finally, associations of genetically predicted LPL pathway targeting were supportive of the broad safety of these targets. CONCLUSIONS Our findings provide genetic evidence supporting the efficacy and safety of LPL pathway activation therapies for the prevention of coronary artery disease and type 2 diabetes, alone or in combination with statins or PCSK9 inhibitors.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), Canada
| | - Dipender Gill
- Sequoia Genetics LTD., Translation & Innovation Hub, 84 Wood Lane, London, England
| | - Dominique Chabot
- Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - Héléne T. Cronjé
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Denmark
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Brennan
- Department of Neurology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sébastien Thériault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benoit J. Arsenault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - Marie-Joe Dib
- Cardiovascular Division, Perelman School for Advanced Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
7
|
Gagnon E, Arsenault BJ. Leveraging drug-target Mendelian randomization for tailored lipoprotein-lipid lowering. Curr Opin Lipidol 2025; 36:71-77. [PMID: 39973804 DOI: 10.1097/mol.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW The study of naturally occurring genetic variation in human populations has laid the foundation for proprotein converts subtilisin/kexin type 9 inhibitors, and more recently new classes of lipid-lowering drugs such as lipoprotein(a) inhibitors and lipoprotein lipase pathway activators. These emerging therapies lower plasma lipoprotein-lipid levels that are not adequately managed by traditional low-density lipoprotein (LDL) cholesterol-lowering medications. By targeting different risk factors, these therapies could help manage the important residual cardiovascular risk of LDL cholesterol medications. RECENT FINDINGS We review the latest insights into the pharmacological and genetic modulation of these new therapeutic targets. We highlight that the drugs remarkably recapitulate the lipid effects observed in genetic studies. In addition to lowering lipoprotein-lipid levels, robust genetic evidence support that these drugs may prevent cardiometabolic outcomes. SUMMARY Emerging lipid-lowering therapies could launch a new era for preventive medicine in which treatments are optimally tailored to patient's lipoprotein-lipid profiles.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Qi Y, Jiang H, Lun Y, Gang Q, Shen S, Zhang H, Liu M, Wang Y, Zhang J. Protein Drug Targets for Abdominal Aortic Aneurysm and Proteomic Associations Between Modifiable Risk Factors and Abdominal Aortic Aneurysm. J Am Heart Assoc 2025; 14:e037802. [PMID: 40008516 DOI: 10.1161/jaha.124.037802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a severe aortic disease for which no pharmacological interventions have yet been developed. This investigation focused on identifying protein-based therapeutic targets and assessing how proteins mediate the interplay between modifiable risk factors and AAA development. METHODS Causal inferences between plasma proteins and AAA were drawn using 2-sample Mendelian randomization, followed by comprehensive sensitivity testing, colocalization, and replication efforts. Further analyses included database interrogation, single-cell RNA data analysis, enrichment analysis, protein-protein interaction networks, and immunohistochemistry to map the tissue-specific expression of these proteins, their expression within AAA tissues, and their biological roles. Mediation Mendelian randomization was employed to evaluate the mediating effects of AAA-related proteins on the associations between AAA and 3 risk factors: hypertension, smoking, and obesity. RESULTS A total of 43 proteins were identified as having causal links to AAA. Colocalization analysis pinpointed 13 proteins with strong evidence of colocalization with AAA. Of these, the causal involvement of 10 proteins was substantiated by external validation data. Consistent evidence for PCSK9 (proprotein convertase subtilisin/kexin type 9), IL6R (interleukin-6R), ECM1 (extracellular matrix protein 1), and ANGPTL4 (angiopoietin-related protein 4) was further validated through tissue immunohistochemistry and blood data. Moreover, Mendelian randomization analysis identified 10 proteins as mediators of the influence of hypertension, smoking, and obesity on AAA development. CONCLUSIONS This analysis identifies 4 proteins (PCSK9, IL6R, ECM1, and ANGPTL4) as high-priority therapeutic targets for AAA and emphasizes the intermediary role of plasma proteins in linking hypertension, smoking, obesity, and AAA. Further investigations are needed to clarify the specific roles of these proteins in AAA pathology.
Collapse
Affiliation(s)
- Yao Qi
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Han Jiang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Qingwei Gang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Shikai Shen
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Han Zhang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Mingyu Liu
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Yixian Wang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| |
Collapse
|
9
|
Cui G, Liu W, Sun X, Bai Y, Ding M, Zhao N, Guo J, Qu D, Wang S, Qin L, Yang Y. RNA-seq shows Angiopoietin-like 4 promotes hepatocellular carcinoma progression by inducing M2 polarization of tumor-associated macrophages. Int J Biol Macromol 2025; 287:138523. [PMID: 39653221 DOI: 10.1016/j.ijbiomac.2024.138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a particularly aggressive form of cancer, characterized by its rapid progression and a complex interplay with the surrounding immune cellular environment. The primary objective of this study was to comprehensively investigate the role of ANGPTL4 in the context of HCC, utilizing RNA sequencing (RNA-seq) techniques to explore its impact on the M2 polarization of tumor-associated macrophages (TAM) and to uncover potential mechanisms driving HCC progression. To achieve this, we performed a transcriptome analysis of HCC cell lines, alongside cells obtained after co-culturing these lines with macrophages. By comparing gene expression profiles between the experimental groups exposed to ANGPTL4 and control groups, we aimed to identify specific molecular pathways associated with ANGPTL4's function. In addition to gene expression analysis, we employed flow cytometry to assess the polarization status of TAM. Furthermore, we utilized immunohistochemistry to evaluate the distribution of macrophages within HCC tissues and to quantify the expression levels of M2 macrophage markers. The results derived from RNA-seq analysis were particularly revealing; treatment with ANGPTL4 led to a significant upregulation of genes linked to M2 polarization, notably including CD206 and Arg1. In subsequent experimental observations, it became evident that ANGPTL4 not only facilitated the M2 polarization of macrophages but also enhanced the proliferation and migratory capacity of HCC cells through the upregulation of these same cytokines.
Collapse
Affiliation(s)
- Guanghua Cui
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Xiaoke Sun
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yun Bai
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Meijuan Ding
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Ning Zhao
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Jialu Guo
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Di Qu
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Song Wang
- Department of Oncology, Mudanjiang Oncology Hospital, Mudanjiang 157041, China
| | - Luyao Qin
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yu Yang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Srivastava SP, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L, Rajendran BK, Setia O, Aryal B, Kanasaki K, Koya D, Inoki K, Dardik A, Bell T, Fernández-Hernando C, Shulman GI, Goodwin JE. Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease. SCIENCE ADVANCES 2024; 10:eadn6068. [PMID: 39630889 PMCID: PMC11616692 DOI: 10.1126/sciadv.adn6068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Angiopoietin-like 4 (ANGPTL4), a key protein involved in lipoprotein metabolism, has diverse effects. There is an association between Angptl4 and diabetic kidney disease; however, this association has not been well investigated. We show that both podocyte- and tubule-specific ANGPTL4 are crucial fibrogenic molecules in diabetes. Diabetes accelerates the fibrogenic phenotype in control mice but not in ANGPTL4 mutant mice. The protective effect observed in ANGPTL4 mutant mice is correlated with a reduction in stimulator of interferon genes pathway activation, expression of pro-inflammatory cytokines, reduced epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition, lessened mitochondrial damage, and increased fatty acid oxidation. Mechanistically, we demonstrate that podocyte- or tubule-secreted Angptl4 interacts with Integrin β1 and influences the association between dipeptidyl-4 with Integrin β1. We demonstrate the utility of a targeted pharmacologic therapy that specifically inhibits Angptl4 gene expression in the kidneys and protects diabetic kidneys from proteinuria and fibrosis. Together, these data demonstrate that podocyte- and tubule-derived Angptl4 is fibrogenic in diabetic kidneys.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Rachel Shenoi
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Myshal Morris
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Begoña Lainez-Mas
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ocean Setia
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | | | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Ling C, Vavakova M, Ahmad Mir B, Säll J, Perfilyev A, Martin M, Jansson PA, Davegårdh C, Asplund O, Hansson O, Vaag A, Nilsson E. Multiomics profiling of DNA methylation, microRNA, and mRNA in skeletal muscle from monozygotic twin pairs discordant for type 2 diabetes identifies dysregulated genes controlling metabolism. BMC Med 2024; 22:572. [PMID: 39623445 PMCID: PMC11613913 DOI: 10.1186/s12916-024-03789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND A large proportion of skeletal muscle insulin resistance in type 2 diabetes (T2D) is caused by environmental factors. METHODS By applying multiomics mRNA, microRNA (miRNA), and DNA methylation platforms in biopsies from 20 monozygotic twin pairs discordant for T2D, we aimed to delineate the epigenetic and transcriptional machinery underlying non-genetic muscle insulin resistance in T2D. RESULTS Using gene set enrichment analysis (GSEA), we found decreased mRNA expression of genes involved in extracellular matrix organization, branched-chain amino acid catabolism, metabolism of vitamins and cofactors, lipid metabolism, muscle contraction, signaling by receptor tyrosine kinases pathways, and translocation of glucose transporter 4 (GLUT4) to the plasma membrane in muscle from twins with T2D. Differential expression levels of one or more predicted target relevant miRNA(s) were identified for approximately 35% of the dysregulated GSEA pathways. These include miRNAs with a significant overrepresentation of targets involved in GLUT4 translocation (miR-4643 and miR-548z), signaling by receptor tyrosine kinases pathways (miR-607), and muscle contraction (miR-4658). Acquired DNA methylation changes in skeletal muscle were quantitatively small in twins with T2D compared with the co-twins without T2D. Key methylation and expression results were validated in muscle, myotubes, and/or myoblasts from unrelated subjects with T2D and controls. Finally, mimicking T2D-associated changes by overexpressing miR-548 and miR-607 in cultured myotubes decreased expression of target genes, GLUT4 and FGFR4, respectively, and impaired insulin-stimulated phosphorylation of Akt (Ser473) and TBC1D4. CONCLUSIONS Together, we show that T2D is associated with non- and epigenetically determined differential transcriptional regulation of pathways regulating skeletal muscle metabolism and contraction.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.
| | - Magdalena Vavakova
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bilal Ahmad Mir
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Melina Martin
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Bruna Straket 16, Level 2/3, Gothenburg, 413 45, Sweden
| | - Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Olof Asplund
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
- Department of Endocrinology, Scania University Hospital, Malmö, 205 02, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| |
Collapse
|
12
|
Wang Y, Li K, Yuan S, Yu C, Yin R, Wang D, Xu Y, Zhang L, Wei L, Cheng Y, Mao L, Zhao D, Yang L. Angiopoietin-like 4 is a potential biomarker for diabetic kidney disease in type 2 diabetes patients. J Diabetes Investig 2024; 15:1763-1772. [PMID: 39264678 PMCID: PMC11615698 DOI: 10.1111/jdi.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS/INTRODUCTION The association between serum angiopoietin-like 4 (ANGPTL4) levels and the severity of diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus remains unclear. METHODS A total of 1,115 type 2 diabetes mellitus patients were analyzed in this cross-sectional study. DKD index included DKD stages defined by estimated glomerular filtration rate, the albuminuria grades and DKD risk management grades. Serum levels of ANGPTL4 and other biomarkers were detected. Multivariable-adjusted linear and logistic analyses were used to study the association between ANGPTL4 and DKD. The protein levels of ANGPTL4 were assessed in the kidney. Renal tubular cells were stimulated with glucose to study ANGPTL4 expression. RESULTS Compared with the participants in the third or fourth quantile of ANGPTL4, those in the first or second quantile of ANGPTL4 were younger, with lower glycated hemoglobin, triglycerides and urinary albumin creatinine ratio (all P < 0.05). There was a negative nonlinear relationship between ANGPTL4 and estimated glomerular filtration rate in type 2 diabetes mellitus patients. One standard deviation increased serum ANGPTL4 levels, the odds ratio of having DKD was 1.40 (95% confidence interval 1.08-1.80). The mediation analysis showed that triglycerides did not mediate the association between ANGPTL4 and DKD. Furthermore, ANGPTL4 could be the strongest among multiple panels of biomarkers in its association of DKD. Compared with mice at 8 weeks-of-age, db/db mice at 18 weeks-of-age had increased ANGPTL4 expression in glomeruli and tubular segments. In vitro, glucose could stimulate ANGPTL4 expression in tubular cells in a dose-dependent manner. CONCLUSIONS ANGPTL4 could be a potential marker and therapeutic target for DKD treatment.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Kun Li
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Shasha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Caiguo Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Di Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Yongsong Xu
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Lijie Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Lingling Wei
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Yanan Cheng
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Lin Mao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Kuo CH, Wang SH, Juan HC, Chen SC, Kuo CH, Kuo HC, Lin SY, Li HY. Angiopoietin-like protein 4 induces growth hormone variant secretion and aggravates insulin resistance during pregnancy, linking obesity to gestational diabetes mellitus. Biofactors 2024; 50:1176-1191. [PMID: 38760159 DOI: 10.1002/biof.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/19/2024]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a secretory glycoprotein involved in regulating glucose homeostasis in non-pregnant subjects. However, its role in glucose metabolism during pregnancy and the pathophysiology of gestational diabetes mellitus (GDM) remains elusive. Thus, this study aimed to clarify the relationship between ANGPTL4 and GDM and investigate the pathophysiology of placental ANGPTL4 in glucose metabolism. We investigated this issue using blood and placenta samples in 957 pregnant women, the human 3A-sub-E trophoblast cell line, and the L6 skeletal muscle cell line. We found that ANGPTL4 expression in the placenta was higher in obese pregnant women than in lean controls. Palmitic acid significantly induced ANGPTL4 expression in trophoblast cells in a dose-response manner. ANGPTL4 overexpression in trophoblast cells resulted in endoplasmic reticulum (ER) stress, which stimulated the expression and secretion of growth hormone-variant (GH2) but not human placental lactogen. In L6 skeletal muscle cells, soluble ANGPTL4 suppressed insulin-mediated glucose uptake through the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases 1/2 (ERK 1/2) pathways. In pregnant women, plasma ANGPTL4 concentrations in the first trimester predicted the incidence of GDM and were positively associated with BMI, plasma triglyceride, and plasma GH2 in the first trimester. However, they were negatively associated with insulin sensitivity index ISI0,120 in the second trimester. Overall, placental ANGPTL4 is induced by obesity and is involved in the pathophysiology of GDM via the induction of ER stress and GH2 secretion. Soluble ANGPTL4 can lead to insulin resistance in skeletal muscle cells and is an early biomarker for predicting GDM.
Collapse
Affiliation(s)
- Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
15
|
DeForest N, Wang Y, Zhu Z, Dron JS, Koesterer R, Natarajan P, Flannick J, Amariuta T, Peloso GM, Majithia AR. Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy. Nat Commun 2024; 15:8068. [PMID: 39277575 PMCID: PMC11401929 DOI: 10.1038/s41467-024-52105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Insulin resistance causes multiple epidemic metabolic diseases, including type 2 diabetes, cardiovascular disease, and fatty liver, but is not routinely measured in epidemiological studies. To discover novel insulin resistance genes in the general population, we conducted genome-wide association studies in 382,129 individuals for triglyceride to HDL-cholesterol ratio (TG/HDL), a surrogate marker of insulin resistance calculable from commonly measured serum lipid profiles. We identified 251 independent loci, of which 62 were more strongly associated with TG/HDL compared to TG or HDL alone, suggesting them as insulin resistance loci. Candidate causal genes at these loci were prioritized by fine mapping with directions-of-effect and tissue specificity annotated through analysis of protein coding and expression quantitative trait variation. Directions-of-effect were corroborated in an independent cohort of individuals with directly measured insulin resistance. We highlight two phospholipase encoding genes, PLA2G12A and PLA2G6, which liberate arachidonic acid and improve insulin sensitivity, and VGLL3, a transcriptional co-factor that increases insulin resistance partially through enhanced adiposity. Finally, we implicate the anti-apoptotic gene TNFAIP8 as a sex-dimorphic insulin resistance factor, which acts by increasing visceral adiposity, specifically in females. In summary, our study identifies several candidate modulators of insulin resistance that have the potential to serve as biomarkers and pharmacological targets.
Collapse
Affiliation(s)
- Natalie DeForest
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Wang
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhiyi Zhu
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacqueline S Dron
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Programs in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Koesterer
- Programs in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason Flannick
- Programs in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Amit R Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Gugliucci A. Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies. J Clin Med 2024; 13:5229. [PMID: 39274442 PMCID: PMC11396212 DOI: 10.3390/jcm13175229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis. These remnants increase when lipoprotein lipase (LPL) activity is inhibited. ApoCIII has been thoroughly studied as a chief inhibitor and therapeutic options to curb its effect are available. On top of apoCIII regulation of LPL activity, there is a more precise control of LPL in various tissues, which makes it easier to physiologically divide the TRL burden according to the body's requirements. In general, oxidative tissues such as skeletal and cardiac muscle preferentially take up lipids during fasting. Conversely, LPL activity in adipocytes increases significantly after feeding, while its activity in oxidative tissues decreases concurrently. This perspective addresses the recent improvements in our understanding of circadian LPL regulations and their therapeutic implications. Three major tissue-specific lipolysis regulators have been identified: ANGPTL3, ANGPTL4, and ANGPTL8. Briefly, during the postprandial phase, liver ANGPTL8 acts on ANGPTL3 (which is released continuously from the liver) to inhibit LPL in the heart and muscle through an endocrine mechanism. On the other hand, when fasting, ANGPTL4, which is released by adipocytes, inhibits lipoprotein lipase in adipose tissue in a paracrine manner. ANGPTL3 inhibitors may play a therapeutic role in the treatment of hypertriglyceridemia. Several approaches are under development. We look forward to future studies to clarify (a) the nature of hormonal and nutritional factors that determine ANGPTL3, 4, and 8 activities, along with what long-term impacts may be expected if their regulation is impaired pharmacologically; (b) the understanding of the quantitative hierarchy and interaction of the regulatory actions of apoCIII, apoAV, and ANGPTL on LPL activity; (c) strategies for the safe and proper treatment of postprandial lipemia; and (d) the effect of fructose restriction on ANGPTL3, ANGPTL4, and ANGPTL8.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
17
|
Song J, Gao N, Chen Z, Xu G, Kong M, Wei D, Sun Q, Dong A. Shared genetic etiology of vessel diseases: A genome-wide multi-traits association analysis. Thromb Res 2024; 241:109102. [PMID: 39059088 DOI: 10.1016/j.thromres.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The comorbidity among vascular diseases has been widely reported, however, the contribution of shared genetic components remains ambiguous. METHODS Based on genome-wide association study summary statistics, we employed statistical genetics methodologies to explore the shared genetic basis of eight vascular diseases: coronary artery disease, abdominal aortic aneurysm, ischemic stroke, peripheral artery disease, thoracic aortic aneurysm, phlebitis, varicose veins, and venous thromboembolism. We assessed global and local genetic correlations among these disorders by linkage disequilibrium score regression, high-definition likelihood, and local analysis of variant association. Cross-trait analyses conducted with CPASSOC identified pleiotropic variants and loci. Further, biological pathways at the multi-omics level were explored using multimarker analysis of genomic annotation, transcriptome-wide and proteome-wide association studies. Causal associations among the vascular diseases were evaluated by mendelian randomization and latent causal variable to assess vertical pleiotropic effects. RESULTS We found significant global genetic associations in 18 pairs of vascular diseases. Additionally, we discovered 317 unique genomic regions where at least one pair of traits demonstrated significant correlation. Multi-trait association analysis identified 19,361 significant potential pleiotropic variants in 274 independent pleiotropic loci. Multi-trait colocalization analysis revealed 56 colocalized loci in specific disease sets. Gene-based analysis identified 700 potential pleiotropic genes, which were subsequently validated at both transcriptome and protein levels. Gene-set enrichment analysis supports the role of biological pathways such as vessel wall structure, coagulation and lipid transport in vascular disease. Additionally, 7 pairs of vascular diseases have a causal relationship. CONCLUSIONS Our study indicates a shared genetic basis and the presence of common risk genes among vascular diseases. These findings offer novel insights into potential mechanisms underlying the association between vascular diseases, as well as provide guidance for interventions and treatments of multi-vascular conditions.
Collapse
Affiliation(s)
- Jiangwei Song
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Guocong Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minjian Kong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wei
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Mao G, Xu W, Wan L, Wang H, Xu S, Zhang L, Li S, Zhang J, Lai Z, Lan Y, Liu J. Unveiling the bioinformatic genes and their involved regulatory mechanisms in type 2 diabetes combined with osteoarthritis. Front Immunol 2024; 15:1353915. [PMID: 39176085 PMCID: PMC11338775 DOI: 10.3389/fimmu.2024.1353915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Background Type 2 Diabetes Mellitus (T2D) and Osteoarthritis (OA) are both prevalent diseases that significantly impact the health of patients. Increasing evidence suggests that there is a big correlation between T2D and OA, but the molecular mechanisms remain elusive. The aims of this study are to investigate the shared biomarkers and potential molecular mechanisms in T2D combined with OA. Methods T2D and OA-related differentially expressed genes (DEGs) were identified via bioinformatic analysis on Gene Expression Omnibus (GEO) datasets GSE26168 and GSE114007 respectively. Subsequently, extensive target prediction and network analysis were finished with Gene Ontology (GO), protein-protein interaction (PPI), and pathway enrichment with DEGs. The transcription factors (TFs) and miRNAs coupled in co-expressed DEGs involved in T2D and OA were predicted as well. The key genes expressed both in the clinical tissues of T2D and OA were detected with western blot and qRT-PCR assay. Finally, the most promising candidate compounds were predicted with the Drug-Gene Interaction Database (DGIdb) and molecular docking. Results In this study, 209 shared DEGs between T2D and OA were identified. Functional analysis disclosed that these DEGs are predominantly related to ossification, regulation of leukocyte migration, extracellular matrix (ECM) structural constituents, PI3K/AKT, and Wnt signaling pathways. Further analysis via Protein-Protein Interaction (PPI) analysis and validation with external datasets emphasized MMP9 and ANGPTL4 as crucial genes in both T2D and OA. Our findings were validated through qRT-PCR and Western blot analyses, which indicated high expression levels of these pivotal genes in T2D, OA, and T2D combined with OA cases. Additionally, the analysis of Transcription Factors (TFs)-miRNA interactions identified 7 TFs and one miRNA that jointly regulate these important genes. The Receiver Operating characteristic (ROC) analysis demonstrated the significant diagnostic potential of MMP9 and ANGPTL4.Moreover, we identified raloxifene, ezetimibe, and S-3304 as promising agents for patients with both T2D and OA. Conclusion This study uncovers the shared signaling pathways, biomarkers, potential therapeutics, and diagnostic models for individuals suffering from both T2D and OA. These findings not only present novel perspectives on the complex interplay between T2D and OA but also hold significant promise for improving the clinical management and prognosis of patients with this concurrent condition.
Collapse
Affiliation(s)
- Guangming Mao
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Wenhao Xu
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Lingli Wan
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Hongpin Wang
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Shutao Xu
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Liangming Zhang
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Shiyang Li
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
- Department of Pharmacy, Dali University, Dali, China
| | - Jifa Zhang
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Zhongming Lai
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Yuping Lan
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
19
|
Machi JF, Altilio I, Qi Y, Morales AA, Silvestre DH, Hernandez DR, Da Costa-Santos N, Santana AG, Neghabi M, Nategh P, Castro TL, Werneck-de-Castro JP, Ranji M, Evangelista FS, Vazquez-Padron RI, Bernal-Mizrachi E, Rodrigues CO. Endothelial c-Myc knockout disrupts metabolic homeostasis and triggers the development of obesity. Front Cell Dev Biol 2024; 12:1407097. [PMID: 39100099 PMCID: PMC11294153 DOI: 10.3389/fcell.2024.1407097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jacqueline F. Machi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Isabella Altilio
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Yue Qi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alejo A. Morales
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego H. Silvestre
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nicolas Da Costa-Santos
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Aline G. Santana
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Thiago L. Castro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - João P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
20
|
Fan KC, Chen SC, Yen IW, Lin CH, Kuo CH, Lyu YP, Juan HC, Lin MS, Wang SH, Li HY. Plasma angiopoietin-like protein 4 as a novel biomarker predicting 10-year mortality in a community-based population: a longitudinal cohort study. Arch Med Sci 2024; 21:51-59. [PMID: 40190305 PMCID: PMC11969511 DOI: 10.5114/aoms/189504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction Angiopoietin-like protein 4 (ANGPTL4) is a hepatokine implicated in fat metabolism regulation. Its genetic inactivation has been associated with improved glucose homeostasis, while elevated plasma ANGPTL4 levels are observed in diabetic and obese individuals. However, the potential link between ANGPTL4 and diabetes- or obesity-related complications remains uncertain. This study aimed to explore whether plasma ANGPTL4 level could serve as a predictor of cancer mortality, cardiovascular mortality, and all-cause mortality in a community-based cohort. Material and methods A community-based cohort study was conducted, where fasting plasma ANGPTL4 concentrations were measured at baseline, and vital status was ascertained through linkage with the National Health Insurance Research Database in Taiwan. Results During a 10.46-year follow-up period, 29 (2.49%) of the 1163 participants died. Subjects within the highest tertile of plasma ANGPTL4 levels exhibited the lowest survival rate. In unadjusted models, plasma ANGPTL4 significantly predicted all-cause mortality, cancer mortality, and cardiovascular or cancer-related mortality. Upon adjustment for confounders including age, sex, smoking, body mass index (BMI), hypertension, diabetes mellitus (DM), and renal function, each standard deviation increase in plasma ANGPTL4 was associated with HRs of 1.35 (95% CI: 1.01-1.80, p < 0.05) for all-cause mortality, 1.41 (95% CI: 0.94-2.10, p = 0.094) for cancer mortality, and 1.40 (95% CI: 1.02-1.94, p < 0.05) for cardiovascular or cancer-related mortality. Additionally, plasma ANGPTL4 contributed more significantly to predicting cardiovascular or cancer-related mortality and all-cause mortality compared to other predictors, such as sex, smoking, BMI, history of hypertension, history of diabetes, and eGFR. Conclusions Plasma ANGPTL4 emerges as a promising biomarker capable of predicting 10-year mortality and enhancing risk prediction beyond established risk factors.
Collapse
Affiliation(s)
- Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - I-Weng Yen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Pin Lyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
22
|
Gagnon E, Bourgault J, Gobeil É, Thériault S, Arsenault BJ. Impact of loss-of-function in angiopoietin-like 4 on the human phenome. Atherosclerosis 2024; 393:117558. [PMID: 38703417 DOI: 10.1016/j.atherosclerosis.2024.117558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Carriers of the E40K loss-of-function variant in Angiopoietin-like 4 (ANGPTL4), have lower plasma triglyceride levels as well as lower rates of coronary artery disease (CAD) and type 2 diabetes (T2D). These genetic data suggest ANGPTL4 inhibition as a potential therapeutic target for cardiometabolic diseases. However, it is unknown whether the association between E40K and human diseases is due to linkage disequilibrium confounding. The broader impact of genetic ANGPTL4 inhibition is also unknown, raising uncertainties about the safety and validity of this target. METHODS To assess the impact of ANGPLT4 inhibition, we evaluated whether E40K and other loss-of-function variants in ANGPTL4 influenced a wide range of health markers and diseases using 29 publicly available genome-wide association meta-analyses of cardiometabolic traits and diseases, as well as 1589 diseases assessed in electronic health records within FinnGen (n = 309,154). To determine whether these relationships were likely causal, and not driven by other correlated variants, we used the Bayesian fine mapping algorithm CoPheScan. RESULTS The CoPheScan posterior probability of E40K being the causal variant for triglyceride levels was 99.99 %, validating the E40K to proxy lifelong lower activity of ANGPTL4. The E40K variant was associated with lower risk of CAD (odds ratio [OR] = 0.84, 95 % CI = 0.81 to 0.87, p=3.6e-21) and T2D (OR = 0.91, 95 % CI = 0.87 to 0.95, p=2.8e-05) in GWAS meta-analyses, with results replicated in FinnGen. These significant results were also replicated using other rare loss-of-function variants identified through whole exome sequencing in 488,278 participants of the UK Biobank. Using a Mendelian randomization study design, the E40K variant effect on cardiometabolic diseases was concordant with lipoprotein lipase enhancement (r = 0.82), but not hepatic lipase enhancement (r = -0.10), suggesting that ANGPTL4 effects on cardiometabolic diseases are potentially mainly mediated through lipoprotein lipase. After correction for multiple testing, the E40K variant did not significantly increase the risk of any of the 1589 diseases tested in FinnGen. CONCLUSIONS ANGPTL4 inhibition may represent a potentially safe and effective target for cardiometabolic diseases prevention or treatment.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jérome Bourgault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Émilie Gobeil
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Sébastien Thériault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
23
|
Bansal V, Winkelmann BR, Dietrich JW, Boehm BO. Whole-exome sequencing in familial type 2 diabetes identifies an atypical missense variant in the RyR2 gene. Front Endocrinol (Lausanne) 2024; 15:1258982. [PMID: 38444585 PMCID: PMC10913019 DOI: 10.3389/fendo.2024.1258982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Johannes W Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Hospitals, Bochum, Germany
- Diabetes Center Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Center for Rare Endocrine Diseases, Ruhr Center for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, Germany
- Center for Diabetes Technology, Catholic Hospitals Bochum, Bochum, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Chen Y, Du H, Wang X, Li B, Chen X, Yang X, Zhao C, Zhao J. ANGPTL4 May Regulate the Crosstalk Between Intervertebral Disc Degeneration and Type 2 Diabetes Mellitus: A Combined Analysis of Bioinformatics and Rat Models. J Inflamm Res 2023; 16:6361-6384. [PMID: 38161353 PMCID: PMC10757813 DOI: 10.2147/jir.s426439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The crosstalk between intervertebral disc degeneration (IVDD) and type 2 diabetes mellitus (T2DM) has been investigated. However, the common mechanism underlying this phenomenon has not been clearly elucidated. This study aimed to explore the shared gene signatures of IVDD and T2DM. Methods The expression profiles of IVDD (GSE27494) and T2DM (GSE20966) were acquired from the Gene Expression Omnibus database. Five hub genes including ANGPTL4, CCL2, CCN3, THBS2, and INHBA were preliminarily screened. GO (Gene Ontology) enrichment analysis, functional correlation analysis, immune filtration, Transcription factors (TFs)-mRNA-miRNA coregulatory network, and potential drugs prediction were performed following the identification of hub genes. RNA sequencing, in vivo and in vitro experiments on rats were further performed to validate the expression and function of the target gene. Results Five hub genes (ANGPTL4, CCL2, CCN3, THBS2, and INHBA) were identified. GO analysis demonstrated the regulation of the immune system, extracellular matrix (ECM), and SMAD protein signal transduction. There was a strong correlation between hub genes and different functions, including lipid metabolism, mitochondrial function, and ECM degradation. The immune filtration pattern grouped by disease and the expression of hub genes showed significant changes in the immune cell composition. TFs-mRNA-miRNA co-expression networks were constructed. In addition, pepstatin showed great drug-targeting relevance based on potential drugs prediction of hub genes. ANGPTL4, a gene that mediates the inhibition of lipoprotein lipase activity, was eventually determined after hub gene screening, validation by different datasets, RNA sequencing, and experiments. Discussion This study screened five hub genes and ANGPTL4 was eventually determined as a potential target for the regulation of the crosstalk in patients with IVDD and T2DM.
Collapse
Affiliation(s)
- Yan Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Han Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
25
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
26
|
Alnassar N, Hillman C, Fontana BD, Robson SC, Norton WHJ, Parker MO. angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish. Neurobiol Aging 2023; 131:209-221. [PMID: 37690345 DOI: 10.1016/j.neurobiolaging.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK
| | | | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK.
| |
Collapse
|
27
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflamm Res 2023:10.1007/s00011-023-01753-9. [PMID: 37300585 DOI: 10.1007/s00011-023-01753-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) belongs to the angiopoietin-like protein family and mediates the inhibition of lipoprotein lipase activity. Emerging evidence suggests that ANGPTL4 has pleiotropic functions with anti- and pro-inflammatory properties. METHODS A thorough search on PubMed related to ANGPTL4 and inflammation was performed. RESULTS Genetic inactivation of ANGPTL4 can significantly reduce the risk of developing coronary artery disease and diabetes. However, antibodies against ANGPTL4 result in several undesirable effects in mice or monkeys, such as lymphadenopathy and ascites. Based on the research progress on ANGPTL4, we systematically discussed the dual role of ANGPTL4 in inflammation and inflammatory diseases (lung injury, pancreatitis, heart diseases, gastrointestinal diseases, skin diseases, metabolism, periodontitis, and osteolytic diseases). This may be attributed to several factors, including post-translational modification, cleavage and oligomerization, and subcellular localization. CONCLUSION Understanding the potential underlying mechanisms of ANGPTL4 in inflammation in different tissues and diseases will aid in drug discovery and treatment development.
Collapse
Affiliation(s)
- Yuyue Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
29
|
Daniali M, Galer PD, Lewis-Smith D, Parthasarathy S, Kim E, Salvucci DD, Miller JM, Haag S, Helbig I. Enriching representation learning using 53 million patient notes through human phenotype ontology embedding. Artif Intell Med 2023; 139:102523. [PMID: 37100502 PMCID: PMC10782859 DOI: 10.1016/j.artmed.2023.102523] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The Human Phenotype Ontology (HPO) is a dictionary of >15,000 clinical phenotypic terms with defined semantic relationships, developed to standardize phenotypic analysis. Over the last decade, the HPO has been used to accelerate the implementation of precision medicine into clinical practice. In addition, recent research in representation learning, specifically in graph embedding, has led to notable progress in automated prediction via learned features. Here, we present a novel approach to phenotype representation by incorporating phenotypic frequencies based on 53 million full-text health care notes from >1.5 million individuals. We demonstrate the efficacy of our proposed phenotype embedding technique by comparing our work to existing phenotypic similarity-measuring methods. Using phenotype frequencies in our embedding technique, we are able to identify phenotypic similarities that surpass current computational models. Furthermore, our embedding technique exhibits a high degree of agreement with domain experts' judgment. By transforming complex and multidimensional phenotypes from the HPO format into vectors, our proposed method enables efficient representation of these phenotypes for downstream tasks that require deep phenotyping. This is demonstrated in a patient similarity analysis and can further be applied to disease trajectory and risk prediction.
Collapse
Affiliation(s)
- Maryam Daniali
- Department of Computer Science, Drexel University, Philadelphia, PA, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter D Galer
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy Neuro Genetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lewis-Smith
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy Neuro Genetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK; Department of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Shridhar Parthasarathy
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy Neuro Genetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward Kim
- Department of Computer Science, Drexel University, Philadelphia, PA, USA
| | - Dario D Salvucci
- Department of Computer Science, Drexel University, Philadelphia, PA, USA
| | - Jeffrey M Miller
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott Haag
- Department of Computer Science, Drexel University, Philadelphia, PA, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy Neuro Genetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Kim DY, Sung JH. The effects of GPR40 agonists on hair growth are mediated by ANGPTL4. Biomed Pharmacother 2023; 161:114509. [PMID: 37002580 DOI: 10.1016/j.biopha.2023.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
GPR40 is found primarily in pancreatic β cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.
Collapse
Affiliation(s)
- Doo Yeong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
31
|
Gomes D, Sobolewski C, Conzelmann S, Schaer T, Lefai E, Alfaiate D, Tseligka ED, Goossens N, Tapparel C, Negro F, Foti M, Clément S. ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance. Sci Rep 2023; 13:6767. [PMID: 37185283 PMCID: PMC10130097 DOI: 10.1038/s41598-023-33728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.
Collapse
Affiliation(s)
- Diana Gomes
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cyril Sobolewski
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- U1286-INFINITE-Institute for Translational Research in Inflammation, CHU Lille, Inserm, University Lille, 59000, Lille, France
| | - Stéphanie Conzelmann
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tifany Schaer
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Etienne Lefai
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dulce Alfaiate
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Infectious Diseases, Hôpital de la Croix Rousse, Lyon University Hospitals, Lyon, France
| | - Eirini D Tseligka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Goossens
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Michelangelo Foti
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
32
|
Marino S, Akel N, Li S, Cregor M, Jones M, Perez B, Troncoso G, Meeks J, Stewart S, Sato AY, Nookaew I, Bellido T. Reversal of the diabetic bone signature with anabolic therapies in mice. Bone Res 2023; 11:19. [PMID: 37076478 PMCID: PMC10115794 DOI: 10.1038/s41413-023-00261-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
The mechanisms underlying the bone disease induced by diabetes are complex and not fully understood; and antiresorptive agents, the current standard of care, do not restore the weakened bone architecture. Herein, we reveal the diabetic bone signature in mice at the tissue, cell, and transcriptome levels and demonstrate that three FDA-approved bone-anabolic agents correct it. Diabetes decreased bone mineral density (BMD) and bone formation, damaged microarchitecture, increased porosity of cortical bone, and compromised bone strength. Teriparatide (PTH), abaloparatide (ABL), and romosozumab/anti-sclerostin antibody (Scl-Ab) all restored BMD and corrected the deteriorated bone architecture. Mechanistically, PTH and more potently ABL induced similar responses at the tissue and gene signature levels, increasing both formation and resorption with positive balance towards bone gain. In contrast, Scl-Ab increased formation but decreased resorption. All agents restored bone architecture, corrected cortical porosity, and improved mechanical properties of diabetic bone; and ABL and Scl-Ab increased toughness, a fracture resistance index. Remarkably, all agents increased bone strength over the healthy controls even in the presence of severe hyperglycemia. These findings demonstrate the therapeutic value of bone anabolic agents to treat diabetes-induced bone disease and suggest the need for revisiting the approaches for the treatment of bone fragility in diabetes.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Shenyang Li
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meloney Cregor
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meghan Jones
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Betiana Perez
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gaston Troncoso
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jomeeka Meeks
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Scott Stewart
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
33
|
ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Exp Mol Med 2023; 55:426-442. [PMID: 36782020 PMCID: PMC9981608 DOI: 10.1038/s12276-023-00937-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
Atherosclerosis, the leading cause of death, is a vascular disease of chronic inflammation. We recently showed that angiopoietin-like 4 (ANGPTL4) promotes cardiac repair by suppressing pathological inflammation. Given the fundamental contribution of inflammation to atherosclerosis, we assessed the role of ANGPTL4 in the development of atherosclerosis and determined whether ANGPTL4 regulates atherosclerotic plaque stability. We injected ANGPTL4 protein twice a week into atherosclerotic Apoe-/- mice and analyzed the atherosclerotic lesion size, inflammation, and plaque stability. In atherosclerotic mice, ANGPTL4 reduced atherosclerotic plaque size and vascular inflammation. In the atherosclerotic lesions and fibrous caps, the number of α-SMA(+), SM22α(+), and SM-MHC(+) cells was higher, while the number of CD68(+) and Mac2(+) cells was lower in the ANGPTL4 group. Most importantly, the fibrous cap was significantly thicker in the ANGPTL4 group than in the control group. Smooth muscle cells (SMCs) isolated from atherosclerotic aortas showed significantly increased expression of CD68 and Krüppel-like factor 4 (KLF4), a modulator of the vascular SMC phenotype, along with downregulation of α-SMA, and these changes were attenuated by ANGPTL4 treatment. Furthermore, ANGPTL4 reduced TNFα-induced NADPH oxidase 1 (NOX1), a major source of reactive oxygen species, resulting in the attenuation of KLF4-mediated SMC phenotypic changes. We showed that acute myocardial infarction (AMI) patients with higher levels of ANGPTL4 had fewer vascular events than AMI patients with lower levels of ANGPTL4 (p < 0.05). Our results reveal that ANGPTL4 treatment inhibits atherogenesis and suggest that targeting vascular stability and inflammation may serve as a novel therapeutic strategy to prevent and treat atherosclerosis. Even more importantly, ANGPTL4 treatment inhibited the phenotypic changes of SMCs into macrophage-like cells by downregulating NOX1 activation of KLF4, leading to the formation of more stable plaques.
Collapse
|
34
|
Evinacumab, an ANGPTL3 Inhibitor, in the Treatment of Dyslipidemia. J Clin Med 2022; 12:jcm12010168. [PMID: 36614969 PMCID: PMC9821629 DOI: 10.3390/jcm12010168] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder. The level of low-density lipoprotein cholesterol (LDL-C) in patients with homozygous FH can be twice as high as that in patients with heterozygous FH. The inhibition of ANGPTL3 shows an important therapeutic approach in reducing LDL-C and triglycerides (TG) levels and, thus, is a potentially effective strategy in the treatment of FH. Evinacumab is a monoclonal antibody inhibiting circulating ANGPTL3, available under the trade name Evkeeza® for the treatment of homozygous FH. It was reported that evinacumab is effective and safe in patients with homozygous and heterozygous FH, as well as resistant hypercholesterolemia and hypertriglyceridemia. This paper summarizes existing knowledge on the role of ANGPTL3, 4, and 8 proteins in lipoprotein metabolism, the findings from clinical trials with evinacumab, a fully human ANGPTL3 mAb, and the place for this new agent in lipid-lowering therapy.
Collapse
|
35
|
Lewis-Smith D, Parthasarathy S, Xian J, Kaufman MC, Ganesan S, Galer PD, Thomas RH, Helbig I. Computational analysis of neurodevelopmental phenotypes: Harmonization empowers clinical discovery. Hum Mutat 2022; 43:1642-1658. [PMID: 35460582 PMCID: PMC9560951 DOI: 10.1002/humu.24389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Making a specific diagnosis in neurodevelopmental disorders is traditionally based on recognizing clinical features of a distinct syndrome, which guides testing of its possible genetic etiologies. Scalable frameworks for genomic diagnostics, however, have struggled to integrate meaningful measurements of clinical phenotypic features. While standardization has enabled generation and interpretation of genomic data for clinical diagnostics at unprecedented scale, making the equivalent breakthrough for clinical data has proven challenging. However, increasingly clinical features are being recorded using controlled dictionaries with machine readable formats such as the Human Phenotype Ontology (HPO), which greatly facilitates their use in the diagnostic space. Improving the tractability of large-scale clinical information will present new opportunities to inform genomic research and diagnostics from a clinical perspective. Here, we describe novel approaches for computational phenotyping to harmonize clinical features, improve data translation through revising domain-specific dictionaries, quantify phenotypic features, and determine clinical relatedness. We demonstrate how these concepts can be applied to longitudinal phenotypic information, which represents a critical element of developmental disorders and pediatric conditions. Finally, we expand our discussion to clinical data derived from electronic medical records, a largely untapped resource of deep clinical information with distinct strengths and weaknesses.
Collapse
Affiliation(s)
- David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael C. Kaufman
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter D. Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rhys H. Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
37
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
38
|
Zuo Y, Dai L, Li L, Huang Y, Liu X, Liu X, Duan X, Jiang S, Deng GM, Chen H. ANGPTL4 Regulates Psoriasis via Modulating Hyperproliferation and Inflammation of Keratinocytes. Front Pharmacol 2022; 13:850967. [PMID: 35860030 PMCID: PMC9289168 DOI: 10.3389/fphar.2022.850967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Psoriasis is characterized by keratinocyte proliferation and massive inflammatory leukocytes infiltration, affecting 0.14%–1.99% of the world’s population. Our aim was to identify novel potential therapeutic strategies for psoriasis. Methods: Weighted gene co-expression network analysis (WGCNA) was performed to identify gene modules that were closely related to psoriasis based on the GSE30999 dataset, which contained expression data from 85 patients with moderate-to-severe psoriasis. Then, angiopoietin-like 4 (ANGPTL4), one of the most related hub genes, was selected for in vitro and in vivo functional assays. In our experiments, imiquimod (IMQ)-induced psoriasiform dermatitis in mice and human keratinocytes (HaCaT) cells were used to study the potential roles and mechanisms of ANGPTL4 in psoriasis. Results: WGCNA analysis revealed the turquoise module was most correlated with psoriasis, and ANGPTL4 is one of the most related hub genes that significantly upregulated in psoriasis lesions compared with non-lesional skin. Consistent with the bioinformatic analysis, the expression of ANGPTL4 was significantly upregulated in IMQ-induced psoriasiform skin of mice. Exogenous recombinant ANGPLT4 protein treatment could promote the proliferation and induce the expression of inflammatory cytokines in HaCaTs, whereas silencing of ANGPTL4 effectively inhibited these effects. Then we demonstrated that recombinant ANGPTL4 protein exacerbated psoriasiform inflammation and epidermal hyperproliferation in vivo. Mechanismly, extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) pathways were involved in ANGPTL4-mediated regulation of proliferation and inflammation. Conclusion: We found ANGPTL4 was significantly increased in IMQ-induced psoriasiform skin of mice. ANGPTL4 could promote keratinocyte proliferation and inflammatory response via ERK1/2 and STAT3 dependent signaling pathways in psoriasis.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoru Duan
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guo-Min Deng, ; Hongxiang Chen,
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Guo-Min Deng, ; Hongxiang Chen,
| |
Collapse
|
39
|
Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, Olivecrona G, Nilsson SK, Kersten S. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res 2022; 63:100237. [PMID: 35667416 PMCID: PMC9270256 DOI: 10.1016/j.jlr.2022.100237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Elda Kutrolli
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Anne Sadewasser
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | | | - Frank Jaschinski
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Gunilla Olivecrona
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 87, Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
40
|
Li J, Chen Y, Liu Q, Tian Z, Zhang Y. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 2022; 23:287-299. [DOI: 10.1007/s10238-022-00816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|
41
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
42
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3176] [Impact Index Per Article: 1058.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Over the last two decades, evolving discoveries around angiopoietin-like (ANGPTL) proteins, particularly ANGPTL3, ANGPTL4, and ANGPTL8, have generated significant interest in understanding their roles in fatty acid (FA) metabolism. Until recently, exactly how this protein family regulates lipoprotein lipase (LPL) in a tissue-specific manner to control FA partitioning has remained elusive. This review summarizes the latest insights into mechanisms by which ANGPTL3/4/8 proteins regulate postprandial FA partitioning. RECENT FINDINGS Accumulating evidence suggests that ANGPTL8 is an insulin-responsive protein that regulates ANGPTL3 and ANGPTL4 by forming complexes with them to increase or decrease markedly their respective LPL-inhibitory activities. After feeding, when insulin levels are high, ANGPTL3/8 secreted by hepatocytes acts in an endocrine manner to inhibit LPL in skeletal muscle, whereas ANGPTL4/8 secreted by adipocytes acts locally to preserve adipose tissue LPL activity, thus shifting FA toward the fat for storage. Insulin also decreases hepatic secretion of the endogenous ANGPTL3/8 inhibitor, apolipoprotein A5 (ApoA5), to accentuate ANGPTL3/8-mediated LPL inhibition in skeletal muscle. SUMMARY The ANGPTL3/4/8 protein family and ApoA5 play critical roles in directing FA toward adipose tissue postprandially. Selective targeting of these proteins holds significant promise for the treatment of dyslipidemias, metabolic syndrome, and their related comorbidities.
Collapse
Affiliation(s)
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
ALSuhaymi N, Darwish AM, Khattab AEN. Assessment of Two Potential Probiotic Strains As Anti-Obesity Supplements Under High-Fat Feeding Conditions. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09912-w. [PMID: 35088380 DOI: 10.1007/s12602-022-09912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 01/19/2023]
Abstract
Obesity is one of the chronic diseases that increase annually and cause cardiovascular disease, which is the main cause of death worldwide. So, this study aims to evaluate the role of the two potential probiotics: Lactiplantibacillus plantarum Pro1 and Lacticaseibacillus rhamnosus Pro2, isolated from the fermented milk and corn silage as anti-obesity supplements. Seventy-five male BALB/c mice were distributed to five groups (control, obesity, obesity plus L. plantarum (OLP), obesity plus L. rhamnosus (OLR) and obesity plus mixture of two strains (OM)). The body weight, lipid profile, histopathology and enzymes of liver were assessed. RT-PCR was used to determine the expression of CYP7A1, ALTG4, TNFα and ROR genes.The findings show that the obesity group recorded the significant highest value of the body weight, TC, TG, LDL, AST and ALT, while OLP group recorded the significant lowest value. Liver tissue of obesity group has necrosis and fatty changes, while the OLP group was related to the control group. The findings of RT-PCR show non-significant differences between the control group and the OLP group, with significant differences between the control group and the set groups in expression of CYP7A1, ALTG4, TNFα and ROR genes. L. plantarum Pro1 reduced the expression of inflammation genes (TNFα and ROR), and increase the expression of the lipid metabolism genes (CYP7A1, ALTG4) to reduce the inflammatory effects of obesity in the liver, and decrease the cholesterol level in serum. Therefore, L. plantarum Pro1 is useful as anti-obesity supplements and an eliminator of the relevant diseases.
Collapse
Affiliation(s)
- Naif ALSuhaymi
- Department of Emergency Medical Services, College of Health Sciences in AlQunfudah, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Abd El-Nasser Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
45
|
Nolte W, Weikard R, Albrecht E, Hammon HM, Kühn C. Metabogenomic analysis to functionally annotate the regulatory role of long non-coding RNAs in the liver of cows with different nutrient partitioning phenotype. Genomics 2021; 114:202-214. [PMID: 34923089 DOI: 10.1016/j.ygeno.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) hold gene regulatory potential, but require substantial further functional annotation in livestock. Applying two metabogenomic approaches by combining transcriptomic and metabolomic analyses, we aimed to identify lncRNAs with potential regulatory function for divergent nutrient partitioning of lactating crossbred cows and to establish metabogenomic interaction networks comprising metabolites, genes and lncRNAs. Through correlation analysis of lncRNA expression with transcriptomic and metabolomic data, we unraveled lncRNAs that have a putative regulatory role in energy and lipid metabolism, the urea and tricarboxylic acid cycles, and gluconeogenesis. Especially FGF21, which correlated with a plentitude of differentially expressed genes, differentially abundant metabolites, as well as lncRNAs, suggested itself as a key metabolic regulator. Notably, lncRNAs in close physical proximity to coding-genes as well as lncRNAs with natural antisense transcripts appear to perform a fine-tuning function in gene expression involved in metabolic pathways associated with different nutrient partitioning phenotypes.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
46
|
El Hini SH, Mahmoud YZ, Saedii AA, Mahmoud SS, Amin MA, Mahmoud SR, Matta RA. Angiopoietin-like proteins 3, 4 and 8 are linked to cardiovascular function in naïve sub-clinical and overt hypothyroid patients receiving levothyroxine therapy. Endocr Connect 2021; 10:1570-1583. [PMID: 34739390 PMCID: PMC8679937 DOI: 10.1530/ec-21-0398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function. DESIGN AND METHODS The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups. RESULTS Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH. CONCLUSION Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Collapse
Affiliation(s)
- Sahar Hossam El Hini
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yehia Zakaria Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Mohamed Ahmed Amin
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen Riad Mahmoud
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ragaa Abdelshaheed Matta
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
- Correspondence should be addressed to R A Matta:
| |
Collapse
|
47
|
Dai Q, Liu X, He T, Yang C, Jiang J, Fang Y, Fu Z, Yuan Y, Bai S, Qiu T, Yin R, Ding P, Chen J, Li Q. Excipient of paclitaxel induces metabolic dysregulation and unfolded protein response. iScience 2021; 24:103170. [PMID: 34646996 PMCID: PMC8501768 DOI: 10.1016/j.isci.2021.103170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Taxane-based reagents, such as Taxol, Taxotere, and Abraxane, are popular anti-cancer drugs that can differ in their clinical efficacy. This difference is generally attributed to their active pharmaceutical ingredients. Here, we report a serendipitous discovery that Taxol induces metabolic dysregulation and unfolded protein response. Surprisingly, these effects of Taxol are entirely dependent on its excipient, Cremophor EL (CrEL). We show that CrEL promotes aerobic glycolysis and in turn results in drastic upregulation of angiopoietin like 4 (ANGPTL4), a major regulator of human blood lipid profile. Notably, premedication with dexamethasone further enhances the expression of ANGPTL4. Consistently, we find that the amplitude and frequency of increase in triglycerides is more prominent in Taxol-treated patients with breast cancer. In addition, we find that CrEL activates the unfolded protein response pathway to trigger proinflammatory gene expression and caspase/gasdermin E-dependent pyroptosis. Finally, we discuss the implications of these results in anti-cancer therapies. Cremophor EL, the excipient of chemotherapy drug Taxol, is biologically active Cremophor EL promotes aerobic glycolysis in cancer and primary human immune cells Dexamethasone and Cremophor EL may cause dyslipidemia via ANGPTL4 upregulation Cremophor EL promotes the unfolded protein response
Collapse
Affiliation(s)
- Qian Dai
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaolin Liu
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tao He
- Department of Breast Surgery, Clinical Research Center for Breast Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Yang
- Divisions of Bioinformatics & Immunology, Cunde Therapeutics, Chengdu 610093, China
| | - Jinfeng Jiang
- Divisions of Bioinformatics & Immunology, Cunde Therapeutics, Chengdu 610093, China
| | - Yin Fang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhoukai Fu
- Department of Breast Surgery, Clinical Research Center for Breast Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Yuan
- Divisions of Bioinformatics & Immunology, Cunde Therapeutics, Chengdu 610093, China
| | - Shujun Bai
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Rutie Yin
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ping Ding
- Divisions of Bioinformatics & Immunology, Cunde Therapeutics, Chengdu 610093, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Jie Chen
- Department of Breast Surgery, Clinical Research Center for Breast Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Spitler KM, Shetty SK, Cushing EM, Sylvers-Davie KL, Davies BSJ. Chronic high-fat feeding and prolonged fasting in liver-specific ANGPTL4 knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E464-E478. [PMID: 34396783 PMCID: PMC8560380 DOI: 10.1152/ajpendo.00144.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is associated with dyslipidemia, ectopic lipid deposition, and insulin resistance. In mice, the global or adipose-specific loss of function of the protein angiopoietin-like 4 (ANGPTL4) leads to decreased plasma triglyceride levels, enhanced adipose triglyceride uptake, and protection from high-fat diet (HFD)-induced glucose intolerance. ANGPTL4 is also expressed highly in the liver, but the role of liver-derived ANGPTL4 is unclear. The goal of this study was to determine the contribution of hepatocyte ANGPTL4 to triglyceride and glucose homeostasis in mice during a high-fat diet challenge. We generated hepatocyte-specific ANGPTL4 deficient (Angptl4LivKO) mice, fed them a 60% kcal/fat diet (HFD) for 6 mo and assessed triglyceride, liver, and glucose metabolic phenotypes. We also explored the effects of prolonged fasting on Angptl4LivKO mice. The loss of hepatocyte-derived ANGPTL4 led to no major changes in triglyceride partitioning or lipoprotein lipase activity compared with control mice. Interestingly, although there was no difference in fasting plasma triglyceride levels after a 6 h fast, after an 18-h fast, normal chow diet-fed Angptl4LivKO mice had lower triglyceride levels than control mice. On a HFD, Angptl4LivKO mice initially showed no difference in glucose tolerance and insulin sensitivity, but improved glucose tolerance emerged in these mice after 6 mo on HFD. Our data suggest that hepatocyte ANGPTL4 does not directly regulate triglyceride partitioning, but that loss of liver-derived ANGPTL4 may be protective from HFD-induced glucose intolerance and influence plasma triglyceride (TG) metabolism during prolonged fasting.NEW & NOTEWORTHY1) Angiopoietin-like 4 deficiency in hepatocytes (Angptl4LivKO) does not improve triglyceride phenotypes during high-fat feeding. 2) Angptl4LivKO mice have improved glucose tolerance after chronic high-fat diet. 3) Angptl4LivKO mice have decreased fasting plasma triglyceride levels after an 18-h fast, but not after a 6-h fast.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Shwetha K Shetty
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Emily M Cushing
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
49
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
50
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|