1
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Luo B, Gou YT, Cui HL, Yin CZ, Sun D, Li D, Wang LJ, Yan R, Liu H. The C/EBPβ-SESN2 Axis Promotes M2b Macrophage Polarization Induced by T.cp-MIF to Suppress Inflammation in Thelazia Callipaeda Infection. Inflammation 2024:10.1007/s10753-024-02114-2. [PMID: 39215929 DOI: 10.1007/s10753-024-02114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Infection by the conjunctival sucking nematode Thelazia callipaeda results in ocular inflammation and immune impairment. T.cp-MIF, a macrophage migration inhibitor factor of T. callipaeda, can induce macrophage polarization and is involved in the host innate immune response, but little is known about the regulatory mechanisms and the actual immune effect. Understanding the immunoregulatory mechanisms carries significant clinical relevance for the development of novel preventative and therapeutic strategies. The macrophages were induced by T.cp-MIF in vitro, and the polarization direction at different times and the expression of inflammatory factors were detected by flow cytometry analysis, qPCR and western blotting. The key transcription factors and target genes were screened through transcriptome data, and the functions of transcription factors were verified by inhibition experiments in vitro. T.cp-MIF and T. callipaeda adult worms can cause inflammation of the ocular conjunctiva and macrophage infiltration. T.cp-MIF activated macrophages presenting M2b polarization after 48 h and played a role in inhibiting inflammation. Furthermore, based on the results of transcriptome data analysis and inhibition experiments, we demonstrate that this polarization is dependent on the involvement of the transcription factor C/EBPβ and its target gene SESN2. Our results demonstrated that the C/EBPβ-SESN2 axis plays an important regulatory role in T.cp-MIF-induced macrophage M2b polarization and it provides a new perspective for understanding the immune escape of ocular parasite infection.
Collapse
Affiliation(s)
- Bo Luo
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Yan-Ting Gou
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Hong-Le Cui
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Chang-Zhu Yin
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Da Sun
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Ling-Jun Wang
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
4
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
5
|
Tajudeen YA, Oladipo HJ, Yusuff SI, Abimbola SO, Abdulkadir M, Oladunjoye IO, Omotosho AO, Egbewande OM, Shittu HD, Yusuf RO, Ogundipe O, Muili AO, Afolabi AO, Dahesh SMA, Gameil MAM, El-Sherbini MS. A landscape review of malaria vaccine candidates in the pipeline. Trop Dis Travel Med Vaccines 2024; 10:19. [PMID: 39085983 PMCID: PMC11293096 DOI: 10.1186/s40794-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Globally, malaria continues to pose a major health challenge, with approximately 247 million cases of the illness and 627,000 deaths reported in 2021. However, the threat is particularly pronounced in sub-Saharan African countries, where pregnant women and children under the age of five face heightened vulnerability to the disease. As a result, the imperative to develop malaria vaccines especially for these vulnerable populations, remains crucial in the pursuit of malaria eradication. However, despite decades of research, effective vaccine development faces technical challenges, including the rapid spread of drug-resistant parasite strains, the complex parasite lifecycle, the development of liver hypnozoites with potential for relapse, and evasion of the host immune system. This review aims to discuss the different malaria vaccine candidates in the pipeline, highlighting different approaches used for adjuvating these candidates, their benefits, and outcomes, and summarizing the progress of these vaccine candidates under development. METHOD A comprehensive web-based search for peer-reviewed journal articles published in SCOPUS, MEDLINE (via PubMed), Science Direct, WHO, and Advanced Google Scholar databases was conducted from 1990 to May 2022. Context-specific keywords such as "Malaria", "Malaria Vaccine", "Malaria Vaccine Candidates", "Vaccine Development", "Vaccine Safety", "Clinical Trials", "mRNA Vaccines", "Viral Vector Vaccines", "Protein-based Vaccines", "Subunit Vaccines", "Vaccine Adjuvants", "Vaccine-induced Immune Responses", and "Immunogenicity" were emphatically considered. Articles not directly related to malaria vaccine candidates in preclinical and clinical stages of development were excluded. RESULTS Various approaches have been studied for malaria vaccine development, targeting different parasite lifecycle stages, including the pre-erythrocytic, erythrocytic, and sexual stages. The RTS, S/AS01 vaccine, the first human parasite vaccine reaching WHO-listed authority maturity level 4, has demonstrated efficacy in preventing clinical malaria in African children. However, progress was slow in introducing other safe, and feasible malaria vaccines through clinical trials . Recent studies highlight the potential effectiveness of combining pre-erythrocytic and blood-stage vaccines, along with the advantages of mRNA vaccines for prophylaxis and treatment, and nonstructural vaccines for large-scale production. CONCLUSION Malaria vaccine candidates targeting different lifecycle stages of the parasite range from chemoprophylaxis vaccination to cross-species immune protection. The use of a multi-antigen, multi-stage combinational vaccine is therefore essential in the context of global health. This demands careful understanding and critical consideration of the long-term multi-faceted interplay of immune interference, co-dominance, complementary immune response, molecular targets, and adjuvants affecting the overall vaccine-induced immune response. Despite challenges, advancements in clinical trials and vaccination technology offer promising possibilities for novel approaches in malaria vaccine development.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ibadan- Ife Rd, Ife, 220282, Osun State, Nigeria
| | - Samuel O Abimbola
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, 3036, Cyprus
| | - Muritala Abdulkadir
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Iyiola Olatunji Oladunjoye
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete-Ilorin, Ilorin, Nigeria
| | | | | | - Rashidat Onyinoyi Yusuf
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Oluwatosin Ogundipe
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Bushenyi, Uganda.
| | - Salwa M A Dahesh
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, GOTHI, Damietta, Egypt
| | | | - Mona Said El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
6
|
Yanik S, Venkatesh V, Gordy JT, Gabriel-Alameh M, Meza J, Li Y, Glass E, Flores-Garcia Y, Tam Y, Chaiyawong N, Sarkar D, Weissman D, Markham R, Srinivasan P. Immature dendritic cell-targeting mRNA vaccine expressing PfCSP enhances protective immune responses against Plasmodium liver infection. RESEARCH SQUARE 2024:rs.3.rs-4656309. [PMID: 39041038 PMCID: PMC11261966 DOI: 10.21203/rs.3.rs-4656309/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Resurgence in malaria has been noted in 2022 with 249 million clinical cases resulting in 608,000 deaths, mostly in children under five. Two vaccines, RTS, S, and more recently R21, targeting the circumsporozoite protein (CSP) are recommended by the WHO but are not yet widely available. Strong humoral responses to neutralize sporozoites before they can infect the hepatocytes are important for vaccine-mediated protection. Suboptimal protection conferred by these first-generation vaccines highlight the need for approaches to improve vaccine-induced immune responses. With the recent success of mRNA-LNP vaccines against COVID-19, there is growing interest in leveraging this approach to enhance malaria vaccines. Here, we present the development of a novel chemokine fusion mRNA vaccine aimed at boosting immune responses to PfCSP by targeting the immunogen to immature dendritic cells (iDC). Vaccination of mice with mRNA encoding full-length CSP fused to macrophage inflammatory protein 3 alpha (MIP3α) encapsulated within lipid nanoparticles (LNP) elicited robust CD4+ T cell responses and enhanced antibody titers against NANP repeat epitopes compared to a conventional CSP mRNA-LNP vaccine. Importantly, the CSP-MIP3α fusion vaccine provided significantly greater protection against liver infection upon challenge with P. berghei PfCSP transgenic sporozoites. This enhanced protection was associated with multifunctional CD4+ T cells levels and anti-NANP repeat titers. This study highlights the potential to augment immune responses to PfCSP through iDC targeting and bolster protection against malaria liver infection.
Collapse
Affiliation(s)
- Sean Yanik
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Varsha Venkatesh
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James T Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | | | - Jacob Meza
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yangchen Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Glass
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Nattawat Chaiyawong
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deepti Sarkar
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
8
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
9
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
10
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Breidung D, Megas IF, Freytag DL, Bernhagen J, Grieb G. The Role of Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (D-DT/MIF-2) in Infections: A Clinical Perspective. Biomedicines 2023; 12:2. [PMID: 38275363 PMCID: PMC10813530 DOI: 10.3390/biomedicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homolog, D-dopachrome tautomerase (D-DT), are cytokines that play critical roles in the immune response to various infectious diseases. This review provides an overview of the complex involvement of MIF and D-DT in bacterial, viral, fungal, and parasitic infections. The role of MIF in different types of infections is controversial, as it has either a protective function or a host damage-enhancing function depending on the pathogen. Depending on the specific role of MIF, different therapeutic options for MIF-targeting drugs arise. Human MIF-neutralizing antibodies, anti-parasite MIF antibodies, small molecule MIF inhibitors or MIF-blocking peptides, as well as the administration of exogenous MIF or MIF activity-augmenting small molecules have potential therapeutic applications and need to be further explored in the future. In addition, MIF has been shown to be a potential biomarker and therapeutic target in sepsis. Further research is needed to unravel the complexity of MIF and D-DT in infectious diseases and to develop personalized therapeutic approaches targeting these cytokines. Overall, a comprehensive understanding of the role of MIF and D-DT in infections could lead to new strategies for the diagnosis, treatment, and management of infectious diseases.
Collapse
Affiliation(s)
- David Breidung
- Department of Plastic, Reconstructive and Hand Surgery, Burn Center for Severe Burn Injuries, Klinikum Nuremberg Hospital, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Ioannis-Fivos Megas
- Department of Orthopaedic and Trauma Surgery, Center of Plastic Surgery, Hand Surgery and Microsurgery, Evangelisches Waldkrankenhaus Spandau, Stadtrandstr. 555, 13589 Berlin, Germany;
| | - David Lysander Freytag
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Feodor-Lynenstraße 17, 81377 Munich, Germany;
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynenstraße 17, 81377 Munich, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
12
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|
13
|
Beirigo EDF, Franco PIR, do Carmo Neto JR, Guerra RO, de Assunção TFS, de Sousa IDOF, Obata MMS, Rodrigues WF, Machado JR, da Silva MV. RNA vaccines in infectious diseases: A systematic review. Microb Pathog 2023; 184:106372. [PMID: 37743026 DOI: 10.1016/j.micpath.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Infectious diseases are a major health concern worldwide, especially as they are one of the main causes of mortality in underdeveloped and developing countries. Those that are considered emerging and re-emerging are characterized by unpredictability, high morbidity and mortality, exponential spread, and substantial social impact. These characteristics highlight the need to create an "on demand" control method, with rapid development, large-scale production, and wide distribution. In view of this, RNA vaccines have been investigated as an effective alternative for the treatment and prevention of infectious diseases since they can meet those needs and are considered safe, affordable, and totally synthetic. Therefore, this systematic review aimed to evaluate the use of RNA vaccines for infectious diseases from experimental, in vivo, and in vitro studies. PubMed, Web of Science, and Embase were searched for suitable studies. Additionally, further investigations, such as grey literature checks, were performed. A total of 723 articles were found, of which only 41 met the inclusion criteria. These studies demonstrated the potential of using RNA vaccines to control 19 different infectious diseases, of which COVID-19 was the most studied. Similarly, viruses comprised the largest number of reported vaccine targets, followed by protozoa and bacteria. The mRNA vaccines were the most widely used, and the intramuscular route of administration was the most reported. Regarding preclinical experimental models, mice were the most used to evaluate the impact and safety of the RNA vaccines developed. Thus, although further studies and evaluation of the subject are necessary, it is evident that RNA vaccines can be considered a promising alternative in the treatment and prophylaxis of infectious diseases.
Collapse
Affiliation(s)
- Emília de Freitas Beirigo
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil.
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Farnesi Soares de Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Isabella de Oliveira Ferrato de Sousa
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Malu Mateus Santos Obata
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil; Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
15
|
Tsoumani ME, Voyiatzaki C, Efstathiou A. Malaria Vaccines: From the Past towards the mRNA Vaccine Era. Vaccines (Basel) 2023; 11:1452. [PMID: 37766129 PMCID: PMC10536368 DOI: 10.3390/vaccines11091452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium spp. is the etiological agent of malaria, a life-threatening parasitic disease transmitted by infected mosquitoes. Malaria remains a major global health challenge, particularly in endemic regions. Over the years, various vaccine candidates targeting different stages of Plasmodium parasite life-cycle have been explored, including subunit vaccines, vectored vaccines, and whole organism vaccines with Mosquirix, a vaccine based on a recombinant protein, as the only currently approved vaccine for Plasmodium falciparum malaria. Despite the aforementioned notable progress, challenges such as antigenic diversity, limited efficacy, resistant parasites escaping protective immunity and the need for multiple doses have hindered the development of a highly efficacious malaria vaccine. The recent success of mRNA-based vaccines against SARS-CoV-2 has sparked renewed interest in mRNA vaccine platforms. The unique mRNA vaccine features, including their potential for rapid development, scalability, and flexibility in antigen design, make them a promising avenue for malaria vaccine development. This review provides an overview of the malaria vaccines' evolution from the past towards the mRNA vaccine era and highlights their advantages in overcoming the limitations of previous malaria vaccine candidates.
Collapse
Affiliation(s)
- Maria E. Tsoumani
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Antonia Efstathiou
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
16
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
17
|
de Roquetaillade C, Laouenan C, Mira JP, Roy C, Thuong M, Azoulay É, Gruson D, Jacobs F, Chommeloux J, Raffi F, Hocqueloux L, Imbert P, Jeantils V, Delassus JL, Matheron S, Fitting C, Timsit JF, Bruneel F. Cytokine profiles in adults with imported malaria. Sci Rep 2023; 13:10347. [PMID: 37365194 DOI: 10.1038/s41598-023-36212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The increase in worldwide travel is making imported malaria a growing health concern in non-endemic countries. Most data on the pathophysiology of malaria come from endemic areas. Little is known about cytokine profiles during imported malaria. This study aimed at deciphering the relationship between cytokine host response and malaria severity among imported cases in France. This study reports cytokine profiles in adults with Plasmodium falciparum malaria included in the PALUREA prospective study conducted between 2006 and 2010. The patients were classified as having uncomplicated malaria (UM) or severe malaria (SM), with this last further categorized as very severe malaria (VSM) or less severe malaria (LSM). At hospital admission, eight blood cytokines were assayed in duplicate using Luminex® technology: interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-10, tumor necrosis factor (TNF)α, interferon (IFN)γ, and macrophage migration inhibitory factor (MIF). These assays were repeated on days 1 and 2 in the SM group. Of the 278 patients, 134 had UM and 144 SM. At hospital admission, over half the patients had undetectable levels of IL-1α, IL-1β, IL-2, IL-4, IFNγ, and TNFα, while IL-10 and MIF were significantly higher in the SM vs. the UM group. Higher IL-10 was significantly associated with higher parasitemia (R = 0.32 [0.16-0.46]; P = 0.0001). In the SM group, IL-10 elevation persisting from admission to day 2 was significantly associated with subsequent nosocomial infection. Of eight tested cytokines, only MIF and IL-10 were associated with disease severity in adults with imported P. falciparum malaria. At admission, many patients had undetectable cytokine levels, suggesting that circulating cytokine assays may not be helpful as part of the routine evaluation of adults with imported malaria. Persisting high IL-10 concentration was associated with subsequent nosocomial infection, suggesting its possible interest in immune monitoring of most severe patients.
Collapse
Affiliation(s)
- Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, FHU PROMICE, DMU Parabol, AP-HP Nord, Paris, France.
- INSERM UMR 942 MASCOT, Université de Paris-Cité, Paris, France.
| | - Cédric Laouenan
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Jean-Paul Mira
- Service de medecine intensive-reanimation, Hôpital Cochin, AP-HP Centre, Paris, France
- Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, AP-HP, Paris, France
| | - Carine Roy
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Marie Thuong
- Service de medecine intensive-reanimation, Centre Hospitalier René Dubos, Pontoise, France
| | - Élie Azoulay
- Service de medecine intensive-reanimation, Hôpital Saint-Louis, Hôpitaux Universitaires Paris-Nord, AP-HP, Paris, France
| | - Didier Gruson
- Service de medecine intensive-reanimation, Hôpital Pellegrin-Tripode, Bordeaux, France
- Centre de Recherche Cardio-Thoracique, CHU Bordeaux, Bordeaux, France
| | - Frédéric Jacobs
- Service de medecine intensive-reanimation, Hôpital Antoine Béclère, Université Paris-Saclay, AP-HP, Clamart, France
| | - Juliette Chommeloux
- Service de medecine intensive reanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | | | - Laurent Hocqueloux
- Service de maladies infectieuses, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Patrick Imbert
- Centre de vaccinations internationales, Hôpital d'instruction des armees Bégin, Saint-Mandé, France
| | - Vincent Jeantils
- Service de maladies infectieuses, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Jean-Luc Delassus
- Service de medecine interne et de maladies infectieuses, Centre hospitalier intercommunal Robert-Ballanger, Aulnay-sous-Bois, France
| | - Sophie Matheron
- Service de maladies infectieuses et tropicales, Hôpital Bichat, GHU Paris Nord, AP-HP, Paris, France
| | | | - Jean-François Timsit
- Service de medecine intensive et reanimation (MI2), Hôpital Bichat, Paris, France
- IAME, Université de Paris, INSERM U1137, AP-HP, Paris, France
| | - Fabrice Bruneel
- Service de reanimation, Centre Hospitalier de Versailles, Hôpital André Mignot, Le Chesnay, France
| |
Collapse
|
18
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
19
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
20
|
Myeloid-derived MIF drives RIPK1-mediated cerebromicrovascular endothelial cell death to exacerbate ischemic brain injury. Proc Natl Acad Sci U S A 2023; 120:e2219091120. [PMID: 36693098 PMCID: PMC9945963 DOI: 10.1073/pnas.2219091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifaced protein that plays important roles in multiple inflammatory conditions. However, the role of MIF in endothelial cell (EC) death under inflammatory condition remains largely unknown. Here we show that MIF actively promotes receptor-interacting protein kinase 1 (RIPK1)-mediated cell death under oxygen-glucose deprivation condition. MIF expression is induced by surgical trauma in peripheral myeloid cells both in perioperative humans and mice. We demonstrate that MIF-loaded myeloid cells induced by peripheral surgery adhere to the brain ECs after distal middle cerebral artery occlusion (dMCAO) and exacerbate the blood-brain barrier (BBB) disruption. Genetic depletion of myeloid-derived MIF in perioperative ischemic stroke (PIS) mice with MCAO following a surgical insult leads to significant reduction in ECs apoptosis and necroptosis and the associated BBB disruption. The adoptive transfer of peripheral blood mononuclear cells (PBMC) from surgical MIFΔLyz2 mice to wild-type (WT) MCAO mice also shows reduced ECs apoptosis and necroptosis compared to the transfer of PBMC from surgical MIFf l/f l mice to MCAO recipients. The genetic inhibition of RIPK1 also attenuates BBB disruption and ECs death compared to that of WT mice in PIS. The administration of MIF inhibitor (ISO-1) and RIPK1 inhibitor (Nec-1s) can both reduce the brain EC death and neurological deficits following PIS. We conclude that myeloid-derived MIF promotes ECs apoptosis and necroptosis through RIPK1 kinase-dependent pathway. The above findings may provide insights into the mechanism as how peripheral inflammation promotes the pathology in central nervous system.
Collapse
|
21
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
22
|
Chung S, Lee CM, Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. NANOSCALE HORIZONS 2022; 8:10-28. [PMID: 36260016 PMCID: PMC11144305 DOI: 10.1039/d2nh00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The liver is a vital organ that functions to detoxify the body. Liver cancer and infectious diseases such as influenza and malaria can fatally compromise liver function. mRNA delivery is a relatively new means of therapeutic treatment which enables expression of tumor or pathogenic antigens, and elicits immune responses for therapeutic or prophylactic effect. Novel nanoparticles with unique biological properties serving as mRNA carriers have allowed mRNA-based therapeutics to become more clinically viable and relevant. In this review, we highlight recent progress in development of nanoparticle-based mRNA delivery systems for treatment of various liver diseases. First, we present developments in nanoparticle systems used to deliver mRNAs, with specific focus on enhanced cellular uptake and endosomal escape achieved through the use of these nanoparticles. To provide context for diseases that target the liver, we provide an overview of the function and structure of the liver, as well as the role of the immune system in the liver. Then, mRNA-based therapeutic approaches for addressing HCC are highlighted. We also discuss nanoparticle-based mRNA vaccines for treating hepatotropic infectious diseases. Finally, we present current challenges in the clinical translation of nanoparticle-based mRNA delivery systems and provide outlooks for their utilization in treating liver-related diseases.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Chan Mi Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
23
|
Bolhassani A. Lipid-Based Delivery Systems in Development of Genetic and Subunit Vaccines. Mol Biotechnol 2022; 65:669-698. [PMID: 36462102 PMCID: PMC9734811 DOI: 10.1007/s12033-022-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
24
|
Kim MJ, Chu KB, Lee SH, Kang HJ, Yoon KW, Ahmed MA, Quan FS. Recombinant Vaccinia Virus Expressing Plasmodium berghei Apical Membrane Antigen 1 or Microneme Protein Enhances Protection against P. berghei Infection in Mice. Trop Med Infect Dis 2022; 7:350. [PMID: 36355892 PMCID: PMC9698705 DOI: 10.3390/tropicalmed7110350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/27/2023] Open
Abstract
Recombinant vaccinia viruses (rVV) are effective antigen delivery vectors and are researched widely as vaccine platforms against numerous diseases. Apical membrane antigen 1 (AMA1) is one of the candidate antigens for malaria vaccines but rising concerns regarding its genetic diversity and polymorphism have necessitated the need to search for an alternative antigen. Here, we compare the efficacies of the rVV vaccines expressing either AMA1 or microneme protein (MIC) of Plasmodium berghei in mice. Mice (BALB/c) were immunized with either rVV-AMA1 or rVV-MIC and subsequently challenge-infected with P. berghei. Compared to the control group, both antigens elicited elevated levels of parasite-specific antibody responses. Immunization with either one of the two vaccines induced high levels of T cells and germinal center B cell responses. Interestingly, rVV-MIC immunization elicited higher levels of cellular immune response compared to rVV-AMA1 immunization, and significantly reduced pro-inflammatory cytokine productions were observed from the former vaccine. While differences in parasitemia and bodyweight changes were negligible between rVV-AMA1 and rVV-MIC immunization groups, prolonged survival was observed for the latter of the two. Based on these results, our findings suggest that the rVV expressing the P. berghei MIC could be a vaccine-candidate antigen.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Md Atique Ahmed
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh 786010, Assam, India
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
25
|
Kairuz D, Samudh N, Ely A, Arbuthnot P, Bloom K. Advancing mRNA technologies for therapies and vaccines: An African context. Front Immunol 2022; 13:1018961. [PMID: 36353641 PMCID: PMC9637871 DOI: 10.3389/fimmu.2022.1018961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023] Open
Abstract
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Kanoi BN, Maina M, Likhovole C, Kobia FM, Gitaka J. Malaria vaccine approaches leveraging technologies optimized in the COVID-19 era. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.988665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Africa bears the greatest burden of malaria with more than 200 million clinical cases and more than 600,000 deaths in 2020 alone. While malaria-associated deaths dropped steadily until 2015, the decline started to falter after 2016, highlighting the need for novel potent tools in the fight against malaria. Currently available tools, such as antimalarial drugs and insecticides are threatened by development of resistance by the parasite and the mosquito. The WHO has recently approved RTS,S as the first malaria vaccine for public health use. However, because the RTS,S vaccine has an efficacy of only 36% in young children, there is need for more efficacious vaccines. Indeed, based on the global goal of licensing a malaria vaccine with at least 75% efficacy by 2030, RTS,S is unlikely to be sufficient alone. However, recent years have seen tremendous progress in vaccine development. Although the COVID-19 pandemic impacted malaria control, the rapid progress in research towards the development of COVID-19 vaccines indicate that harnessing funds and technological advances can remarkably expedite vaccine development. In this review, we highlight and discuss current and prospective trends in global efforts to discover and develop malaria vaccines through leveraging mRNA vaccine platforms and other systems optimized during COVID-19 vaccine studies.
Collapse
|
27
|
Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022; 27:molecules27175607. [PMID: 36080373 PMCID: PMC9458026 DOI: 10.3390/molecules27175607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treatment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo, researchers need to develop safer and more effective mRNA delivery systems that improve mRNA stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles are promising nanodrug carriers for tumor therapy, which can significantly improve the immunotherapeutic effects of conventional drugs by modulating mRNA delivery, and have attracted widespread interest in the biomedical field. This review focuses on the delivery of mRNA by lipid nanoparticles for cancer treatment. We summarize some common tumor immunotherapy and mRNA delivery strategies, describe the clinical advantages of lipid nanoparticles for mRNA delivery, and provide an outlook on the current challenges and future developments of this technology.
Collapse
|
28
|
Overmars I, Au‐Yeung G, Nolan TM, Steer AC. mRNA vaccines: a transformative technology with applications beyond COVID-19. Med J Aust 2022; 217:71-75. [PMID: 35780474 PMCID: PMC9350149 DOI: 10.5694/mja2.51620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Affiliation(s)
| | - George Au‐Yeung
- Peter MacCallum Cancer CentreMelbourneVIC
- University of MelbourneMelbourneVIC
| | - Terence M Nolan
- University of MelbourneMelbourneVIC
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC
| | - Andrew C Steer
- Murdoch Children’s Research InstituteMelbourneVIC
- University of MelbourneMelbourneVIC
| |
Collapse
|
29
|
Abstract
The first malaria vaccine has been recently approved for children living in malaria-endemic areas. While this is long-awaited and welcome news, the modest efficacy of the vaccine highlights several areas that require further attention. Here, we describe the likely impact of the vaccine and where clinical and basic discovery research will still be required.
Collapse
Affiliation(s)
| | - Cristiana Cairo
- Institute for Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
31
|
Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022; 184:114197. [PMID: 35288219 PMCID: PMC9035142 DOI: 10.1016/j.addr.2022.114197] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Collapse
Affiliation(s)
- Gyan Prakash
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ahmed Shokr
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | - Niels Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA; Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates.
| |
Collapse
|
32
|
Taina-González L, de la Fuente M. The Potential of Nanomedicine to Unlock the Limitless Applications of mRNA. Pharmaceutics 2022; 14:460. [PMID: 35214191 PMCID: PMC8879057 DOI: 10.3390/pharmaceutics14020460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The year 2020 was a turning point in the way society perceives science. Messenger RNA (mRNA) technology finally showed and shared its potential, starting a new era in medicine. However, there is no doubt that commercialization of these vaccines would not have been possible without nanotechnology, which has finally answered the long-term question of how to deliver mRNA in vivo. The aim of this review is to showcase the importance of this scientific milestone for the development of additional mRNA therapeutics. Firstly, we provide a full description of the marketed vaccine formulations and disclose LNPs' pharmaceutical properties, including composition, structure, and manufacturing considerations Additionally, we review different types of lipid-based delivery technologies currently in preclinical and clinical development, namely lipoplexes and cationic nanoemulsions. Finally, we highlight the most promising clinical applications of mRNA in different fields such as vaccinology, immuno-oncology, gene therapy for rare genetic diseases and gene editing using CRISPR Cas9.
Collapse
Affiliation(s)
- Laura Taina-González
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- Universidad de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies, 15782 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
34
|
Alameh MG, Weissman D, Pardi N. Messenger RNA-Based Vaccines Against Infectious Diseases. Curr Top Microbiol Immunol 2022; 440:111-145. [PMID: 32300916 DOI: 10.1007/82_2020_202] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro-transcribed, messenger RNA-based infectious disease vaccines have the potential to successfully address many of the weaknesses of traditional vaccine platforms, such as the lack of potency and/or durability of vaccine protection, time-consuming, and expensive manufacturing, and, in some cases, safety issues. This optimism is fueled by a great deal of impressive recent data demonstrating that mRNA vaccines have many of the attributes that are necessary for a viable new vaccine class for human use. This review briefly describes mRNA vaccine types, discusses the most relevant and recent publications on infectious disease mRNA vaccines, and highlights the hurdles that need to be overcome to bring this promising novel vaccine modality to the clinic.
Collapse
Affiliation(s)
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Abstract
Infectious diseases are a leading cause of death worldwide, and vaccines are the cheapest and efficient approach to preventing diseases. Use of conventional vaccination strategies such as live, attenuated, and subunit has limitations as it does not fully provide protection against many infectious diseases. Hence, there was a need for the development of a new vaccination strategy. Use of nucleic acids-DNA and RNA-has emerged as promising alternative to conventional vaccine approaches. Knowledge of mRNA biology, chemistry, and delivery systems in recent years have enabled mRNA to become a promising vaccine candidate. One of the advantages of a mRNA vaccine is that clinical batches can be generated after the availability of a sequence encoding the immunogen. The process is cell-free and scalable. mRNA is a noninfectious, nonintegrating molecule and there is no potential risk of infection or mutagenesis. mRNA is degraded by normal cellular processes, and its in vivo half-life can be regulated by different modifications and delivery methods. The efficacy can be increased by modifications of the nucleosides that can make mRNA more stable and highly translatable. Efficient in vivo delivery can be achieved by formulating mRNA into carrier molecules, allowing rapid uptake and expression in the cytoplasm. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The spike (S) glycoprotein mediates host cell attachment and is required for viral entry; it is the primary vaccine target for many candidate SARS-CoV-2 vaccines. Development of a lipid nanoparticle encapsulated mRNA vaccine that encodes the SARS-CoV-2 S glycoprotein stabilized in its prefusion conformation conferred 95% protection against Covid-19.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Ann Abraham
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
36
|
Abstract
mRNA vaccines have been increasingly recognized as a powerful vaccine platform since the FDA approval of two COVID-19 mRNA vaccines, which demonstrated outstanding prevention efficacy as well as great safety profile. Notably, nucleoside modification and lipid nanoparticle-facilitated delivery has greatly improved the immunogenicity, stability, and translation efficiency of mRNA molecule. Here we review the recent progress in mRNA vaccine development, including nucleoside modification, in vitro synthesis and product purification, and lipid nanoparticle vectors for in vivo delivery and efficient translation. We also briefly introduce the clinical application of mRNA vaccine in preventing infectious diseases and treating inflammatory diseases including cancer.
Collapse
Affiliation(s)
- Mengyun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
37
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
38
|
Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2021; 19:386-410. [PMID: 35354425 PMCID: PMC8973339 DOI: 10.1080/15476286.2022.2055923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have been studied for decades, but only recently, during the COVID-19 pandemic, has the technology garnered noteworthy attention. In contrast to traditional vaccines, mRNA vaccines elicit a more balanced immune response, triggering both humoral and cellular components of the adaptive immune system. However, some inherent hurdles associated with stability, immunogenicity, in vivo delivery, along with the novelty of the technology, have generated scepticism in the adoption of mRNA vaccines. Recent developments have pushed to bypass these issues and the approval of mRNA-based vaccines to combat COVID-19 has further highlighted the feasibility, safety, efficacy, and rapid development potential of this platform, thereby pushing it to the forefront of emerging therapeutics. This review aims to demystify mRNA vaccines, delineating the evolution of the technology which has emerged as a timely solution to COVID-19 and exploring the immense potential it offers as a prophylactic option for other cryptic diseases.
Collapse
Affiliation(s)
- Nusrat Zahan Rouf
- School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Sumit Biswas
- Department of Neurophysiology, Retinal Physiology and Gene Therapy, Institute of Physiology and Pathophysiology, University of Marburg, Deutschhausstrasse. 2D-35037, Marburg, Germany
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Labiba Mustabina Oishee
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Mutia Masuka Muna
- Department of Biological Sciences, University at Buffalo, Buffalo14260, New York, USA
| |
Collapse
|
39
|
Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 179:114000. [PMID: 34637846 PMCID: PMC8502079 DOI: 10.1016/j.addr.2021.114000] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
mRNA vaccines have received major attention in the fight against COVID-19. Formulations from companies such as Moderna and BioNTech/Pfizer have allowed us to slowly ease the social distancing measures, mask requirements, and lockdowns that have been prevalent since early 2020. This past year's focused work on mRNA vaccines has catapulted this technology to the forefront of public awareness and additional research pursuits, thus leading to new potential for bionanotechnology principles to help drive further innovation using mRNA. In addition to alleviating the burden of COVID-19, mRNA vaccines could potentially provide long-term solutions all over the world for diseases ranging from influenza to AIDS. Herein, we provide a brief commentary based on the history and development of mRNA vaccines in the context of the COVID-19 pandemic. Furthermore, we address current research using the technology and future directions of mRNA vaccine research.
Collapse
Affiliation(s)
- Samagra Jain
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abhijeet Venkataraman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Marissa E. Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA,Corresponding author
| |
Collapse
|
40
|
Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021; 9:1345. [PMID: 34835276 PMCID: PMC8623509 DOI: 10.3390/vaccines9111345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, vaccine development using ribonucleic acid (RNA) has become the most promising and studied approach to produce safe and effective new vaccines, not only for prophylaxis but also as a treatment. The use of messenger RNA (mRNA) as an immunogenic has several advantages to vaccine development compared to other platforms, such as lower coast, the absence of cell cultures, and the possibility to combine different targets. During the COVID-19 pandemic, the use of mRNA as a vaccine became more relevant; two out of the four most widely applied vaccines against COVID-19 in the world are based on this platform. However, even though it presents advantages for vaccine application, mRNA technology faces several pivotal challenges to improve mRNA stability, delivery, and the potential to generate the related protein needed to induce a humoral- and T-cell-mediated immune response. The application of mRNA to vaccine development emerged as a powerful tool to fight against cancer and non-infectious and infectious diseases, for example, and represents a relevant research field for future decades. Based on these advantages, this review emphasizes mRNA and self-amplifying RNA (saRNA) for vaccine development, mainly to fight against COVID-19, together with the challenges related to this approach.
Collapse
Affiliation(s)
- Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Luís Alberto Brêda Mascarenhas
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Leone Peter Correia da Silva Andrade
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Vinícius Pinto Costa Rocha
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Peter Berglund
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Malcolm S. Duthie
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| |
Collapse
|
41
|
Cui JY, Lisi GP. Molecular Level Insights Into the Structural and Dynamic Factors Driving Cytokine Function. Front Mol Biosci 2021; 8:773252. [PMID: 34760929 PMCID: PMC8573031 DOI: 10.3389/fmolb.2021.773252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cytokines are key mediators of cellular communication and regulators of biological advents. The timing, quantity and localization of cytokines are key features in producing specific biological outcomes, and thus have been thoroughly studied and reviewed while continuing to be a focus of the cytokine biology community. Due to the complexity of cellular signaling and multitude of factors that can affect signaling outcomes, systemic level studies of cytokines are ongoing. Despite their small size, cytokines can exhibit structurally promiscuous and dynamic behavior that plays an equally important role in biological activity. In this review using case studies, we highlight the recent insight gained from observing cytokines through a molecular lens and how this may complement a system-level understanding of cytokine biology, explain diversity of downstream signaling events, and inform therapeutic and experimental development.
Collapse
Affiliation(s)
- Jennifer Y Cui
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
42
|
Laurens MB. Novel malaria vaccines. Hum Vaccin Immunother 2021; 17:4549-4552. [PMID: 34347570 PMCID: PMC8827625 DOI: 10.1080/21645515.2021.1947762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022] Open
Abstract
Malaria vaccines hold significant promise for life-saving benefit, especially to children who bear the major burden of malaria mortality. The RTS,S/AS01 malaria vaccine provides moderate efficacy and is being tested in implementation studies. In parallel, multiple strategies are being advanced to test next-generation malaria vaccines, including novel approaches that build on principles learned from RTS,S development, vaccination with radiation-attenuated sporozoites, and development of monoclonal antibodies targeting immunogenic peptides. Novel vaccine delivery approaches are also being advanced, including self-amplifying RNA vaccine delivery, self-assembling protein nanoparticle methods, circumsporozoite protein-based approaches, and whole organism vaccination. Techniques employed for COVID-19 vaccine development should also be considered for malaria vaccination, including sustained release polymer nanoparticle hydrogel vaccination and charge-altering releasable transporters. As vaccine science advances and new approaches optimize knowledge gained, highly effective malaria vaccines that provide sustained protection are within reach.
Collapse
Affiliation(s)
- Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
43
|
Baeza Garcia A, Siu E, Du X, Leng L, Franke-Fayard B, Janse CJ, Howland SW, Rénia L, Lolis E, Bucala R. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria. FASEB J 2021; 35:e21997. [PMID: 34719814 DOI: 10.1096/fj.202101072r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022]
Abstract
The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.
Collapse
Affiliation(s)
- Alvaro Baeza Garcia
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Edwin Siu
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Du
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20:817-838. [PMID: 34433919 PMCID: PMC8386155 DOI: 10.1038/s41573-021-00283-5] [Citation(s) in RCA: 608] [Impact Index Per Article: 202.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
46
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
47
|
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. NATURE REVIEWS. MATERIALS 2021; 6:1078-1094. [PMID: 34394960 PMCID: PMC8353930 DOI: 10.1038/s41578-021-00358-0] [Citation(s) in RCA: 1357] [Impact Index Per Article: 452.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/09/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle-mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle-mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle-mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle-mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology.
Collapse
Affiliation(s)
- Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| |
Collapse
|
48
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
49
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
50
|
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021; 13:206. [PMID: 33540942 PMCID: PMC7913163 DOI: 10.3390/pharmaceutics13020206] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.
Collapse
Affiliation(s)
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (B.N.A.); (A.S.A.)
| | | |
Collapse
|