1
|
Lerch BA, Bürger R, Servedio MR. Reconciling Santa Rosalia: Both Reproductive Isolation and Coexistence Constrain Diversification. Am Nat 2024; 204:E99-E114. [PMID: 39486036 DOI: 10.1086/732307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractUnderstanding patterns of diversification necessarily requires accounting for both the generation and the persistence of species. Formal models of speciation genetics, however, focus on the generation of new species without explicitly considering the maintenance of biodiversity (e.g., coexistence, the focus of ecological studies of diversity). Consequently, it remains unclear whether and how new species will coexist following a speciation event, a gap limiting our ability to understand the rate-limiting controls of diversification over macroevolutionary timescales. To connect coexistence and speciation theory and assess the relative importance of ecological versus genetic constraints in diversification events, we develop a deterministic, three-locus, population-genetic model that includes a skewed distribution of available resources (to generate variation in fitness differences), frequency-dependent competition, and assortative mating. Both ecology and genetics play vital and interacting roles in shaping initial speciation events and long-term eco-evolutionary outcomes. Ecological constraints are especially important when fitness differences are large and competition remains strong among dissimilar phenotypes. Ephemeral species can occur in our model and are typically lost because of competitive exclusion, a result demonstrating that species persistence may serve as the rate-limiting control of long-term diversification rates. More broadly, our model adds evidence that the unification of ecological and evolutionary (including genetic) perspectives on biodiversity is needed to predict large-scale patterns.
Collapse
|
2
|
Dellinger AS, Lagomarsino L, Michelangeli F, Dullinger S, Smith SD. The Sequential Direct and Indirect Effects of Mountain Uplift, Climatic Niche, and Floral Trait Evolution on Diversification Dynamics in an Andean Plant Clade. Syst Biol 2024; 73:594-612. [PMID: 38554255 PMCID: PMC11377192 DOI: 10.1093/sysbio/syae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/01/2024] Open
Abstract
Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.
Collapse
Affiliation(s)
- Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Ave., Boulder, CO 80309-0334, USA
| | - Laura Lagomarsino
- Shirley C. Tucker Herbarium, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Fabián Michelangeli
- Institute of Systematic Botany, The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458, USA
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stacey D Smith
- Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Ave., Boulder, CO 80309-0334, USA
| |
Collapse
|
3
|
Hagen O, Viana DS, Wiegand T, Chase JM, Onstein RE. The macro-eco-evolutionary interplay between dispersal, competition and landscape structure in generating biodiversity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230140. [PMID: 38913052 PMCID: PMC11391298 DOI: 10.1098/rstb.2023.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/25/2024] Open
Abstract
Theory links dispersal and diversity, predicting the highest diversity at intermediate dispersal levels. However, the modulation of this relationship by macro-eco-evolutionary mechanisms and competition within a landscape is still elusive. We examine the interplay between dispersal, competition and landscape structure in shaping biodiversity over 5 million years in a dynamic archipelago landscape. We model allopatric speciation, temperature niche, dispersal, competition, trait evolution and trade-offs between competitive and dispersal traits. Depending on dispersal abilities and their interaction with landscape structure, our archipelago exhibits two 'connectivity regimes', that foster speciation events among the same group of islands. Peaks of diversity (i.e. alpha, gamma and phylogenetic), occurred at intermediate dispersal; while competition shifted diversity peaks towards higher dispersal values for each connectivity regime. This shift demonstrates how competition can boost allopatric speciation events through the evolution of thermal specialists, ultimately limiting geographical ranges. Even in a simple landscape, multiple intermediate dispersal diversity relationships emerged, all shaped similarly and according to dispersal and competition strength. Our findings remain valid as dispersal- and competitive-related traits evolve and trade-off; potentially leaving identifiable biodiversity signatures, particularly when trade-offs are imposed. Overall, we scrutinize the convoluted relationships between dispersal, species interactions and landscape structure on macro-eco-evolutionary processes, with lasting imprints on biodiversity.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D S Viana
- Estación Biológica de Doñana, CSIC, Seville, Spain
| | - T Wiegand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - J M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - R E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| |
Collapse
|
4
|
You Y, Yu J, Nie Z, Peng D, Barrett RL, Rabarijaona RN, Lai Y, Zhao Y, Dang VC, Chen Y, Chen Z, Wen J, Lu L. Transition of survival strategies under global climate shifts in the grape family. NATURE PLANTS 2024; 10:1100-1111. [PMID: 39009829 DOI: 10.1038/s41477-024-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Faced with environmental changes, plants may either move to track their ancestral niches or evolve to adapt to new niches. Vitaceae, the grape family, has evolved diverse adaptive traits facilitating a global expansion in wide-ranging habitats, making it ideal for investigating transition between move and evolve strategies and exploring the underlying mechanisms. Here we inferred the patterns of biogeographic diversification and trait evolution in Vitaceae based on a robust phylogeny with dense sampling including 495 species (~52% of Vitaceae species). Vitaceae probably originated from Asia-the diversity centre of extant genera and the major source of dispersals. Boundaries of the Eocene, Oligocene and Miocene were identified as turning points in shifting strategies. A significant decrease in move strategy was identified during the Oligocene, followed by increases in move and evolve. After the Miocene, evolve began to dominate, during which increased niche opportunities and key trait innovations played important roles.
Collapse
Affiliation(s)
- Yichen You
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinren Yu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelong Nie
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources and Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Danxiao Peng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Russell L Barrett
- Botanic Gardens of Sydney, National Herbarium of New South Wales, Australian Botanic Garden, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Romer Narindra Rabarijaona
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yangjun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yujie Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viet-Cuong Dang
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
5
|
Pontarp M, Lundberg P, Ripa J. The succession of ecological divergence and reproductive isolation in adaptive radiations. J Theor Biol 2024; 587:111819. [PMID: 38589008 DOI: 10.1016/j.jtbi.2024.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Adaptive radiation is a major source of biodiversity but the way in which known components of ecological opportunity, ecological differentiation, and reproductive isolation underpin such biodiversity patterns remains elusive. Much is known about the evolution of ecological differentiation and reproductive isolation during single speciation events, but exactly how those processes scale up to complete adaptive radiations is less understood. Do we expect complete reproductive barriers between newly formed species before the ecological differentiation continues, or does proper species formation occur much later, long after the ecological diversification? Our goal is to improve our mechanistic understanding of adaptive radiations by analyzing an individual-based model that includes a suite of mechanisms that are known to contribute to biodiversity. The model includes variable biogeographic settings, ecological opportunities, and types of mate choice, which makes several different scenarios of an adaptive radiation possible. We find that evolving clades tend to exploit ecological opportunities early whereas reproductive barriers evolve later, demonstrating a decoupling of ecological differentiation and species formation. In many cases, we also find a long-term trend where assortative mating associated with ecological traits is replaced by sexual selection of neutral display traits as the primary mechanism for reproductive isolation. Our results propose that reticulate phylogenies are likely common and stem from initially low reproductive barriers, rather than the previously suggested idea of repeated hybridization events between well-separated species.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | - Per Lundberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Jörgen Ripa
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
6
|
van Holstein LA, Foley RA. Diversity-dependent speciation and extinction in hominins. Nat Ecol Evol 2024; 8:1180-1190. [PMID: 38632435 PMCID: PMC11166571 DOI: 10.1038/s41559-024-02390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
The search for drivers of hominin speciation and extinction has tended to focus on the impact of climate change. Far less attention has been paid to the role of interspecific competition. However, research across vertebrates more broadly has shown that both processes are often correlated with species diversity, suggesting an important role for interspecific competition. Here we ask whether hominin speciation and extinction conform to the expected patterns of negative and positive diversity dependence, respectively. We estimate speciation and extinction rates from fossil occurrence data with preservation variability priors in a validated Bayesian framework and test whether these rates are correlated with species diversity. We supplement these analyses with calculations of speciation rate across a phylogeny, again testing whether these are correlated with diversity. Our results are consistent with clade-wide diversity limits that governed speciation in hominins overall but that were not quite reached by the Australopithecus and Paranthropus subclade before its extinction. Extinction was not correlated with species diversity within the Australopithecus and Paranthropus subclade or within hominins overall; this is concordant with climate playing a greater part in hominin extinction than speciation. By contrast, Homo is characterized by positively diversity-dependent speciation and negatively diversity-dependent extinction-both exceedingly rare patterns across all forms of life. The genus Homo expands the set of reported associations between diversity and macroevolution in vertebrates, underscoring that the relationship between diversity and macroevolution is complex. These results indicate an important, previously underappreciated and comparatively unusual role of biotic interactions in Homo macroevolution, and speciation in particular. The unusual and unexpected patterns of diversity dependence in Homo speciation and extinction may be a consequence of repeated Homo range expansions driven by interspecific competition and made possible by recurrent innovations in ecological strategies. Exploring how hominin macroevolution fits into the general vertebrate macroevolutionary landscape has the potential to offer new perspectives on longstanding questions in vertebrate evolution and shed new light on evolutionary processes within our own lineage.
Collapse
Affiliation(s)
- Laura A van Holstein
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK.
| | - Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Herrick J. DNA Damage, Genome Stability, and Adaptation: A Question of Chance or Necessity? Genes (Basel) 2024; 15:520. [PMID: 38674454 PMCID: PMC11049855 DOI: 10.3390/genes15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNA damage causes the mutations that are the principal source of genetic variation. DNA damage detection and repair mechanisms therefore play a determining role in generating the genetic diversity on which natural selection acts. Speciation, it is commonly assumed, occurs at a rate set by the level of standing allelic diversity in a population. The process of speciation is driven by a combination of two evolutionary forces: genetic drift and ecological selection. Genetic drift takes place under the conditions of relaxed selection, and results in a balance between the rates of mutation and the rates of genetic substitution. These two processes, drift and selection, are necessarily mediated by a variety of mechanisms guaranteeing genome stability in any given species. One of the outstanding questions in evolutionary biology concerns the origin of the widely varying phylogenetic distribution of biodiversity across the Tree of Life and how the forces of drift and selection contribute to shaping that distribution. The following examines some of the molecular mechanisms underlying genome stability and the adaptive radiations that are associated with biodiversity and the widely varying species richness and evenness in the different eukaryotic lineages.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher at 3, Rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
8
|
Li W, Wang R, Liu MF, Folk RA, Xue B, Saunders RMK. Climatic and biogeographic processes underlying the diversification of the pantropical flowering plant family Annonaceae. FRONTIERS IN PLANT SCIENCE 2024; 15:1287171. [PMID: 38525154 PMCID: PMC10957689 DOI: 10.3389/fpls.2024.1287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Tropical forests harbor the richest biodiversity among terrestrial ecosystems, but few studies have addressed the underlying processes of species diversification in these ecosystems. We use the pantropical flowering plant family Annonaceae as a study system to investigate how climate and biogeographic events contribute to diversification. A super-matrix phylogeny comprising 835 taxa (34% of Annonaceae species) based on eight chloroplast regions was used in this study. We show that global temperature may better explain the recent rapid diversification in Annonaceae than time and constant models. Accelerated accumulation of niche divergence (around 15 Ma) lags behind the increase of diversification rate (around 25 Ma), reflecting a heterogeneous transition to recent diversity increases. Biogeographic events are related to only two of the five diversification rate shifts detected. Shifts in niche evolution nevertheless appear to be associated with increasingly seasonal environments. Our results do not support the direct correlation of any particular climatic niche shifts or historical biogeographical event with shifts in diversification rate. Instead, we suggest that Annonaceae diversification can lead to later niche divergence as a result of increasing interspecific competition arising from species accumulation. Shifts in niche evolution appear to be associated with increasingly seasonal environments. Our results highlight the complexity of diversification in taxa with long evolutionary histories.
Collapse
Affiliation(s)
- Weixi Li
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Runxi Wang
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ming-Fai Liu
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Richard M. K. Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Wacker KS, Winger BM. An Elevational Phylogeographic Diversity Gradient in Neotropical Birds Is Decoupled from Speciation Rates. Am Nat 2024; 203:362-381. [PMID: 38358813 DOI: 10.1086/728598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractA key question about macroevolutionary speciation rates is whether they are controlled by microevolutionary processes operating at the population level. For example, does spatial variation in population genetic differentiation underlie geographical gradients in speciation rates? Previous work suggests that speciation rates increase with elevation in Neotropical birds, but underlying population-level gradients remain unexplored. Here, we characterize elevational phylogeographic diversity between montane and lowland birds in the megadiverse Andes-Amazonian system and assess its relationship to speciation rates to evaluate the link between population-level differentiation and species-level diversification. We aggregated and georeferenced nearly 7,000 mitochondrial DNA sequences across 103 species or species complexes in the Andes and Amazonia and used these sequences to describe phylogeographic differentiation across both regions. Our results show increased levels of both discrete and continuous metrics of population structure in the Andean mountains compared with the Amazonian lowlands. However, higher levels of population differentiation do not predict higher rates of speciation in our dataset. Multiple potential factors may lead to our observed decoupling of initial population divergence and speciation rates, including the ephemerality of incipient species and the multifaceted nature of the speciation process, as well as methodological challenges associated with estimating rates of population differentiation and speciation.
Collapse
|
10
|
Shi BY, Pan D, Zhang KQ, Gu TY, Yeo DCJ, Ng PKL, Cumberlidge N, Sun HY. Diversification of freshwater crabs on the sky islands in the Hengduan Mountains Region, China. Mol Phylogenet Evol 2024; 190:107955. [PMID: 37898294 DOI: 10.1016/j.ympev.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.
Collapse
Affiliation(s)
- Bo-Yang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Kang-Qin Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tian-Yu Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Darren C J Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Hong-Ying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Overcast I, Noguerales V, Meramveliotakis E, Andújar C, Arribas P, Creedy TJ, Emerson BC, Vogler AP, Papadopoulou A, Morlon H. Inferring the ecological and evolutionary determinants of community genetic diversity. Mol Ecol 2023; 32:6093-6109. [PMID: 37221561 DOI: 10.1111/mec.16958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.
Collapse
Affiliation(s)
- Isaac Overcast
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Víctor Noguerales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Carmelo Andújar
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Paula Arribas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Thomas J Creedy
- Department of Life Sciences, Natural History Museum, London, UK
| | - Brent C Emerson
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
12
|
Yang Y, Zhang W, Liu W, He D, Wan W. Irreversible community difference between bacterioplankton generalists and specialists in response to lake dredging. WATER RESEARCH 2023; 243:120344. [PMID: 37482008 DOI: 10.1016/j.watres.2023.120344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Donglan He
- College of Life Science, South-Central Minzu University, Wuhan 430070, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China.
| |
Collapse
|
13
|
Arenas S, Búrquez A, Bustamante E, Scheinvar E, Eguiarte LE. Are 150 km of open sea enough? Gene flow and population differentiation in a bat-pollinated columnar cactus. PLoS One 2023; 18:e0282932. [PMID: 37384637 PMCID: PMC10309638 DOI: 10.1371/journal.pone.0282932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Genetic differentiations and phylogeographical patterns are controlled by the interplay between spatial isolation and gene flow. To assess the extent of gene flow across an oceanic barrier, we explored the effect of the separation of the peninsula of Baja California on the evolution of mainland and peninsular populations of the long-lived columnar cactus Stenocereus thurberi. We analyzed twelve populations throughout the OPC distribution range to assess genetic diversity and structure using chloroplast DNA sequences. Genetic diversity was higher (Hd = 0.81), and genetic structure was lower (GST = 0.143) in mainland populations vs peninsular populations (Hd = 0.71, GST = 0.358 respectively). Genetic diversity was negatively associated with elevation but positively with rainfall. Two mainland and one peninsular ancestral haplotypes were reconstructed. Peninsular populations were as isolated among them as with mainland populations. Peninsular haplotypes formed a group with one mainland coastal population, and populations across the gulf shared common haplotypes giving support to regular gene flow across the Gulf. Gene flow is likely mediated by bats, the main pollinators and seed dispersers. Niche modeling suggests that during the Last Glacial Maximum (c. 130 ka), OPC populations shrank to southern locations. Currently, Stenocereus thurberi populations are expanding, and the species is under population divergence despite ongoing gene flow. Ancestral populations are located on the mainland and although vicariant peninsular populations cannot be ruled out, they are likely the result of gene flow across the seemingly formidable barrier of the Gulf of California. Still, unique haplotypes occur in the peninsula and the mainland, and peninsular populations are more structured than those on the mainland.
Collapse
Affiliation(s)
- Sebastián Arenas
- DIADE, Université de Montpellier, IRD, Montpellier, France
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Alberto Búrquez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Enriquena Bustamante
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
15
|
Short-term paleogeographic reorganizations and climate events shaped diversification of North American freshwater gastropods over deep time. Sci Rep 2022; 12:15572. [PMID: 36114216 PMCID: PMC9481594 DOI: 10.1038/s41598-022-19759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
What controls species diversity and diversification is one of the major questions in evolutionary biology and paleontology. Previous studies have addressed this issue based on various plant and animal groups, geographic regions, and time intervals. However, as most previous research focused on terrestrial or marine ecosystems, our understanding of the controls on diversification of biota (and particularly invertebrates) in freshwater environments in deep time is still limited. Here, we infer diversification rates of North American freshwater gastropods from the Late Triassic to the Pleistocene and explore potential links between shifts in speciation and extinction and major changes in paleogeography, climate, and biotic interactions. We found that variation in the speciation rate is best explained by changes in continental fragmentation, with rate shifts coinciding with major paleogeographic reorganizations in the Mesozoic, in particular the retreat of the Sundance Sea and subsequent development of the Bighorn wetland and the advance of the Western Interior Seaway. Climatic events in the Cenozoic (Middle Eocene Climate Optimum, Miocene Climate Optimum) variably coincide with shifts in speciation and extinction as well, but no significant long-term association could be detected. Similarly, no influence of diversity dependence was found across the entire time frame of ~ 214 Myr. Our results indicate that short-term climatic events and paleogeographic changes are relevant to the diversification of continental freshwater biota, while long-term trends have limited effect.
Collapse
|
16
|
Hay EM, McGee MD, Chown SL. Geographic range size and speciation in honeyeaters. BMC Ecol Evol 2022; 22:86. [PMID: 35768772 PMCID: PMC9245323 DOI: 10.1186/s12862-022-02041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
17
|
Smyčka J, Roquet C, Boleda M, Alberti A, Boyer F, Douzet R, Perrier C, Rome M, Valay JG, Denoeud F, Šemberová K, Zimmermann NE, Thuiller W, Wincker P, Alsos IG, Coissac E, Lavergne S. Tempo and drivers of plant diversification in the European mountain system. Nat Commun 2022; 13:2750. [PMID: 35585056 PMCID: PMC9117672 DOI: 10.1038/s41467-022-30394-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras. Here, the authors use full-plastome phylogenomics and multiclade comparative models to reconstruct the tempo and drivers of six European Alpine angiosperm lineages before and during the Pleistocene. They find that geographic divergence and bedrock shifts drive speciation events, while diversification rates remained steady.
Collapse
Affiliation(s)
- Jan Smyčka
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France. .,Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic. .,Department of Botany, Faculty of Science, Charles University, CZ-12801, Prague, Czech Republic.
| | - Cristina Roquet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France.,Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, ES-08193, Bellaterra, Spain
| | - Martí Boleda
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, FR-91057, Evry, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), FR-91190, Gif-sur-Yvette, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France
| | - Rolland Douzet
- CNRS, Lautaret, Jardin du Lautaret, Université Grenoble Alpes, FR-38000, Grenoble, France
| | - Christophe Perrier
- CNRS, Lautaret, Jardin du Lautaret, Université Grenoble Alpes, FR-38000, Grenoble, France
| | - Maxime Rome
- CNRS, Lautaret, Jardin du Lautaret, Université Grenoble Alpes, FR-38000, Grenoble, France
| | - Jean-Gabriel Valay
- CNRS, Lautaret, Jardin du Lautaret, Université Grenoble Alpes, FR-38000, Grenoble, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, FR-91057, Evry, France
| | - Kristýna Šemberová
- Department of Botany, Faculty of Science, Charles University, CZ-12801, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, CZ-25243, Průhonice, Czech Republic
| | | | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, FR-91057, Evry, France
| | - Inger G Alsos
- UiT - The Arctic University of Norway, The Arctic University Museum of Norway, N-9037, Tromsø, Norway
| | - Eric Coissac
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France
| | | | - Sébastien Lavergne
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, FR-38000, Grenoble, France
| |
Collapse
|
18
|
Han X, Xu Y, Huang J, Zang R. Species Diversity Regulates Ecological Strategy Spectra of Forest Vegetation Across Different Climatic Zones. FRONTIERS IN PLANT SCIENCE 2022; 13:807369. [PMID: 35310647 PMCID: PMC8924497 DOI: 10.3389/fpls.2022.807369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Ecological strategy is the tactics employed by species in adapting to abiotic and biotic conditions. The ecological strategy spectrum is defined as the relative proportion of species in different ecological strategy types within a community. Determinants of ecological strategy spectrum of plant community explored by most previous studies are about abiotic factors. Yet, the roles of biotic factors in driving variations of ecological strategy spectra of forest communities across different geographic regions remains unknown. In this study, we established 200 0.04-ha forest dynamics plots (FDPs) and measured three-leaf functional traits of tree and shrub species in four forest vegetation types across four climatic zones. Based on Grime's competitor, stress-tolerator, ruderal (CSR) triangular framework, and the StrateFy method, we categorized species into four ecological strategy groups (i.e., C-, S-, Int-, and R-groups) and related the ecological spectra of the forests to three species diversity indices [i.e., species richness, Shannon-Wiener index, and stem density (stem abundance)]. Linear regression, redundancy analysis, and variance partition analysis were utilized for assessing the roles of species diversity in regulating ecological strategy spectra of forest communities across different climatic zones. We found that the proportion of species in the C- and Int-groups increased, while the proportion of species in the S-group decreased, with the increase of three indices of species diversity. Among the three species diversity indices, stem abundance played the most important role in driving variations in ecological strategy spectra of forests across different climatic zones. Our finding highlights the necessity of accounting for biotic factors, especially stem abundance, in modeling or predicting the geographical distributions of plant species with varied ecological adaptation strategies to future environmental changes.
Collapse
Affiliation(s)
- Xin Han
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yue Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jihong Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Runguo Zang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Neubauer TA, Harzhauser M. Onset of Late Cretaceous diversification in Europe's freshwater gastropod fauna links to global climatic and biotic events. Sci Rep 2022; 12:2684. [PMID: 35177660 PMCID: PMC8854554 DOI: 10.1038/s41598-022-06557-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The Mesozoic rise of the European freshwater gastropod fauna is still poorly understood. Compared to the well documented Cenozoic history, little is known about the patterns and processes underlying the early diversification preceding their extinction crisis at the K–Pg boundary. We assess what is probably a first pulse of diversification of the Cenozoic-type fauna in the Late Cretaceous along with the potential abiotic and biotic controls for shifts in species diversification. We find strong support that the increase in the speciation rate in the Santonian (~ 85 Myr ago) is linked to a global sea level rise, which caused extensive flooding of continental areas and the formation of vast brackish-water ecosystems. The following decline of the speciation rate coincides with a rise in diversity and reflects increasing interspecific competition. The peak in the speciation rate postdates the Cenomanian–Turonian Thermal Maximum, which probably limited the potential for diversification among freshwater gastropods due to ecological constraints. The peak coincides moreover with the end phase of the Cretaceous Terrestrial Revolution, which sparked the radiation of angiosperms. The expansion and diversification of flowering plants, being an important food source for freshwater gastropods today, could have formed a necessary basis for gastropod diversification.
Collapse
Affiliation(s)
- Thomas A Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany. .,Naturalis Biodiversity Center, Leiden, The Netherlands.
| | - Mathias Harzhauser
- Geological-Paleontological Department, Natural History Museum Vienna, Vienna, Austria
| |
Collapse
|
20
|
Neubauer TA, Hauffe T, Silvestro D, Scotese CR, Stelbrink B, Albrecht C, Delicado D, Harzhauser M, Wilke T. Drivers of diversification in freshwater gastropods vary over deep time. Proc Biol Sci 2022; 289:20212057. [PMID: 35105242 PMCID: PMC8808086 DOI: 10.1098/rspb.2021.2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Unravelling the drivers of species diversification through geological time is of crucial importance for our understanding of long-term evolutionary processes. Numerous studies have proposed different sets of biotic and abiotic controls of speciation and extinction rates, but typically they were inferred for a single, long geological time frame. However, whether the impact of biotic and abiotic controls on diversification changes over time is poorly understood. Here, we use a large fossil dataset, a multivariate birth-death model and a comprehensive set of biotic and abiotic predictors, including a new index to quantify tectonic complexity, to estimate the drivers of diversification for European freshwater gastropods over the past 100 Myr. The effects of these factors on origination and extinction are estimated across the entire time frame as well as within sequential time windows of 20 Myr each. Our results find support for temporal heterogeneity in the factors associated with changes in diversification rates. While the factors impacting speciation and extinction rates vary considerably over time, diversity-dependence and topography are consistently important. Our study highlights that a high level of heterogeneity in diversification rates is best captured by incorporating time-varying effects of biotic and abiotic factors.
Collapse
Affiliation(s)
- Thomas A. Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
- Marine Biodiversity, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
| | - Christopher R. Scotese
- Department of Earth and Planetary Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Diana Delicado
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Mathias Harzhauser
- Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
21
|
Mas-Peinado P, García-París M, Ruiz JL, Buckley D. The Strait of Gibraltar is an ineffective palaeogeographic barrier for some flightless darkling beetles (Coleoptera: Tenebrionidae: Pimelia). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The geographic distribution of a species is shaped by its biology and by environmental and palaeogeographic factors that interact at different spatial-temporal scales, which leads to distributions and diversification patterns observed between and within lineages. The darkling beetle genus Pimelia has been diversifying for more than 31.2 Mya showing different colonization patterns after the opening of the Gibraltar Strait 5 Mya. Three of the 14 subgenera of Pimelia have populations on both sides of the Strait. Through extensive sampling and the analysis of three molecular markers, we determine levels of intra- and interspecific genetic variation, identify evolutionary lineages in subgenera, estimate their temporal origin and distribution ranges and discuss the historical basis for the geographic and diversification patterns of Pimelia around the Strait. This single geographical feature acted both as a barrier and as a dispersal route for different Pimelia species. The Strait has represented a strong barrier for the subgenus Magrebmelia since the Middle Miocene. However, the subgenera Amblyptera and Amblypteraca share repetitive signatures of post-Messinian colonization across the Strait, possibly driven by stochastic or ‘catastrophic’ events such as tsunamis. Our demographic analyses support Wallace’s hypothesis on insect dispersal stochasticity. Some taxonomic changes, including the designation of a lectotype for Pimelia maura, are also proposed.
Collapse
Affiliation(s)
- Paloma Mas-Peinado
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, c/ Darwin 2, 28049-Madrid, Spain
| | - Mario García-París
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
| | - José L Ruiz
- Instituto de Estudios Ceutíes, Paseo del Revellín 30, 51001-Ceuta, Spain
| | - David Buckley
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006-Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, c/ Darwin 2, 28049-Madrid, Spain
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), c/ Darwin 2, 28049-Madrid, Spain
| |
Collapse
|
22
|
Overcast I, Ruffley M, Rosindell J, Harmon L, Borges PAV, Emerson BC, Etienne RS, Gillespie R, Krehenwinkel H, Mahler DL, Massol F, Parent CE, Patiño J, Peter B, Week B, Wagner C, Hickerson MJ, Rominger A. A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Mol Ecol Resour 2021; 21:2782-2800. [PMID: 34569715 PMCID: PMC9297962 DOI: 10.1111/1755-0998.13514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Biodiversity accumulates hierarchically by means of ecological and evolutionary processes and feedbacks. Within ecological communities drift, dispersal, speciation, and selection operate simultaneously to shape patterns of biodiversity. Reconciling the relative importance of these is hindered by current models and inference methods, which tend to focus on a subset of processes and their resulting predictions. Here we introduce massive ecoevolutionary synthesis simulations (MESS), a unified mechanistic model of community assembly, rooted in classic island biogeography theory, which makes temporally explicit joint predictions across three biodiversity data axes: (i) species richness and abundances, (ii) population genetic diversities, and (iii) trait variation in a phylogenetic context. Using simulations we demonstrate that each data axis captures information at different timescales, and that integrating these axes enables discriminating among previously unidentifiable community assembly models. MESS is unique in generating predictions of community-scale genetic diversity, and in characterizing joint patterns of genetic diversity, abundance, and trait values. MESS unlocks the full potential for investigation of biodiversity processes using multidimensional community data including a genetic component, such as might be produced by contemporary eDNA or metabarcoding studies. We combine MESS with supervised machine learning to fit the parameters of the model to real data and infer processes underlying how biodiversity accumulates, using communities of tropical trees, arthropods, and gastropods as case studies that span a range of data availability scenarios, and spatial and taxonomic scales.
Collapse
Affiliation(s)
- Isaac Overcast
- Biology DepartmentGraduate Center of the City University of New YorkNew YorkNew YorkUSA
- Biology DepartmentCity College of New YorkNew YorkNew YorkUSA
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Megan Ruffley
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of IdahoMoscowIdahoUSA
| | - James Rosindell
- Department of Life SciencesImperial College LondonAscotBerkshireUK
| | - Luke Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Paulo A. V. Borges
- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity GroupFaculdade de Ciências Agrárias e do AmbienteUniversidade dos AçoresAçoresPortugal
| | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstitute of Natural Products and AgrobiologyIPNA‐CSIC)La Laguna, TenerifeCanary IslandsSpain
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Rosemary Gillespie
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | | | - D. Luke Mahler
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Francois Massol
- CNRSInsermCHU LilleUniversity of LilleLilleFrance
- Center for Infection and Immunity of LilleInstitut Pasteur de LilleLilleFrance
- CNRSEvo‐Eco‐PaleoSPICI GroupUniversity of LilleLilleFrance
| | - Christine E. Parent
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of IdahoMoscowIdahoUSA
| | - Jairo Patiño
- Island Ecology and Evolution Research GroupInstitute of Natural Products and AgrobiologyIPNA‐CSIC)La Laguna, TenerifeCanary IslandsSpain
- Plant Conservation and Biogeography GroupDepartamento de BotánicaEcología y Fisiología VegetalFacultad de CienciasUniversidad de La LagunaTenerifeIslas CanariasSpain
| | - Ben Peter
- Group of Genetic Diversity through Space and TimeDepartment of Evolutionary GeneticsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Bob Week
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Catherine Wagner
- Department of Botany and Biodiversity InstituteUniversity of WyomingLaramieWyomingUSA
| | - Michael J. Hickerson
- Biology DepartmentGraduate Center of the City University of New YorkNew YorkNew YorkUSA
- Biology DepartmentCity College of New YorkNew YorkNew YorkUSA
- Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Andrew Rominger
- School of Biology and EcologyUniversity of MaineOronoMaineUSA
- Maine Center for Genetics in the EnvironmentUniversity of MaineOronoMaineUSA
| |
Collapse
|
23
|
Ortego J, Knowles LL. Geographical isolation versus dispersal: Relictual alpine grasshoppers support a model of interglacial diversification with limited hybridization. Mol Ecol 2021; 31:296-312. [PMID: 34651368 DOI: 10.1111/mec.16225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
Alpine biotas are paradigmatic of the countervailing roles of geographical isolation and dispersal during diversification. In temperate regions, repeated distributional shifts driven by Pleistocene climatic oscillations produced both recurrent pulses of population fragmentation and opportunities for gene flow during range expansions. Here, we test whether a model of divergence in isolation vs. with gene flow is more likely in the diversification of flightless alpine grasshoppers of the genus Podisma from the Iberian Peninsula. The answer to this question can also provide key insights about the pace of evolution. Specifically, if the data fit a divergence in isolation model, this suggests rapid evolution of reproductive isolation. Genomic data confirm a Pleistocene origin of the species complex, and multiple analytical approaches revealed limited asymmetric historical hybridization between two taxa. Genomic-based demographic reconstructions, spatial patterns of genetic structure and range shifts inferred from palaeodistribution modelling suggest severe range contraction accompanied by declines in effective population sizes during interglacials (i.e., contemporary populations confined to sky islands are relicts) and expansions during the coldest stages of the Pleistocene in each taxon. Although limited hybridization during secondary contact leads to phylogenetic uncertainty if gene flow is not accommodated when estimating evolutionary relationships, all species exhibit strong genetic cohesiveness. Our study lends support to the notion that the accumulation of incipient differences during periods of isolation were sufficient to lead to lineage persistence, but also that the demographic changes, dispersal constraints and spatial distribution of the sky islands themselves mediated species diversification in temperate alpine biotas.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Weppe R, Orliac MJ, Guinot G, Condamine FL. Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene-Oligocene transition. Proc Biol Sci 2021; 288:20210173. [PMID: 34074121 PMCID: PMC8170207 DOI: 10.1098/rspb.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
The Eocene-Oligocene transition (EOT) represents a period of global environmental changes particularly marked in Europe and coincides with a dramatic biotic turnover. Here, using an exceptional fossil preservation, we document and analyse the diversity dynamics of a mammal clade, Cainotherioidea (Artiodactyla), that survived the EOT and radiated rapidly immediately after. We infer their diversification history from Quercy Konzentrat-Lagerstätte (south-west France) at the species level using Bayesian birth-death models. We show that cainotherioid diversity fluctuated through time, with extinction events at the EOT and in the late Oligocene, and a major speciation burst in the early Oligocene. The latter is in line with our finding that cainotherioids had a high morphological adaptability following environmental changes throughout the EOT, which probably played a key role in the survival and evolutionary success of this clade in the aftermath. Speciation is positively associated with temperature and continental fragmentation in a time-continuous way, while extinction seems to synchronize with environmental change in a punctuated way. Within-clade interactions negatively affected the cainotherioid diversification, while inter-clade competition might explain their final decline during the late Oligocene. Our results provide a detailed dynamic picture of the evolutionary history of a mammal clade in a context of global change.
Collapse
Affiliation(s)
- R. Weppe
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - M. J. Orliac
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - G. Guinot
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - F. L. Condamine
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
25
|
de Alencar LRV, Quental TB. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol Evol 2021; 11:5828-5843. [PMID: 34141187 PMCID: PMC8207422 DOI: 10.1002/ece3.7511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios: when speciation is mediated by geographical or resource-partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader's attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.
Collapse
Affiliation(s)
| | - Tiago Bosisio Quental
- Departamento de EcologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
26
|
Reijenga BR, Murrell DJ, Pigot AL. Priority effects and the macroevolutionary dynamics of biodiversity. Ecol Lett 2021; 24:1455-1466. [PMID: 33979477 DOI: 10.1111/ele.13766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 04/04/2021] [Indexed: 11/30/2022]
Abstract
Priority effects can play a fundamental role in the assembly of ecological communities, but how they shape the dynamics of biodiversity over macroevolutionary timescales remains unclear. Here we develop and analyse a metacommunity model combining local priority effects with niche evolution, speciation and extinction. We show that by promoting the persistence of rare species, local priority effects cause the evolution of higher metacommunity diversity as well as major disparities in richness among evolutionary lineages. However, we also show how classic macroevolutionary patterns of niche incumbency-whereby rates of regional diversification and invasion slow down as ecological niches are filled-do not depend on local priority effects, arising even when invading species continuously displace residents. Together, these results clarify the connection between local priority effects and the filling of ecological niche space, and reveal how the impact of species arrival order on competition fundamentally shapes the generation and maintenance of biodiversity.
Collapse
Affiliation(s)
- Bouwe R Reijenga
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David J Murrell
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
27
|
Leidinger L, Vedder D, Cabral JS. Temporal environmental variation may impose differential selection on both genomic and ecological traits. OIKOS 2021. [DOI: 10.1111/oik.08172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ludwig Leidinger
- Center for Computational and Theoretical Biology, Faculty of Biology, Univ. of Würzburg Würzburg Germany
| | - Daniel Vedder
- Center for Computational and Theoretical Biology, Faculty of Biology, Univ. of Würzburg Würzburg Germany
| | - Juliano Sarmento Cabral
- Center for Computational and Theoretical Biology, Faculty of Biology, Univ. of Würzburg Würzburg Germany
| |
Collapse
|
28
|
Duchen P, Alfaro ML, Rolland J, Salamin N, Silvestro D. On the Effect of Asymmetrical Trait Inheritance on Models of Trait Evolution. Syst Biol 2021; 70:376-388. [PMID: 32681798 PMCID: PMC7875446 DOI: 10.1093/sysbio/syaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/25/2022] Open
Abstract
Current phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a "jump" of mean phenotypes due to asymmetrical trait inheritance at cladogenesis. Here, we aim to clarify the effect of asymmetrical trait inheritance at speciation on macroevolutionary analyses, focusing on model testing and parameter estimation using some of the most common models of quantitative trait evolution. We developed an individual-based simulation framework in which the evolution of phenotypes is determined by trait changes at the individual level accumulating across generations, and cladogenesis occurs then by separation of subsets of the individuals into new lineages. Through simulations, we assess the magnitude of phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that even small jumps can strongly alter both the results of model selection and parameter estimations, potentially affecting the biological interpretation of the estimated mode of evolution of a trait. Our results call for caution when interpreting analyses of trait evolution, while highlighting the importance of testing a wide range of alternative models. In the light of our findings, we propose that future methodological advances in comparative methods should more explicitly model the intraspecific variability around species mean phenotypes and how it is inherited at speciation.
Collapse
Affiliation(s)
- Pablo Duchen
- Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Michael L Alfaro
- University of California Los Angeles (UCLA). College Life Sciences - Ecology and Evolutionary Biology. Los Angeles, CA, USA
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, Canada
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland Nicolas Salamin and Daniele Silvestro contributed equally to this article
| |
Collapse
|
29
|
Gąsiorek P, Oczkowski A, Blagden B, Kristensen RM, Bartels PJ, Nelson DR, Suzuki AC, Michalczyk Ł. New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalize a pseudocryptic horn of plenty. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The cosmopolitan echiniscid genus Hypechiniscus contains exclusively rare species. In this contribution, by combining statistical morphometry and molecular phylogeny, we present qualitative and quantitative aspects of Hypechiniscus diversity, which remained hidden under the two purportedly cosmopolitan species: H. gladiator and H. exarmatus. A neotype is designated for H. gladiator from Creag Meagaidh (Scotland), and an informal re-description is provided for H. exarmatus based on animals from Creag Meagaidh and the Isle of Skye (Inner Hebrides). Subspecies/forms of H. gladiator are suppressed due to the high developmental variability of the cirrus dorsalis. At the same time, four species of the genus are described: H. daedalus sp. nov. from Roan Mountain and the Great Smoky Mountains (Southern Appalachian Mountains, USA), H. flavus sp. nov. and H. geminus sp. nov. from the Yatsugatake Mountains (Honshu, Japan), and H. cataractus sp. nov. from the Malay Archipelago (Borneo and the Moluccas). Dorsal and ventral sculpturing, together with morphometric traits, are shown to be the key characters that allow for the phenotypic discrimination of species within the genus. Furthermore, the morphology of Hypechiniscus is discussed and compared to that of the most similar genera, Pseudechiniscus and Stellariscus. Finally, a diagnostic key to all recognized Hypechiniscus species is provided.
Collapse
Affiliation(s)
- Piotr Gąsiorek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Artur Oczkowski
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Brian Blagden
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Reinhardt M Kristensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark
| | - Paul J Bartels
- Department of Biology, Warren Wilson College, Asheville, NC, USA
| | - Diane R Nelson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | | | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
30
|
Pannetier T, Martinez C, Bunnefeld L, Etienne RS. Branching patterns in phylogenies cannot distinguish diversity-dependent diversification from time-dependent diversification. Evolution 2020; 75:25-38. [PMID: 33205832 PMCID: PMC7898657 DOI: 10.1111/evo.14124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 01/08/2023]
Abstract
One of the primary goals of macroevolutionary biology has been to explain general trends in long‐term diversity patterns, including whether such patterns correspond to an upscaling of processes occurring at lower scales. Reconstructed phylogenies often show decelerated lineage accumulation over time. This pattern has often been interpreted as the result of diversity‐dependent (DD) diversification, where the accumulation of species causes diversification to decrease through niche filling. However, other processes can also produce such a slowdown, including time dependence without diversity dependence. To test whether phylogenetic branching patterns can be used to distinguish these two mechanisms, we formulated a time‐dependent, but diversity‐independent model that matches the expected diversity through time of a DD model. We simulated phylogenies under each model and studied how well likelihood methods could recover the true diversification mode. Standard model selection criteria always recovered diversity dependence, even when it was not present. We correct for this bias by using a bootstrap method and find that neither model is decisively supported. This implies that the branching pattern of reconstructed trees contains insufficient information to detect the presence or absence of diversity dependence. We advocate that tests encompassing additional data, for example, traits or range distributions, are needed to evaluate how diversity drives macroevolutionary trends.
Collapse
Affiliation(s)
- Théo Pannetier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands.,Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - César Martinez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands
| | - Lynsey Bunnefeld
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands
| |
Collapse
|
31
|
De Lisle SP, Punzalan D, Rollinson N, Rowe L. Extinction and the temporal distribution of macroevolutionary bursts. J Evol Biol 2020; 34:380-390. [PMID: 33205504 PMCID: PMC7983991 DOI: 10.1111/jeb.13741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Phenotypic evolution through deep time is slower than expected from microevolutionary rates. This is the paradox of stasis. Previous models suggest stasis occurs because populations track adaptive peaks that remain relatively stable on million‐year intervals, raising the equally perplexing question of why these large changes are so rare. Here, we consider the possibility that peaks can move more rapidly than populations can adapt, resulting in extinction. We model peak movement with explicit population dynamics, parameterized with published microevolutionary estimates. Allowing extinction greatly increases the parameter space of peak movements that yield the appearance of stasis observed in real data through deep time. Extreme peak displacements, regardless of their frequency, will rarely result in an equivalent degree of trait evolution because of extinction. Thus, larger peak displacements will rarely be inferred using trait data from extant species or observed in fossil records. Our work highlights population ecology as an important contributor to macroevolutionary dynamics, presenting an alternative perspective on the paradox of stasis, where apparent constraint on phenotypic evolution in deep time reflects our restricted view of the subset of earth's lineages that were fortunate enough to reside on relatively stable peaks.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | - David Punzalan
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,School of the Environment, University of Toronto, Toronto, ON, Canada
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Swedish Collegium for Advanced Study, Uppsala, Sweden
| |
Collapse
|
32
|
Hay EM, Poulin R, Jorge F. Macroevolutionary dynamics of parasite diversification: A reality check. J Evol Biol 2020; 33:1758-1769. [PMID: 33047407 DOI: 10.1111/jeb.13714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Parasitism is often invoked as a factor explaining the variation in diversification rates across the tree of life, while also representing up to half of Earth's diversity. Yet, patterns and processes of parasite diversification remain mostly unknown. In this study, we assess the patterns of parasite diversification and specifically determine the role of life-history traits (i.e. life cycle complexity and host range) and major coevolutionary events in driving diversification across eight phylogenetic datasets spanning taxonomically different parasite groups. Aware of the degree of incomplete sampling among all parasite phylogenies, we also tested the impact of sampling bias on estimates of diversification. We show that the patterns and rates of parasite diversification differ among taxa according to life cycle complexity and to some extent major host transitions. Only directly transmitted parasites were found to be influenced by an effect of major host transitions on diversification rates. Although parasitism may be a main factor responsible for heterogeneity in diversification among the tree of life, the high degree of incomplete parasite phylogenies remains an obstacle when modelling diversification dynamics. Nevertheless, we provide the first comparative test of parasite diversification, revealing some consistent patterns and insight into the processes that shape it.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Fraser D, Soul LC, Tóth AB, Balk MA, Eronen JT, Pineda-Munoz S, Shupinski AB, Villaseñor A, Barr WA, Behrensmeyer AK, Du A, Faith JT, Gotelli NJ, Graves GR, Jukar AM, Looy CV, Miller JH, Potts R, Lyons SK. Investigating Biotic Interactions in Deep Time. Trends Ecol Evol 2020; 36:61-75. [PMID: 33067015 DOI: 10.1016/j.tree.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.
Collapse
Affiliation(s)
- Danielle Fraser
- Palaeobiology, Canadian Museum of Nature, Ottawa, ON, Canada; Biology and Earth Sciences, Carleton University, Ottawa, ON, Canada; Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA.
| | - Laura C Soul
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Anikó B Tóth
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, Australia
| | - Meghan A Balk
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Jussi T Eronen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science, Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland; BIOS research Unit, Helsinki, Finland
| | - Silvia Pineda-Munoz
- Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| | - W Andrew Barr
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO, USA
| | - J Tyler Faith
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT,USA; Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | | | - Gary R Graves
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Advait M Jukar
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Cindy V Looy
- Department of Integrative Biology, Museum of Paleontology, University and Jepson Herbaria, University of California-Berkeley, Berkeley, CA , USA
| | - Joshua H Miller
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Richard Potts
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC , USA
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
34
|
Gaboriau T, Mendes FK, Joly S, Silvestro D, Salamin N. A multi‐platform package for the analysis of intra‐ and interspecific trait evolution. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Théo Gaboriau
- Department of Computational Biology University of Lausanne Lausanne Switzerland
| | - Fábio K. Mendes
- School of Computer Science The University of Auckland Auckland New Zealand
- School of Biological Sciences The University of Auckland Auckland New Zealand
| | - Simon Joly
- Institut Recherche en Biologie Végétale Montréal QC Canada
- Montreal Botanical Garden Montreal QC Canada
| | - Daniele Silvestro
- Department of Biology University of Fribourg Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Global Gothenburg Biodiversity Centre Gothenburg Sweden
| | - Nicolas Salamin
- Department of Computational Biology University of Lausanne Lausanne Switzerland
| |
Collapse
|
35
|
Parmentier T, De Laender F, Bonte D. The topology and drivers of ant-symbiont networks across Europe. Biol Rev Camb Philos Soc 2020; 95:1664-1688. [PMID: 32691527 DOI: 10.1111/brv.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Intimate associations between different species drive community composition across ecosystems. Understanding the ecological and evolutionary drivers of these symbiotic associations is challenging because their structure eventually determines stability and resilience of the entire species network. Here, we compiled a detailed database on naturally occurring ant-symbiont networks in Europe to identify factors that affect symbiont network topology. These networks host an unrivalled diversity of macrosymbiotic associations, spanning the entire mutualism-antagonism continuum, including: (i) myrmecophiles - commensalistic and parasitic arthropods; (ii) trophobionts - mutualistic aphids, scale insects, planthoppers and caterpillars; (iii) social parasites - parasitic ant species; (iv) parasitic helminths; and (v) parasitic fungi. We dissected network topology to investigate what determines host specificity, symbiont species richness, and the capacity of different symbiont types to switch hosts. We found 722 macrosymbionts (multicellular symbionts) associated with European ants. Symbiont type explained host specificity and the average relatedness of the host species. Social parasites were associated with few hosts that were phylogenetically highly related, whereas the other symbiont types interacted with a larger number of hosts across a wider taxonomic distribution. The hosts of trophobionts were the least phylogenetically related across all symbiont types. Colony size, host range and habitat type predicted total symbiont richness: ant hosts with larger colony size, a larger distribution range or with a wider habitat range contained more symbiont species. However, we found that different sets of host factors affected diversity in the different types of symbionts. Ecological factors, such as colony size, host range and niche width predominantly determined myrmecophile species richness, whereas host phylogeny was the most important predictor of mutualistic trophobiont, social parasite and parasitic helminth species richness. Lastly, we found that hosts with a common biogeographic history support a more similar community of symbionts. Phylogenetically related hosts also shared more trophobionts, social parasites and helminths, but not myrmecophiles. Taken together, these results suggest that ecological and evolutionary processes structure host specificity and symbiont richness in large-scale ant-symbiont networks, but these drivers may shift in importance depending on the type of symbiosis. Our findings highlight the potential of well-characterized bipartite networks composed of different types of symbioses to identify candidate processes driving community composition.
Collapse
Affiliation(s)
- Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium.,Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
36
|
Nürk NM, Linder HP, Onstein RE, Larcombe MJ, Hughes CE, Piñeiro Fernández L, Schlüter PM, Valente L, Beierkuhnlein C, Cutts V, Donoghue MJ, Edwards EJ, Field R, Flantua SGA, Higgins SI, Jentsch A, Liede‐Schumann S, Pirie MD. Diversification in evolutionary arenas-Assessment and synthesis. Ecol Evol 2020; 10:6163-6182. [PMID: 32607221 PMCID: PMC7319112 DOI: 10.1002/ece3.6313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.
Collapse
Affiliation(s)
- Nicolai M. Nürk
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - H. Peter Linder
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Colin E. Hughes
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Laura Piñeiro Fernández
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Department of BotanyUniversity of HohenheimStuttgartGermany
| | | | - Luis Valente
- Naturalis Biodiversity CenterUnderstanding Evolution GroupLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Carl Beierkuhnlein
- Department of BiogeographyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Vanessa Cutts
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | | | | | - Anke Jentsch
- Department of Disturbance EcologyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Sigrid Liede‐Schumann
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Michael D. Pirie
- Johannes Gutenberg‐UniversitätMainzGermany
- University MuseumUniversity of BergenBergenNorway
| |
Collapse
|
37
|
Antell GT, Kiessling W, Aberhan M, Saupe EE. Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Curr Biol 2020; 30:115-121.e5. [PMID: 31839449 DOI: 10.1016/j.cub.2019.10.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Fundamental ecological and evolutionary theories, such as community saturation and diversity-dependent diversification, assume that biotic competition restricts resource use, and thus limits realized niche breadth and geographic range size [1-3]. This principle is called competitive exclusion. The corollary (ecological release) posits that, after competitors disappear from a region, species that were previously excluded will invade. Hundreds of field experiments have demonstrated ecological release in living populations. However, few of these studies were conducted in marine environments, and almost no work extended beyond 10 years and 1,000 km2 [4, 5]. In limited investigation of marine taxa at larger spatiotemporal scales, macroecologists and paleobiologists have observed little evidence of competitive exclusion [6-9]. Here, we quantified spatial trends in the rich and densely sampled fossil history of brachiopods and bivalves, while accounting for inconsistent sampling coverage through time using a new method of spatial standardization. The number of potential competitors in a region did not explain the geographic distribution of constituent species or genera. Furthermore, although ecological release predicts species to expand after extinction events, survivors of intervals with net species loss expanded as rarely as species in other intervals. Regression model estimates indicated different spatial responses of brachiopods and bivalves, and of habitat specialists and generalists, but no effect from changes in number of potential competitors. Biotic competition may control the distribution of populations, but, on larger spatiotemporal scales, non-competitive factors may have driven biogeographic patterns of brachiopods and bivalves.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
| | - Wolfgang Kiessling
- Section Paleobiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Loewenichstraße 28, Erlangen 91054, Germany
| | - Martin Aberhan
- Museum für Naturkunde, Invalidenstraße 43, Berlin 10115, Germany
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
| |
Collapse
|
38
|
Harvey MG, Singhal S, Rabosky DL. Beyond Reproductive Isolation: Demographic Controls on the Speciation Process. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024701] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of speciation typically investigate the evolution of reproductive isolation between populations, but several other processes can serve as key steps limiting the formation of species. In particular, the probability of successful speciation can be influenced by factors that affect the frequency with which population isolates form as well as their persistence through time. We suggest that population isolation and persistence have an inherently spatial dimension that can be profitably studied using a conceptual framework drawn from metapopulation ecology. We discuss models of speciation that incorporate demographic processes and highlight the need for a broader application of phylogenetic comparative approaches to evaluate the general importance of population isolation, persistence, and reproductive isolation in speciation. We review diverse and nontraditional data sources that can be leveraged to study isolation and persistence in a comparative framework. This incorporation of spatial demographic information facilitates the integration of perspectives on speciation across disciplines and timescales.
Collapse
Affiliation(s)
- Michael G. Harvey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, California 90747, USA
| | - Daniel L. Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
39
|
Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc Natl Acad Sci U S A 2019; 116:20584-20590. [PMID: 31548392 DOI: 10.1073/pnas.1902693116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding heterogeneity in species richness between closely related clades is a key research question in ecology and evolutionary biology. Multiple hypotheses have been proposed to interpret such diversity contrasts across the tree of life, with most studies focusing on speciation rates to explain clades' evolutionary radiations, while often neglecting extinction rates. Here we study a notorious biological model as exemplified by the sister relationships between mackerel sharks (Lamniformes, 15 extant species) and ground sharks (Carcharhiniformes, ∼290 extant species). Using a comprehensive fossil dataset, we found that the diversity dynamics of lamniforms waxed and waned following repeated cycles of radiation phases and declining phases. Radiation phases peaked up to 3 times the current diversity in the early Late Cretaceous. In the last 20 million years, the group declined to its present-day diversity. Along with a higher extinction risk for young species, we further show that this declining pattern is likely attributed to a combination of abiotic and biotic factors, with a cooling-driven extinction (negative correlation between temperature and extinction) and clade competition with some ground sharks. Competition from multiple clades successively drove the demise and replacement of mackerel sharks due to a failure to originate facing the rise of ground sharks, particularly since the Eocene. These effects came from ecologically similar carcharhiniform species inhibiting diversification of medium- and large-sized lamniforms. These results imply that the interplay between abiotic and biotic drivers had a substantial role in extinction and speciation, respectively, which determines the sequential rise and decline of marine apex predators.
Collapse
|
40
|
Aristide L, Morlon H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol Lett 2019; 22:2006-2017. [PMID: 31507039 DOI: 10.1111/ele.13385] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023]
Abstract
Competition can drive macroevolutionary change, for example during adaptive radiations. However, we still lack a clear understanding of how it shapes diversification processes and patterns. To better understand the macroevolutionary consequences of competition, as well as the signal left on phylogenetic data, we developed a model linking trait evolution and species diversification in an ecological context. We find four main results: first, competition spurs trait diversity but not necessarily species richness; second, competition produces slowdowns in species diversification even in the absence of explicit ecological limits, but not in phenotypic diversification even in the presence of such limits; third, early burst patterns do not provide a reliable way of testing for adaptive radiations; and fourth, looking for phylogenetic signal in trait data and support for phenotypic models incorporating competition is a better alternative. Our results clarify the macroevolutionary consequences of competition and could help design more powerful tests of adaptive radiations in nature.
Collapse
Affiliation(s)
- Leandro Aristide
- École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Hélène Morlon
- École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| |
Collapse
|
41
|
Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc Natl Acad Sci U S A 2019; 116:10874-10882. [PMID: 31085636 PMCID: PMC6561174 DOI: 10.1073/pnas.1817999116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alternative models of evolutionary processes suggest different associations between species diversification and trait evolution, but limited empirical evidence is available to test these models across large clades at global extents. Here we investigate the relative timing of species diversification and niche and phenotypic evolution across a global plant radiation (Saxifragales) with enormous phenotypic and habitat variation. We demonstrate strong temporal lags among rates, with increased diversification occurring first, followed by niche and phenotype. Accelerated diversification rates are coincident with mid-Miocene expansion of temperate biomes. Later increases in niche and phenotypic evolutionary rates argue against density-dependent diversification alone, indicating a major role for ecological opportunity. These results have broad implications for understanding diversification processes and the origin of present-day temperate biotas. Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade—Saxifragales—with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.
Collapse
|