1
|
Whitehead K. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. Dev Cogn Neurosci 2024; 71:101487. [PMID: 39675060 DOI: 10.1016/j.dcn.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
In older children and adults, cognition builds upon waking sensory experience which is consolidated during sleep. In the fetus and newborn, sensory input is instead largely experienced during sleep. The nature of these sensory inputs differs within sleep, between active and quiet sleep, as well as versus wakefulness. Here, sleep-wake organisation in the fetus and newborn is reviewed, and then its interaction with sensory inputs discussed with a focus on somatosensory and auditory modalities. Next, these ideas are applied to how neurological insults affect early development, using fetal growth restriction as a test case. Finally, the argument is made that taking account of sleep-wake state during perinatal functional neuroimaging can better index sensorimotor, language, and cognitive brain activities, potentially improving its diagnostic and prognostic value. To sum up, sensory and sleep-wake functions go hand in hand during early human development. Perturbation of these twinned functions by neurological insults may mediate later neurodevelopmental deficits. Perinatal neuroimaging has the potential to track these trajectories, feasibly identifying opportunities to therapeutically intervene.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Research Division of Digital Health and Applied Technology Assessment (DHATA), Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Rd, London SE1 8WA, UK.
| |
Collapse
|
2
|
Shiraki A, Kidokoro H, Watanabe H, Taga G, Ushida T, Narita H, Mitsumatsu T, Kumai S, Suzui R, Sawamura F, Ito Y, Yamamoto H, Nakata T, Sato Y, Hayakawa M, Takahashi Y, Natsume J. Sleep state-dependent development of resting-state functional connectivity during the preterm period. Sleep 2024; 47:zsae225. [PMID: 39320057 PMCID: PMC11632190 DOI: 10.1093/sleep/zsae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/24/2024] [Indexed: 09/26/2024] Open
Abstract
STUDY OBJECTIVES The brains of preterm infants exhibit altered functional connectivity (FC) networks, but the potential variation in sleep states and the impact of breathing patterns on FC networks are unclear. This study explores the evolution of resting-state FC from preterm to term, focusing on breathing patterns and distinguishing between active sleep (AS) and quiet sleep (QS). METHODS We recruited 63 preterm infants and 44 healthy-term infants and performed simultaneous electroencephalography and functional near-infrared spectroscopy. FC was calculated using oxy- and deoxyhemoglobin signals across eight channels. First, FC was compared between periodic breathing (PB) and non-PB segments. Then sleep state-dependent FC development was explored. FC was compared between AS and QS segments and between preterm infants at term and term-born infants in each sleep state. Finally, associations between FC at term, clinical characteristics, and neurodevelopmental outcomes in late infancy were assessed in preterm infants. RESULTS In total, 148 records from preterm infants and 44 from term-born infants were analyzed. PB inflated FC values. After excluding PB segments, FC was found to be elevated during AS compared to QS, particularly in connections involving occipital regions. Preterm infants had significantly higher FC in both sleep states compared to term-born infants. Furthermore, stronger FC in specific connections during AS at term was associated with unfavorable neurodevelopment in preterm infants. CONCLUSIONS Sleep states play a critical role in FC development and preterm infants show observable changes in FC.
Collapse
Affiliation(s)
- Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hama Watanabe
- Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Gentaro Taga
- Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hajime Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Mitsumatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumire Kumai
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Suzui
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Asayesh A, Vanhatalo S, Tokariev A. The impact of EEG electrode density on the mapping of cortical activity networks in infants. Neuroimage 2024; 303:120932. [PMID: 39547459 DOI: 10.1016/j.neuroimage.2024.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Electroencephalography (EEG) is widely used for assessing infant's brain activity, and multi-channel recordings support studies on functional cortical networks. Here, we aimed to assess how the number of recording electrodes affects the quality and level of details accessible in studying infant's cortical networks. METHODS Dense array EEG recordings with 124 channels from N=20 infants were used as the reference, and lower electrode numbers were subsampled to simulate recording setups with 63, 31, and 19 electrodes, respectively. Cortical activity networks were computed for each recording setup and different frequencies using amplitude and phase correlation measures. The effects of the recording setup were systematically assessed on global, nodal, and edge levels. RESULTS Compared to the reference 124-channel recording setup, lowering electrode density affected network measures in a modality- and frequency-specific manner. The global network features were essentially comparable with 63 or 31 channels. However, the analytic reliability of the local network measures, both at nodal and edge levels, was proportional to the electrode density. The low-frequency amplitude correlations were most robust to the number of recording electrodes, whereas higher frequency phase correlation networks were most sensitive to the density of recording electrodes. CONCLUSIONS Our findings suggest strong and predictable effects of recording setup on the network analyses. Higher electrode number supports studies on networks with phase correlations, higher frequency, and finer spatial details. SIGNIFICANCE The relationship between the recording setup and reliability of network analyses is essential for the prospective design of research data collection, as well as for guiding analytic strategies when using already collected EEG data from infants.
Collapse
Affiliation(s)
- Amirreza Asayesh
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland.
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
König S, Yrjölä P, Auno S, Videman M, Vanhatalo S, Tokariev A. Effect of in utero exposure to antiepileptic drugs on cortical networks and neurophysiological outcomes at 6 years. Epilepsia 2024. [PMID: 39601139 DOI: 10.1111/epi.18198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE The human brain undergoes an activity-dependent organization during late gestation, making it very sensitive to all effects on the spontaneous neuronal activity. Pregnant mothers with epilepsy are treated with antiepileptic drugs (AEDs) that may reach the fetus and cause altered cortical network activity after birth. However, it is not known whether these functional effects of intrauterine AED exposure persist later in childhood. METHODS We studied cortical activity networks computed from electroencephalographic recordings during sleep of 25, 6-year-old children with in utero exposure to AEDs and 21 without exposure. The frequency-specific networks were determined for N1 and N2 sleep states, and the study groups were compared for sleep-state-specific changes and dynamic differences between sleep states. Finally, we correlated these difference networks with the children's neurophysiological performance at 6 years. RESULTS We found brain-wide changes in the cortical activity networks and their sleep-state dynamics in the children with intrauterine AED exposure. Moreover, the strength of cortical network connectivity was significantly associated with multiple domains of neurocognitive performance, in particular, verbal comprehension, processing speed, and IQ. Our findings together suggest that fetal AED exposure causes very long-lasting changes in the cortical networks with significant links to early school-age cognitive performance. SIGNIFICANCE AED treatment of pregnant mothers is indicated for maternal health reasons; however, the long-term neurodevelopmental effects on the offspring are poorly understood. Our present study shows that in utero exposure to AEDs causes persisting changes in the cortical activity networks, which can be measured with electroencephalography at 6 years of age. Moreover, these network changes correlate to the child's neurocognitive performance at the same age. These findings together suggest a pathway for how fetal drug exposures may cause persisting and neurocognitively meaningful changes in cortical connectivity patterns.
Collapse
Affiliation(s)
- Sebastian König
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Bioengineering, Aalto University, Espoo, Finland
| | - Pauliina Yrjölä
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sami Auno
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mari Videman
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
de Groot ER, Dudink J, Austin T. Sleep as a driver of pre- and postnatal brain development. Pediatr Res 2024; 96:1503-1509. [PMID: 38956219 PMCID: PMC11624135 DOI: 10.1038/s41390-024-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In 1966, Howard Roffwarg proposed the ontogenic sleep hypothesis, relating neural plasticity and development to rapid eye movement (REM) sleep, a hypothesis that current fetal and neonatal sleep research is still exploring. Recently, technological advances have enabled researchers to automatically quantify neonatal sleep architecture, which has caused a resurgence of research in this field as attempts are made to further elucidate the important role of sleep in pre- and postnatal brain development. This article will review our current understanding of the role of sleep as a driver of brain development and identify possible areas for future research. IMPACT: The evidence to date suggests that Roffwarg's ontogenesis hypothesis of sleep and brain development is correct. A better understanding of the relationship between sleep and the development of functional connectivity is needed. Reliable, non-invasive tools to assess sleep in the NICU and at home need to be tested in a real-world environment and the best way to promote healthy sleep needs to be understood before clinical trials promoting and optimizing sleep quality in neonates could be undertaken.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Topun Austin
- NeoLab, Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
6
|
Govindan RB, Loparo KA. Bedside monitoring tools and advanced signal processing approaches to monitor critically-ill infants. Semin Fetal Neonatal Med 2024; 29:101544. [PMID: 39467727 DOI: 10.1016/j.siny.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
There is a substantial body of literature that supports neonatal monitoring and signal analysis of the collected data to provide valuable insights for improving patient clinical care and to inform new research studies. This comprehensive monitoring approach extends beyond the collection of conventional vital signs to include the acquisition of continuous waveform data from patient monitors and other bedside medical devices. This paper discusses the necessary infrastructure for waveform retrieval from bedside monitors, and explores options provided by leading healthcare companies, third-party vendors or academic research teams to implement scalable monitoring systems across entire critical care units. Additionally, we discuss the application of advanced signal processing that transcend traditional statistics, including heart rate variability in both the time- and frequency-domains, spectral analysis of EEG, and cerebral pressure autoregulation. The infrastructures and signal processing techniques outlined here are indispensable tools for intensivists, empowering them to enhance care for critically ill infants. In addition, we briefly address the emergence of advanced tools for fetal monitoring.
Collapse
Affiliation(s)
- R B Govindan
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA; The Developing Brain Institute, Children's National Hospital, Washington, DC, USA.
| | - Kenneth A Loparo
- Institute for Smart, Secure and Connected Systems: ISSACS, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Lear CA, Lear BA, Davidson JO, King VJ, Maeda Y, McDouall A, Dhillon SK, Gunn AJ, Bennet L. Dysmaturation of sleep state and electroencephalographic activity after hypoxia-ischaemia in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:1376-1392. [PMID: 38415649 PMCID: PMC11342719 DOI: 10.1177/0271678x241236014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Antenatal hypoxia-ischaemia (HI) in preterm fetal sheep can trigger delayed evolution of severe, cystic white matter injury (WMI), in a similar timecourse to WMI in preterm infants. We therefore examined how severe hypoxia-ischaemia affects recovery of electroencephalographic (EEG) activity. Chronically instrumented preterm fetal sheep (0.7 gestation) received 25 min of complete umbilical cord occlusion (UCO, n = 9) or sham occlusion (controls, n = 9), and recovered for 21 days. HI was associated with a shift to lower frequency EEG activity for the first 5 days with persisting loss of EEG power in the delta and theta bands, and initial loss of power in the alpha and beta bands in the first 14 days of recovery. In the final 3 days of recovery, there was a marked rhythmic shift towards higher frequency EEG activity after UCO. The UCO group spent less time in high-voltage sleep, and in the early evening (7:02 pm ± 47 min) abruptly stopped cycling between sleep states, with a shift to a high frequency state for 2 h 48 min ± 40 min, with tonic electromyographic activity. These findings demonstrate persisting EEG and sleep state dysmaturation after severe hypoxia-ischaemia. Loss of fetal or neonatal sleep state cycling in the early evening may be a useful biomarker for evolving cystic WMI.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alice McDouall
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Ansari A, Pillay K, Arasteh E, Dereymaeker A, Mellado GS, Jansen K, Winkler AM, Naulaers G, Bhatt A, Huffel SV, Hartley C, Vos MD, Slater R, Baxter L. Resting state electroencephalographic brain activity in neonates can predict age and is indicative of neurodevelopmental outcome. Clin Neurophysiol 2024; 163:226-235. [PMID: 38797002 PMCID: PMC11250083 DOI: 10.1016/j.clinph.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can be used to estimate neonates' biological brain age. Discrepancies between postmenstrual age and brain age, termed the brain age gap, can potentially quantify maturational deviation. Existing brain age EEG models are not well suited to clinical cot-side use for estimating neonates' brain age gap due to their dependency on relatively large data and pre-processing requirements. METHODS We trained a deep learning model on resting state EEG data from preterm neonates with normal neurodevelopmental Bayley Scale of Infant and Toddler Development (BSID) outcomes, using substantially reduced data requirements. We subsequently tested this model in two independent datasets from two clinical sites. RESULTS In both test datasets, using only 20 min of resting-state EEG activity from a single channel, the model generated accurate age predictions: mean absolute error = 1.03 weeks (p-value = 0.0001) and 0.98 weeks (p-value = 0.0001). In one test dataset, where 9-month follow-up BSID outcomes were available, the average neonatal brain age gap in the severe abnormal outcome group was significantly larger than that of the normal outcome group: difference in mean brain age gap = 0.50 weeks (p-value = 0.04). CONCLUSIONS These findings demonstrate that the deep learning model generalises to independent datasets from two clinical sites, and that the model's brain age gap magnitudes differ between neonates with normal and severe abnormal follow-up neurodevelopmental outcomes. SIGNIFICANCE The magnitude of neonates' brain age gap, estimated using only 20 min of resting state EEG data from a single channel, can encode information of clinical neurodevelopmental value.
Collapse
Affiliation(s)
- Amir Ansari
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emad Arasteh
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anneleen Dereymaeker
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium
| | | | - Katrien Jansen
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium
| | - Anderson M Winkler
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gunnar Naulaers
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium
| | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | | | - Maarten De Vos
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium
| | | | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Syvälahti T, Tuiskula A, Nevalainen P, Metsäranta M, Haataja L, Vanhatalo S, Tokariev A. Networks of cortical activity show graded responses to perinatal asphyxia. Pediatr Res 2024; 96:132-140. [PMID: 38135725 PMCID: PMC11258028 DOI: 10.1038/s41390-023-02978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Perinatal asphyxia often leads to hypoxic-ischemic encephalopathy (HIE) with a high risk of neurodevelopmental consequences. While moderate and severe HIE link to high morbidity, less is known about brain effects of perinatal asphyxia with no or only mild HIE. Here, we test the hypothesis that cortical activity networks in the newborn infants show a dose-response to asphyxia. METHODS We performed EEG recordings for infants with perinatal asphyxia/HIE of varying severity (n = 52) and controls (n = 53) and examined well-established computational metrics of cortical network activity. RESULTS We found graded alterations in cortical activity networks according to severity of asphyxia/HIE. Furthermore, our findings correlated with early clinical recovery measured by the time to attain full oral feeding. CONCLUSION We show that both local and large-scale correlated cortical activity are affected by increasing severity of HIE after perinatal asphyxia, suggesting that HIE and perinatal asphyxia are better represented as a continuum rather than the currently used discreet categories. These findings imply that automated computational measures of cortical function may be useful in characterizing the dose effects of adversity in the neonatal brain; such metrics hold promise for benchmarking clinical trials via patient stratification or as early outcome measures. IMPACT Perinatal asphyxia causes every fourth neonatal death worldwide and provides a diagnostic and prognostic challenge for the clinician. We report that infants with perinatal asphyxia show specific graded responses in cortical networks according to severity of asphyxia and ensuing hypoxic-ischaemic encephalopathy. Early EEG recording and automated computational measures of brain function have potential to help in clinical evaluation of infants with perinatal asphyxia.
Collapse
Affiliation(s)
- Timo Syvälahti
- Department of Clinical Neurophysiology, Children´s Hospital, and Epilepsia Helsinki, full member of ERN EpiCare, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland.
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland.
| | - Anna Tuiskula
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Päivi Nevalainen
- Department of Clinical Neurophysiology, Children´s Hospital, and Epilepsia Helsinki, full member of ERN EpiCare, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - Marjo Metsäranta
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Leena Haataja
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Children´s Hospital, and Epilepsia Helsinki, full member of ERN EpiCare, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - Anton Tokariev
- BABA center, Pediatric Research Center, Children's Hospital, University of Helsinki and HUH, Helsinki, Finland
| |
Collapse
|
11
|
Chirumamilla VC, Hitchings L, Mulkey SB, Anwar T, Baker R, Larry Maxwell G, De Asis-Cruz J, Kapse K, Limperopoulos C, du Plessis A, Govindan RB. Association of brain functional connectivity with neurodevelopmental outcomes in healthy full-term newborns. Clin Neurophysiol 2024; 160:68-74. [PMID: 38412745 DOI: 10.1016/j.clinph.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To study the association between neurodevelopmental outcomes and functional brain connectivity (FBC) in healthy term infants. METHODS This is a retrospective study of prospectively collected High-density electroencephalography (HD-EEG) from newborns within 72 hours from birth. Developmental assessments were performed at two years of age using the Bayley Scales of Infant Development-III (BSID-III) measuring cognitive, language, motor, and socio-emotional scores. The FBC was calculated using phase synchronization analysis of source signals in delta, theta, alpha, beta, and gamma frequency bands and its association with neurodevelopmental score was assessed with stepwise regression. RESULTS 47/163 had both HD-EEG and BSID-III scores. The FBC of frontal region was associated with cognitive score in the theta band (corrected p, regression coefficients range: p < 0.01, 1.66-1.735). Language scores were significantly associated with connectivity in all frequency bands, predominantly in the left hemisphere (p < 0.01, -2.74-2.40). The FBC of frontal and occipital brain regions of both hemispheres was related to motor score and socio-emotional development in theta, alpha, and gamma frequency bands (p < 0.01, -2.16-2.97). CONCLUSIONS Functional connectivity of higher-order processing is already present at term age. SIGNIFICANCE The FBC might be used to guide interventions for optimizing subsequent neurodevelopment even in low-risk newborns.
Collapse
Affiliation(s)
- Venkata C Chirumamilla
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, United States
| | - Laura Hitchings
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, United States
| | - Sarah B Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tayyba Anwar
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Neurology, Children's National Hospital, Washington, DC, United States
| | - Robin Baker
- Inova Women's and Children's Hospital, Fairfax, VA, United States; Fairfax Neonatal Associates, Fairfax, VA, United States
| | - G Larry Maxwell
- Inova Women's and Children's Hospital, Fairfax, VA, United States
| | | | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, DC, United States
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, United States
| | - Adre du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - R B Govindan
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
12
|
França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, Chew A, Falconer S, Dimitrova R, Cordero-Grande L, Price AN, Hughes E, O'Muircheartaigh J, Duff E, Tuulari JJ, Deco G, Counsell SJ, Hajnal JV, Nosarti C, Arichi T, Edwards AD, McAlonan G, Batalle D. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. Nat Commun 2024; 15:16. [PMID: 38331941 PMCID: PMC10853532 DOI: 10.1038/s41467-023-44050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Collapse
Affiliation(s)
- Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sean Fitzgibbon
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Eugene Duff
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500, Turku, Finland
- Turku Collegium for Science and Medicine and Technology, University of Turku, 20500, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, 20500, Turku, Finland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Pompeu Fabra University, 08002, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
13
|
Al‐Sa'd M, Vanhatalo S, Tokariev A. Multiplex dynamic networks in the newborn brain disclose latent links with neurobehavioral phenotypes. Hum Brain Mapp 2024; 45:e26610. [PMID: 38339895 PMCID: PMC10839739 DOI: 10.1002/hbm.26610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The higher brain functions arise from coordinated neural activity between distinct brain regions, but the spatial, temporal, and spectral complexity of these functional connectivity networks (FCNs) has challenged the identification of correlates with neurobehavioral phenotypes. Characterizing behavioral correlates of early life FCNs is important to understand the activity dependent emergence of neurodevelopmental performance and for improving health outcomes. Here, we develop an analysis pipeline for identifying multiplex dynamic FCNs that combine spectral and spatiotemporal characteristics of the newborn cortical activity. This data-driven approach automatically uncovers latent networks that show robust neurobehavioral correlations and consistent effects by in utero drug exposure. Altogether, the proposed pipeline provides a robust end-to-end solution for an objective assessment and quantitation of neurobehaviorally meaningful network constellations in the highly dynamic cortical functions.
Collapse
Affiliation(s)
- Mohammad Al‐Sa'd
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital, HUS imaging, HUS Diagnostic CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of PhysiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Information Technology and Communication SciencesTampere UniversityTampereFinland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital, HUS imaging, HUS Diagnostic CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of PhysiologyUniversity of HelsinkiHelsinkiFinland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital, HUS imaging, HUS Diagnostic CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of PhysiologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
14
|
Cameron S, Donnelly A, Broderick C, Arichi T, Bartsch U, Dazzan P, Elberling J, Godfrey E, Gringras P, Heathcote LC, Joseph D, Wood TC, Pariante C, Rubia K, Flohr C. Mind and skin: Exploring the links between inflammation, sleep disturbance and neurocognitive function in patients with atopic dermatitis. Allergy 2024; 79:26-36. [PMID: 37469218 DOI: 10.1111/all.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Atopic dermatitis (AD) is a chronic, pruritic and inflammatory, dry skin condition with many known comorbidities. These include airway disease, food allergies, atopic eye disease and autoimmune conditions. Furthermore, there is often significant sleep disturbance as well as increased psychological distress and mental health problems. Severe AD therefore often has a significant impact on the quality of life of both patients and their families. In this review we discuss recent findings on the putative links between AD, its association with itch, sleep disturbance and neuropsychiatric morbidity, including the role of inflammation in these conditions. Itch was thought to predominantly drive sleep disruption in AD. We now understand changes in sleep influence immune cell distribution and the associated inflammatory cytokines, which suggests a bidirectional relationship between AD and sleep. We also increasingly recognize inflammation as a key driver in psychological symptoms and disorders. The link between cutaneous, systemic and possible brain inflammation could at least in part be driven by the sleep deprivation and itch-driven neuronal proliferation seen in AD.
Collapse
Affiliation(s)
- Shona Cameron
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ali Donnelly
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Conor Broderick
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, Guildford, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jesper Elberling
- Depart of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Emma Godfrey
- Health Psychology Section, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Gringras
- Paediatric Sleep Department, Evelina Children's Hospital, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lauren C Heathcote
- Health Psychology Section, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Desaline Joseph
- Paediatric Sleep Department, Evelina Children's Hospital, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine Pariante
- UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, Guildford, UK
| | - Katya Rubia
- UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, Guildford, UK
| | - Carsten Flohr
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Yates TS, Ellis CT, Turk-Browne NB. Functional networks in the infant brain during sleep and wake states. Cereb Cortex 2023; 33:10820-10835. [PMID: 37718160 DOI: 10.1093/cercor/bhad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Functional brain networks are assessed differently earlier versus later in development: infants are almost universally scanned asleep, whereas adults are typically scanned awake. Observed differences between infant and adult functional networks may thus reflect differing states of consciousness rather than or in addition to developmental changes. We explore this question by comparing functional networks in functional magnetic resonance imaging (fMRI) scans of infants during natural sleep and awake movie-watching. As a reference, we also scanned adults during awake rest and movie-watching. Whole-brain functional connectivity was more similar within the same state (sleep and movie in infants; rest and movie in adults) compared with across states. Indeed, a classifier trained on patterns of functional connectivity robustly decoded infant state and even generalized to adults; interestingly, a classifier trained on adult state did not generalize as well to infants. Moreover, overall similarity between infant and adult functional connectivity was modulated by adult state (stronger for movie than rest) but not infant state (same for sleep and movie). Nevertheless, the connections that drove this similarity, particularly in the frontoparietal control network, were modulated by infant state. In sum, infant functional connectivity differs between sleep and movie states, highlighting the value of awake fMRI for studying functional networks over development.
Collapse
Affiliation(s)
- Tristan S Yates
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Cameron T Ellis
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Khazaei M, Raeisi K, Vanhatalo S, Zappasodi F, Comani S, Tokariev A. Neonatal cortical activity organizes into transient network states that are affected by vigilance states and brain injury. Neuroimage 2023; 279:120342. [PMID: 37619792 DOI: 10.1016/j.neuroimage.2023.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Early neurodevelopment is critically dependent on the structure and dynamics of spontaneous neuronal activity; however, the natural organization of newborn cortical networks is poorly understood. Recent adult studies suggest that spontaneous cortical activity exhibits discrete network states with physiological correlates. Here, we studied newborn cortical activity during sleep using hidden Markov modeling to determine the presence of such discrete neonatal cortical states (NCS) in 107 newborn infants, with 47 of them presenting with a perinatal brain injury. Our results show that neonatal cortical activity organizes into four discrete NCSs that are present in both cardinal sleep states of a newborn infant, active and quiet sleep, respectively. These NCSs exhibit state-specific spectral and functional network characteristics. The sleep states exhibit different NCS dynamics, with quiet sleep presenting higher fronto-temporal activity and a stronger brain-wide neuronal coupling. Brain injury was associated with prolonged lifetimes of the transient NCSs, suggesting lowered dynamics, or flexibility, in the cortical networks. Taken together, the findings suggest that spontaneously occurring transient network states are already present at birth, with significant physiological and pathological correlates; this NCS analysis framework can be fully automatized, and it holds promise for offering an objective, global level measure of early brain function for benchmarking neurodevelopmental or clinical research.
Collapse
Affiliation(s)
- Mohammad Khazaei
- Department of Neurosciences, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, ITAB building, 3rd floor, room 314, Chieti, Via dei Vestini, Italy.
| | - Khadijeh Raeisi
- Department of Neurosciences, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, ITAB building, 3rd floor, room 314, Chieti, Via dei Vestini, Italy
| | - Sampsa Vanhatalo
- BABA center, Pediatric Research Center, Departments of Clinical Neurophysiology and Physiology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Filippo Zappasodi
- Department of Neurosciences, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, ITAB building, 3rd floor, room 314, Chieti, Via dei Vestini, Italy; Institute for Advanced Biomedical Technologies, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neurosciences, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, ITAB building, 3rd floor, room 314, Chieti, Via dei Vestini, Italy; Behavioral Imaging and Neural Dynamics Center, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anton Tokariev
- BABA center, Pediatric Research Center, Departments of Clinical Neurophysiology and Physiology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Koskela T, Meek J, Huertas-Ceballos A, Kendall GS, Whitehead K. Clinical value of cortical bursting in preterm infants with intraventricular haemorrhage. Early Hum Dev 2023; 184:105840. [PMID: 37556995 DOI: 10.1016/j.earlhumdev.2023.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND In healthy preterm infants, cortical burst rate and temporal dynamics predict important measures such as brain growth. We hypothesised that in preterm infants with germinal matrix-intraventricular haemorrhage (GM-IVH), cortical bursting could provide prognostic information. AIMS We determined how cortical bursting was influenced by the injury, and whether this was related to developmental outcome. STUDY DESIGN Single-centre retrospective cohort study at University College London Hospitals, UK. SUBJECTS 33 infants with GM-IVH ≥ grade II (median gestational age: 25 weeks). OUTCOME MEASURES We identified 47 EEGs acquired between 24 and 40 weeks corrected gestational age as part of routine clinical care. In a subset of 33 EEGs from 25 infants with asymmetric injury, we used the least-affected hemisphere as an internal comparison. We tested whether cortical burst rate predicted survival without severe impairment (median 2 years follow-up). RESULTS In asymmetric injury, cortical burst rate was lower over the worst- than least-affected hemisphere, and bursts over the worst-affected hemisphere were less likely to immediately follow bursts over the least-affected hemisphere than vice versa. Overall, burst rate was lower in cases of GM-IVH with parenchymal involvement, relative to milder structural injury grades. Higher burst rate modestly predicted survival without severe language (AUC 0.673) or motor impairment (AUC 0.667), which was partly mediated by structural injury grade. CONCLUSIONS Cortical bursting can index the functional injury after GM-IVH: perturbed burst initiation (rate) and propagation (inter-hemispheric dynamics) likely reflect associated grey matter and white matter damage. Higher cortical burst rate is reassuring for a positive outcome.
Collapse
Affiliation(s)
- Tuomas Koskela
- Research IT Services, University College London, London WC1E 7HB, UK.
| | - Judith Meek
- Neonatal Intensive Care Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, UK; Academic Neonatology, Institute for Women's Health, University College London, London WC1E 6HU, UK.
| | - Angela Huertas-Ceballos
- Neonatal Intensive Care Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, UK.
| | - Giles S Kendall
- Neonatal Intensive Care Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, UK; Academic Neonatology, Institute for Women's Health, University College London, London WC1E 6HU, UK.
| | - Kimberley Whitehead
- Neonatal Intensive Care Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Effect of combined procedural pain interventions during neonatal intensive care on sleep, cognitive development, and internalizing behavior: a follow-up analysis of a randomized controlled trial. Pain 2023:00006396-990000000-00259. [PMID: 36883971 DOI: 10.1097/j.pain.0000000000002877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
ABSTRACT Repeated procedural pain can cause preterm infants to spend excessive time awake at the cost of sleep and can have a detrimental impact on later cognitive and behavioral development. What's more, poor sleep may be correlated with worse cognitive development and more internalizing behaviors in infants and toddlers. In a randomized controlled trial (RCT), we found that combined procedural pain interventions (sucrose, massage, music, nonnutritive sucking, and gentle human touch) during neonatal intensive care could improve preterm infants' early neurobehavioral development. Here, we followed up the participants who were enrolled in the RCT to evaluate the effect of combined pain interventions on later sleep, cognitive development, and internalizing behavior and to determine whether sleep may moderate the effect of combined pain interventions on the cognitive development and internalizing behavior. Total sleep time and night awakenings at 3, 6, and 12 months old; the cognitive development (adaptability, gross motor, fine motor, language, and personal-social domains) at 12 and 24 months old measured by the Chinese version of Gesell Development Scale; and the internalizing behavior at 24 months old measured by the Chinese version of Child Behavior Checklist were assessed. Our findings showed the potential benefits of combined pain interventions during neonatal intensive care for preterm infant's later sleep, motor and language development, and internalizing behavior, and the effect of combined pain interventions on motor development and internalizing behavior might be moderated by the mean total sleep duration and night awakenings at 3, 6, and 12 months old.
Collapse
|
20
|
Functional re-organization of hippocampal-cortical gradients during naturalistic memory processes. Neuroimage 2023; 271:119996. [PMID: 36863548 DOI: 10.1016/j.neuroimage.2023.119996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The functional organization of the hippocampus mirrors that of the cortex, changing smoothly along connectivity gradients and abruptly at inter-areal boundaries. Hippocampal-dependent cognitive processes require flexible integration of these hippocampal gradients into functionally related cortical networks. To understand the cognitive relevance of this functional embedding, we acquired fMRI data while participants viewed brief news clips, either containing or lacking recently familiarized cues. Participants were 188 healthy mid-life adults and 31 adults with mild cognitive impairment (MCI) or Alzheimer's disease (AD). We employed a recently developed technique - connectivity gradientography - to study gradually changing patterns of voxel to whole brain functional connectivity and their sudden transitions. We observed that functional connectivity gradients of the anterior hippocampus map onto connectivity gradients across the default mode network during these naturalistic stimuli. The presence of familiar cues in the news clips accentuates a stepwise transition across the boundary from the anterior to the posterior hippocampus. This functional transition is shifted in the posterior direction in the left hippocampus of individuals with MCI or AD. These findings shed new light on the functional integration of hippocampal connectivity gradients into large-scale cortical networks, how these adapt with memory context and how these change in the presence of neurodegenerative disease.
Collapse
|
21
|
Chirumamilla VC, Hitchings L, Mulkey SB, Anwar T, Baker R, Larry Maxwell G, De Asis-Cruz J, Kapse K, Limperopoulos C, du Plessis A, Govindan RB. Functional brain network properties of healthy full-term newborns quantified by scalp and source-reconstructed EEG. Clin Neurophysiol 2023; 147:72-80. [PMID: 36731349 PMCID: PMC9975070 DOI: 10.1016/j.clinph.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Identifying the functional brain network properties of term low-risk newborns using high-density EEG (HD-EEG) and comparing these properties with those of established functional magnetic resonance image (fMRI) - based networks. METHODS HD-EEG was collected from 113 low-risk term newborns before delivery hospital discharge and within 72 hours of birth. Functional brain networks were reconstructed using coherence at the scalp and source levels in delta, theta, alpha, beta, and gamma frequency bands. These networks were characterized for the global and local network architecture. RESULTS Source-level networks in all the frequency bands identified the presence of the efficient small world (small-world propensity (SWP) > 0.6) architecture with four distinct modules linked by hub regions and rich-club (coefficient > 1) topology. The modular regions included primary, association, limbic, paralimbic, and subcortical regions, which have been demonstrated in fMRI studies. In contrast, scalp-level networks did not display consistent small world architecture (SWP < 0.6), and also identified only 2-3 modules in each frequency band.The modular regions of the scalp-network primarily included frontal and occipital regions. CONCLUSIONS Our findings show that EEG sources in low-risk newborns corroborate fMRI-based connectivity results. SIGNIFICANCE EEG source analysis characterizes functional connectivity at the bedside of low-risk newborn infants soon after birth.
Collapse
Affiliation(s)
| | - Laura Hitchings
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Tayyba Anwar
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - Robin Baker
- Inova Women's and Children's Hospital, Fairfax, VA, USA; Fairfax Neonatal Associates, Fairfax, VA, USA
| | | | | | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Adre du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - R B Govindan
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
22
|
Markovic A, Schoch SF, Huber R, Kohler M, Kurth S. The sleeping brain's connectivity and family environment: characterizing sleep EEG coherence in an infant cohort. Sci Rep 2023; 13:2055. [PMID: 36739318 PMCID: PMC9899221 DOI: 10.1038/s41598-023-29129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment.
Collapse
Affiliation(s)
- Andjela Markovic
- Department of Psychology, University of Fribourg, Fribourg, Switzerland. .,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. .,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Reto Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Uchitel J, Blanco B, Collins-Jones L, Edwards A, Porter E, Pammenter K, Hebden J, Cooper RJ, Austin T. Cot-side imaging of functional connectivity in the developing brain during sleep using wearable high-density diffuse optical tomography. Neuroimage 2023; 265:119784. [PMID: 36464095 DOI: 10.1016/j.neuroimage.2022.119784] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Studies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first cot-side study of newborn infants using wearable HD-DOT in a clinical setting. We use this technology to study functional brain connectivity (FC) in newborn infants during sleep and assess the effect of neonatal sleep states, active sleep (AS) and quiet sleep (QS), on resting state FC. Our results demonstrate that it is now possible to obtain high-quality functional images of the neonatal brain in the clinical setting with few constraints. Our results also suggest that sleep states differentially affect FC in the neonatal brain, consistent with prior reports.
Collapse
Affiliation(s)
- Julie Uchitel
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; Department of Pediatrics, University of Cambridge, Cambridge, UK.
| | - Borja Blanco
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Andrea Edwards
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emma Porter
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kelle Pammenter
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jem Hebden
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Robert J Cooper
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
24
|
Alves CL, Cury RG, Roster K, Pineda AM, Rodrigues FA, Thielemann C, Ciba M. Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments. PLoS One 2022; 17:e0277257. [PMID: 36525422 PMCID: PMC9757568 DOI: 10.1371/journal.pone.0277257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated to be a viable therapy for a variety of neurological and mental diseases. EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most important brain connections, a significant new discovery for psychedelic literature. This connection may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer's disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and suggested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action.
Collapse
Affiliation(s)
- Caroline L. Alves
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
- * E-mail:
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, University of São Paulo (USP), São Paulo, Brazil
| | - Kirstin Roster
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aruane M. Pineda
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco A. Rodrigues
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| | - Manuel Ciba
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| |
Collapse
|
25
|
Kiselev AR, Drapkina OM, Novikov MY, Panina OS, Chernenkov YV, Zhuravlev MO, Runnova AE. Examining time-frequency mechanisms of full-fledged deep sleep development in newborns of different gestational age in the first days of their postnatal development. Sci Rep 2022; 12:21593. [PMID: 36517663 PMCID: PMC9751282 DOI: 10.1038/s41598-022-26111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Early age-related changes in EEG time-frequency characteristics during the restful sleep of newborns of different gestational ages result in the development of conventional EEG signs of deep sleep already during the first postnatal week of their life. Allocating newborns to different groups based on their gestational age and duration of postnatal period allowed demonstrating substantial intergroup differences in brain activity during sleep and wakefulness, along with significant variability in the time-frequency characteristics of brain activity. The process of conventional deep sleep development in infants born prior to the week 35 of gestation is associated with an increase in the power of alpha activity in the sensorimotor cortex of the brain.
Collapse
Affiliation(s)
- Anton R. Kiselev
- grid.466934.a0000 0004 0619 7019National Medical Research Center for Therapy and Preventive Medicine, 10(3) Petroverigsky Pereulok, Moscow, Russia 101990
| | - Oxana M. Drapkina
- grid.466934.a0000 0004 0619 7019National Medical Research Center for Therapy and Preventive Medicine, 10(3) Petroverigsky Pereulok, Moscow, Russia 101990
| | - Mikhail Yu. Novikov
- grid.466934.a0000 0004 0619 7019National Medical Research Center for Therapy and Preventive Medicine, 10(3) Petroverigsky Pereulok, Moscow, Russia 101990 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, Saratov, Russia
| | - Olga S. Panina
- grid.412420.10000 0000 8546 8761Saratov State Medical University, Saratov, Russia
| | - Yuri V. Chernenkov
- grid.412420.10000 0000 8546 8761Saratov State Medical University, Saratov, Russia
| | - Maksim O. Zhuravlev
- grid.466934.a0000 0004 0619 7019National Medical Research Center for Therapy and Preventive Medicine, 10(3) Petroverigsky Pereulok, Moscow, Russia 101990 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, Saratov, Russia ,grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Anastasiya E. Runnova
- grid.466934.a0000 0004 0619 7019National Medical Research Center for Therapy and Preventive Medicine, 10(3) Petroverigsky Pereulok, Moscow, Russia 101990 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, Saratov, Russia ,grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| |
Collapse
|
26
|
Tabuena DR, Huynh R, Metcalf J, Richner T, Stroh A, Brunton BW, Moody WJ, Easton CR. Large-scale waves of activity in the neonatal mouse brain in vivo occur almost exclusively during sleep cycles. Dev Neurobiol 2022; 82:596-612. [PMID: 36250606 PMCID: PMC10166374 DOI: 10.1002/dneu.22901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023]
Abstract
Spontaneous electrical activity plays major roles in the development of cortical circuitry. This activity can occur highly localized regions or can propagate over the entire cortex. Both types of activity coexist during early development. To investigate how different forms of spontaneous activity might be temporally segregated, we used wide-field trans-cranial calcium imaging over an entire hemisphere in P1-P8 mouse pups. We found that spontaneous waves of activity that propagate to cover the majority of the cortex (large-scale waves; LSWs) are generated at the end of the first postnatal week, along with several other forms of more localized activity. We further found that LSWs are segregated into sleep cycles. In contrast, cortical activity during wake states is more spatially restricted and the few large-scale forms of activity that occur during wake can be distinguished from LSWs in sleep based on their initiation in the motor cortex and their correlation with body movements. This change in functional cortical circuitry to a state that is permissive for large-scale activity may temporally segregate different forms of activity during critical stages when activity-dependent circuit development occurs over many spatial scales. Our data also suggest that LSWs in early development may be a functional precursor to slow sleep waves in the adult, which play critical roles in memory consolidation and synaptic rescaling.
Collapse
Affiliation(s)
- Dennis R Tabuena
- Department of Biology, University of Washington, Seattle, Washington, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
| | - Randy Huynh
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Jenna Metcalf
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Thomas Richner
- Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, University Medical Center Mainz, Mainz, Germany
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington, USA.,Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - William J Moody
- Department of Biology, University of Washington, Seattle, Washington, USA.,Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - Curtis R Easton
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Yrjölä P, Myers MM, Welch MG, Stevenson NJ, Tokariev A, Vanhatalo S. Facilitating early parent-infant emotional connection improves cortical networks in preterm infants. Sci Transl Med 2022; 14:eabq4786. [PMID: 36170448 DOI: 10.1126/scitranslmed.abq4786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to environmental adversities during early brain development, such as preterm birth, can affect early brain organization. Here, we studied whether development of cortical activity networks in preterm infants may be improved by a multimodal environmental enrichment via bedside facilitation of mother-infant emotional connection. We examined functional cortico-cortical connectivity at term age using high-density electroencephalography recordings in infants participating in a randomized controlled trial of Family Nurture Intervention (FNI). Our results identify several large-scale, frequency-specific network effects of FNI, most extensively in the alpha frequency in fronto-central cortical regions. The connectivity strength in this network was correlated to later neurocognitive performance, and it was comparable to healthy term-born infants rather than the infants receiving standard care. These findings suggest that preterm neurodevelopmental care can be improved by a biologically driven environmental enrichment, such as early facilitation of direct human connection.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Xie W, Toll RT, Nelson CA. EEG functional connectivity analysis in the source space. Dev Cogn Neurosci 2022; 56:101119. [PMID: 35716637 PMCID: PMC9204388 DOI: 10.1016/j.dcn.2022.101119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
There is a growing interest in using electroencephalography (EEG) and source modeling to investigate functional interactions among cortical processes, particularly when dealing with pediatric populations. This paper introduces two pipelines that have been recently used to conduct EEG FC analysis in the cortical source space. The analytic streams of these pipelines can be summarized into the following steps: 1) cortical source reconstruction of high-density EEG data using realistic magnetic resonance imaging (MRI) models created with age-appropriate MRI templates; 2) segmentation of reconstructed source activities into brain regions of interest; and 3) estimation of FC in age-related frequency bands using robust EEG FC measures, such as weighted phase lag index and orthogonalized power envelope correlation. In this paper we demonstrate the two pipelines with resting-state EEG data collected from children at 12 and 36 months of age. We also discuss the advantages and limitations of the methods/techniques integrated into the pipelines. Given there is a need in the research community for open-access analytic toolkits that can be used for pediatric EEG data, programs and codes used for the current analysis are made available to the public.
Collapse
Affiliation(s)
- Wanze Xie
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| | - Russell T Toll
- Department of Psychiatry, University of Texas Southwestern Medical Centre at Dallas, USA
| | - Charles A Nelson
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
29
|
Sensory-based interventions in the NICU: systematic review of effects on preterm brain development. Pediatr Res 2022; 92:47-60. [PMID: 34508227 DOI: 10.1038/s41390-021-01718-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Infants born preterm are known to be at risk for abnormal brain development and adverse neurobehavioral outcomes. To improve early neurodevelopment, several non-pharmacological interventions have been developed and implemented in the neonatal intensive care unit (NICU). Sensory-based interventions seem to improve short-term neurodevelopmental outcomes in the inherently stressful NICU environment. However, how this type of intervention affects brain development in the preterm population remains unclear. METHODS A systematic review of the literature was conducted for published studies in the past 20 years reporting the effects of early, non-pharmacological, sensory-based interventions on the neonatal brain after preterm birth. RESULTS Twelve randomized controlled trials (RCT) reporting short-term effects of auditory, tactile, and multisensory interventions were included after the screening of 1202 articles. Large heterogeneity was identified among studies in relation to both types of intervention and outcomes. Three areas of focus for sensory interventions were identified: auditory-based, tactile-based, and multisensory interventions. CONCLUSIONS Diversity in interventions and outcome measures challenges the possibility to perform an integrative synthesis of results and to translate these for evidence-based clinical practice. This review identifies gaps in the literature and methodological challenges for the implementation of RCTs of sensory interventions in the NICU. IMPACT This paper represents the first systematic review to investigate the effect of non-pharmacological, sensory-based interventions in the NICU on neonatal brain development. Although reviewed RCTs present evidence on the impact of such interventions on the neonatal brain following preterm birth, it is not yet possible to formulate clear guidelines for clinical practice. This review integrates existing literature on the effect of sensory-based interventions on the brain after preterm birth and identifies methodological challenges for the conduction of high-quality RCTs.
Collapse
|
30
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
31
|
Chirumamilla VC, Hitchings L, Mulkey SB, Anwar T, Baker R, Larry Maxwell G, De Asis-Cruz J, Kapse K, Limperopoulos C, du Plessis A, Govindan R. Electroencephalogram in low-risk term newborns predicts neurodevelopmental metrics at age two years. Clin Neurophysiol 2022; 140:21-28. [DOI: 10.1016/j.clinph.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022]
|
32
|
Sato J, Vandewouw MM, Safar K, Ng DVY, Bando N, O’Connor DL, Unger SL, Pang E, Taylor MJ. Social-Cognitive Network Connectivity in Preterm Children and Relations With Early Nutrition and Developmental Outcomes. Front Syst Neurosci 2022; 16:812111. [PMID: 35465192 PMCID: PMC9022474 DOI: 10.3389/fnsys.2022.812111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Infants born very low birth weight (VLBW, < 1,500 g) are at a heightened risk for structural brain abnormalities and social-cognitive deficits, which can impair behavioural functioning. Resting-state fMRI, reflecting a baseline level of brain activity and underlying social-cognitive processes, has also been reported to be altered in children born VLBW. Yet very little is known about the functional networks underlying social cognition using magnetoencephalography (MEG) and how it relates to neonatal factors and developmental outcomes. Thus, we investigated functional connectivity at rest in VLBW children and the associations with early nutrition and IQ and behavioural problems. We collected resting-state MEG recordings and measures of IQ and social-cognitive behaviour, as well as macronutrient/energy intakes during initial hospitalisation in 5-year-old children born VLBW (n = 37) compared to full-term (FT; n = 27) controls. We examined resting-state network differences controlling for sex and age at scan. Functional connectivity was estimated using the weighted phase lag index. Associations between functional connectivity with outcome measures and postnatal nutrition were also assessed using regression analyses. We found increased resting-state functional connectivity in VLBW compared to FT children in the gamma frequency band (65–80 Hz). This hyper-connected network was primarily anchored in frontal regions known to underlie social-cognitive functions such as emotional processing. In VLBW children, increased functional connectivity was related to higher IQ scores, while reduced connectivity was related to increased behavioural problems at 5 years of age. These within-group associations were found in the slower frequency bands of theta (4–7 Hz) and alpha (8–12 Hz), frequently linked to higher-order cognitive functions. We also found significant associations between macronutrient (protein and lipid) and energy intakes during the first postnatal month with functional connectivity at preschool-age, highlighting the long-term impacts of postnatal nutrition on preterm brain development. Our findings demonstrate that at preschool-age, VLBW children show altered resting-state connectivity despite IQ and behaviour being in the average range, possibly reflecting functional reorganisation of networks to support social-cognitive and behavioural functioning. Further, our results highlight an important role of early postnatal nutrition in the development of resting-state networks, which in turn may improve neurodevelopmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Julie Sato
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Julie Sato,
| | - Marlee M. Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kristina Safar
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dawn V. Y. Ng
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Nicole Bando
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deborah L. O’Connor
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
| | - Sharon L. Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Pang
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J. Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
van 't Westende C, Geraedts VJ, van Ramesdonk T, Dudink J, Schoonmade LJ, van der Knaap MS, Stam CJ, van de Pol LA. Neonatal quantitative electroencephalography and long-term outcomes: a systematic review. Dev Med Child Neurol 2022; 64:413-420. [PMID: 34932822 DOI: 10.1111/dmcn.15133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
AIM To evaluate quantitative electroencephalogram (EEG) measures as predictors of long-term neurodevelopmental outcome in infants with a postconceptional age below 46 weeks, including typically developing infants born at term, infants with heterogeneous underlying pathologies, and infants born preterm. METHOD A comprehensive search was performed using PubMed, Embase, and Web of Science from study inception up to 8th January 2021. Studies that examined associations between neonatal quantitative EEG measures, based on conventional and amplitude-integrated EEG, and standardized neurodevelopmental outcomes at 2 years of age or older were reviewed. Significant associations between neonatal quantitative EEG and long-term outcome measures were grouped into one or more of the following categories: cognitive outcome; motor outcome; composite scores; and other standardized outcome assessments. RESULTS Twenty-four out of 1740 studies were included. Multiple studies showed that conventional EEG-based absolute power in the delta, theta, alpha, and beta frequency bands and conventional and amplitude-integrated EEG-related amplitudes were positively associated with favourable long-term outcome across several domains, including cognition and motor performance. Furthermore, a lower presence of discontinuous background pattern was also associated with favourable outcomes. However, interpretation of the results is limited by heterogeneity in study design and populations. INTERPRETATION Neonatal quantitative EEG measures may be used as prognostic biomarkers to identify those infants who will develop long-term difficulties and who might benefit from early interventions.
Collapse
Affiliation(s)
- Charlotte van 't Westende
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Victor J Geraedts
- Departments of Neurology and Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tino van Ramesdonk
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Laura A van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Tokariev A, Oberlander VC, Videman M, Vanhatalo S. Cortical Cross-Frequency Coupling Is Affected by in utero Exposure to Antidepressant Medication. Front Neurosci 2022; 16:803708. [PMID: 35310093 PMCID: PMC8927083 DOI: 10.3389/fnins.2022.803708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Up to five percent of human infants are exposed to maternal antidepressant medication by serotonin reuptake inhibitors (SRI) during pregnancy, yet the SRI effects on infants’ early neurodevelopment are not fully understood. Here, we studied how maternal SRI medication affects cortical frequency-specific and cross-frequency interactions estimated, respectively, by phase-phase correlations (PPC) and phase-amplitude coupling (PAC) in electroencephalographic (EEG) recordings. We examined the cortical activity in infants after fetal exposure to SRIs relative to a control group of infants without medical history of any kind. Our findings show that the sleep-related dynamics of PPC networks are selectively affected by in utero SRI exposure, however, those alterations do not correlate to later neurocognitive development as tested by neuropsychological evaluation at two years of age. In turn, phase-amplitude coupling was found to be suppressed in SRI infants across multiple distributed cortical regions and these effects were linked to their neurocognitive outcomes. Our results are compatible with the overall notion that in utero drug exposures may cause subtle, yet measurable changes in the brain structure and function. Our present findings are based on the measures of local and inter-areal neuronal interactions in the cortex which can be readily used across species, as well as between different scales of inspection: from the whole animals to in vitro preparations. Therefore, this work opens a framework to explore the cellular and molecular mechanisms underlying neurodevelopmental SRI effects at all translational levels.
Collapse
Affiliation(s)
- Anton Tokariev
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- *Correspondence: Anton Tokariev,
| | - Victoria C. Oberlander
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mari Videman
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Sampsa Vanhatalo,
| |
Collapse
|
35
|
Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr Res 2022; 91:771-786. [PMID: 33859364 DOI: 10.1038/s41390-021-01497-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being. Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep ontogenesis is a complex process, whereby alternations between rudimentary brain states-active vs. wake and active sleep vs. quiet sleep-mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the brain's ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment. However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship between sleep, preterm birth, and FC, and the challenges associated with understanding these processes. IMPACT: Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process information. This process may be impaired in infants born preterm. The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood. This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are presented to provide direction for future research.
Collapse
|
36
|
Korom M, Camacho MC, Filippi CA, Licandro R, Moore LA, Dufford A, Zöllei L, Graham AM, Spann M, Howell B, Shultz S, Scheinost D. Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Dev Cogn Neurosci 2022; 53:101055. [PMID: 34974250 PMCID: PMC8733260 DOI: 10.1016/j.dcn.2021.101055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023] Open
Abstract
The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| | - M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University School of Medicine, St. Louis, MO, USA.
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Roxane Licandro
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Vienna, Austria
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Dufford
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Marisa Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Sarah Shultz
- Division of Autism & Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
37
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
38
|
Stevenson NJ, Lai MM, Starkman HE, Colditz PB, Wixey JA. Electroencephalographic studies in growth-restricted and small-for-gestational-age neonates. Pediatr Res 2022; 92:1527-1534. [PMID: 35197567 PMCID: PMC9771813 DOI: 10.1038/s41390-022-01992-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Foetal growth restriction (FGR) and being born small for gestational age (SGA) are associated with neurodevelopmental delay. Early diagnosis of neurological damage is difficult in FGR and SGA neonates. Electroencephalography (EEG) has the potential as a tool for the assessment of brain development in FGR/SGA neonates. In this review, we analyse the evidence base on the use of EEG for the assessment of neonates with FGR or SGA. We found consistent findings that FGR/SGA is associated with measurable changes in the EEG that present immediately after birth and persist into childhood. Early manifestations of FGR/SGA in the EEG include changes in spectral power, symmetry/synchrony, sleep-wake cycling, and the continuity of EEG amplitude. Later manifestations of FGR/SGA into infancy and early childhood include changes in spectral power, sleep architecture, and EEG amplitude. FGR/SGA infants had poorer neurodevelopmental outcomes than appropriate for gestational age controls. The EEG has the potential to identify FGR/SGA infants and assess the functional correlates of neurological damage. IMPACT: FGR/SGA neonates have significantly different EEG activity compared to AGA neonates. EEG differences persist into childhood and are associated with adverse neurodevelopmental outcomes. EEG has the potential for early identification of brain impairment in FGR/SGA neonates.
Collapse
Affiliation(s)
- Nathan J. Stevenson
- grid.1049.c0000 0001 2294 1395Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Melissa M. Lai
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD 4029 Australia
| | - Hava E. Starkman
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.17063.330000 0001 2157 2938Department of Obstetrics and Gynaecology, University of Toronto, King’s College Circle, Toronto, ON M5S Canada
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD 4029 Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029 Australia
| |
Collapse
|
39
|
Statello R, Carnevali L, Sgoifo A, Miragoli M, Pisani F. Heart rate variability in neonatal seizures: Investigation and implications for management. Neurophysiol Clin 2021; 51:483-492. [PMID: 34774410 DOI: 10.1016/j.neucli.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many factors acting during the neonatal period can affect neurological development of the infant. Neonatal seizures (NS) that frequently occur in the immature brain may influence autonomic maturation and lead to detectable cardiovascular signs. These autonomic manifestations can also have significant diagnostic and prognostic value. The analysis of Heart Rate Variability (HRV) represents the most used and feasible method to evaluate cardiac autonomic regulation. This narrative review summarizes studies investigating HRV dynamics in newborns with seizures, with the aim of highlighting the potential utility of HRV measures for seizure detection and management. While HRV analysis in critically ill newborns is influenced by many potential confounders, we suggest that it can enhance the ability to better diagnose seizures in the clinical setting. We present potential applications of the analysis of HRV, which could have a useful future role, beyond the research setting.
Collapse
Affiliation(s)
- Rosario Statello
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Departement of Molecular Cardiology, Humanitas Research Hospital, IRCCS, Rozzano MI, Italy.
| | - Francesco Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
40
|
Yrjölä P, Stjerna S, Palva JM, Vanhatalo S, Tokariev A. Phase-Based Cortical Synchrony Is Affected by Prematurity. Cereb Cortex 2021; 32:2265-2276. [PMID: 34668522 PMCID: PMC9113310 DOI: 10.1093/cercor/bhab357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Inter-areal synchronization by phase–phase correlations (PPCs) of cortical oscillations mediates many higher neurocognitive functions, which are often affected by prematurity, a globally prominent neurodevelopmental risk factor. Here, we used electroencephalography to examine brain-wide cortical PPC networks at term-equivalent age, comparing human infants after early prematurity to a cohort of healthy controls. We found that prematurity affected these networks in a sleep state-specific manner, and the differences between groups were also frequency-selective, involving brain-wide connections. The strength of synchronization in these networks was predictive of clinical outcomes in the preterm infants. These findings show that prematurity affects PPC networks in a clinically significant manner, suggesting early functional biomarkers of later neurodevelopmental compromise that may be used in clinical or translational studies after early neonatal adversity.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- Department of Clinical Neurophysiology, BABA Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, 00029 HUS, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, 00076 AALTO, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Susanna Stjerna
- Department of Clinical Neurophysiology, BABA Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, 00029 HUS, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, PL 340, 00029 HUS, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, 00076 AALTO, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, 00029 HUS, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Tokariev
- Department of Clinical Neurophysiology, BABA Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, 00029 HUS, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Tokariev A, Breakspear M, Videman M, Stjerna S, Scholtens LH, van den Heuvel MP, Cocchi L, Vanhatalo S. Impact of In Utero Exposure to Antiepileptic Drugs on Neonatal Brain Function. Cereb Cortex 2021; 32:2385-2397. [PMID: 34585721 PMCID: PMC9157298 DOI: 10.1093/cercor/bhab338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
In utero brain development underpins brain health across the lifespan but is vulnerable to physiological and pharmacological perturbation. Here, we show that antiepileptic medication during pregnancy impacts on cortical activity during neonatal sleep, a potent indicator of newborn brain health. These effects are evident in frequency-specific functional brain networks and carry prognostic information for later neurodevelopment. Notably, such effects differ between different antiepileptic drugs that suggest neurodevelopmental adversity from exposure to antiepileptic drugs and not maternal epilepsy per se. This work provides translatable bedside metrics of brain health that are sensitive to the effects of antiepileptic drugs on postnatal neurodevelopment and carry direct prognostic value.
Collapse
Affiliation(s)
- Anton Tokariev
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mari Videman
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Susanna Stjerna
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Cocchi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sampsa Vanhatalo
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Functional harmonics reveal multi-dimensional basis functions underlying cortical organization. Cell Rep 2021; 36:109554. [PMID: 34433059 PMCID: PMC8411120 DOI: 10.1016/j.celrep.2021.109554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
The human brain consists of specialized areas that flexibly interact to form a multitude of functional networks. Complementary to this notion of modular organization, brain function has been shown to vary along a smooth continuum across the whole cortex. We demonstrate a mathematical framework that accounts for both of these perspectives: harmonic modes. We calculate the harmonic modes of the brain's functional connectivity graph, called "functional harmonics," revealing a multi-dimensional, frequency-ordered set of basis functions. Functional harmonics link characteristics of cortical organization across several spatial scales, capturing aspects of intra-areal organizational features (retinotopy, somatotopy), delineating brain areas, and explaining macroscopic functional networks as well as global cortical gradients. Furthermore, we show how the activity patterns elicited by seven different tasks are reconstructed from a very small subset of functional harmonics. Our results suggest that the principle of harmonicity, ubiquitous in nature, also underlies functional cortical organization in the human brain.
Collapse
|
43
|
Mojtahedi N, Kovalchuk Y, Böttcher A, Garaschuk O. Stable behavioral state-specific large scale activity patterns in the developing cortex of neonates. Cell Calcium 2021; 98:102448. [PMID: 34375923 DOI: 10.1016/j.ceca.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023]
Abstract
Intrinsic neuronal activity is a hallmark of the developing brain. In rodents, a handful of such activities were described in different cortical areas but the unifying macroscopic perspective is still lacking. Here we combined large-scale in vivo Ca2+ imaging of the dorsal cortex in non-anesthetized neonatal mice with mathematical analyses to reveal unique behavioral state-specific maps of intrinsic activity. These maps were remarkably stable over time within and across experiments and used patches of correlated activity with little hemispheric symmetry as well as stationary and propagating waves as building blocks. Importantly, the maps recorded during motion and rest were almost inverse, with frontoparietal areas active during motion and posterior-lateral areas active at rest. The retrosplenial cortex engaged in both resting- and motion-related activities via functional long-range connections with respective cortical areas. The data obtained bind different region-specific activity patterns described so far into a single consistent picture and set the stage for future inactivation studies, probing the exact function of this complex activity pattern for cortical wiring in neonates.
Collapse
Affiliation(s)
- Nima Mojtahedi
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Yury Kovalchuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Alexander Böttcher
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
44
|
Characterization of the Functional Dynamics in the Neonatal Brain during REM and NREM Sleep States by means of Microstate Analysis. Brain Topogr 2021; 34:555-567. [PMID: 34258668 PMCID: PMC8384814 DOI: 10.1007/s10548-021-00861-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies—the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states—AS and QS—in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.
Collapse
|
45
|
Rué-Queralt J, Stevner A, Tagliazucchi E, Laufs H, Kringelbach ML, Deco G, Atasoy S. Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun Biol 2021; 4:854. [PMID: 34244598 PMCID: PMC8270946 DOI: 10.1038/s42003-021-02369-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Current state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with a mean accuracy across participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.
Collapse
Affiliation(s)
- Joan Rué-Queralt
- grid.5612.00000 0001 2172 2676Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angus Stevner
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Enzo Tagliazucchi
- grid.7345.50000 0001 0056 1981Instituto de Física de Buenos Aires and Physics Deparment (University of Buenos Aires), Buenos Aires, Argentina
| | - Helmut Laufs
- grid.7839.50000 0004 1936 9721Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany ,grid.9764.c0000 0001 2153 9986Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Morten L. Kringelbach
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- grid.5612.00000 0001 2172 2676Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain ,grid.419524.f0000 0001 0041 5028Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.1002.30000 0004 1936 7857School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Selen Atasoy
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Selvanathan T, Miller SP. Early EEG in neonates with mild hypoxic-ischemic encephalopathy: more than meets the eye. Pediatr Res 2021; 90:18-19. [PMID: 33824445 DOI: 10.1038/s41390-021-01514-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Thiviya Selvanathan
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Steven P Miller
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Smith RJ, Alipourjeddi E, Garner C, Maser AL, Shrey DW, Lopour BA. Infant functional networks are modulated by state of consciousness and circadian rhythm. Netw Neurosci 2021; 5:614-630. [PMID: 34189380 PMCID: PMC8233111 DOI: 10.1162/netn_a_00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Functional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.8 hr) from 19 healthy infants. Networks were subject specific, as intersubject correlations between weighted adjacency matrices were low. However, within individual subjects, both sleep and wake networks were stable over time, with stronger functional connectivity during sleep than wakefulness. Principal component analysis revealed the presence of two dominant networks; visual sleep scoring confirmed that these corresponded to sleep and wakefulness. Lastly, we found that network strength, degree, clustering coefficient, and path length significantly varied with time of day, when measured in either wakefulness or sleep at the group level. Together, these results suggest that modulation of healthy functional networks occurs over ∼24 hr and is robust and repeatable. Accounting for such temporal periodicities may improve the physiological interpretation and use of functional connectivity analysis to investigate brain function in health and disease.
Collapse
Affiliation(s)
- Rachel J. Smith
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Ehsan Alipourjeddi
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Cristal Garner
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amy L. Maser
- Department of Psychology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Daniel W. Shrey
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
48
|
Georgoulas A, Jones L, Laudiano-Dray MP, Meek J, Fabrizi L, Whitehead K. Sleep-wake regulation in preterm and term infants. Sleep 2021; 44:5889156. [PMID: 32770211 PMCID: PMC7819838 DOI: 10.1093/sleep/zsaa148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Study Objectives In adults, wakefulness can be markedly prolonged at the expense of sleep, e.g. to stay vigilant in the presence of a stressor. These extra-long wake bouts result in a heavy-tailed distribution (highly right-skewed) of wake but not sleep durations. In infants, the relative importance of wakefulness and sleep are reversed, as sleep is necessary for brain maturation. Here, we tested whether these developmental pressures are associated with the unique regulation of sleep–wake states. Methods In 175 infants of 28–40 weeks postmenstrual age (PMA), we monitored sleep–wake states using electroencephalography and behavior. We constructed survival models of sleep–wake bout durations and the effect of PMA and other factors, including stress (salivary cortisol), and examined whether sleep is resilient to nociceptive perturbations (a clinically necessary heel lance). Results Wake durations followed a heavy-tailed distribution as in adults and lengthened with PMA and stress. However, differently from adults, active sleep durations also had a heavy-tailed distribution, and with PMA, these shortened and became vulnerable to nociception-associated awakenings. Conclusions Sleep bouts are differently regulated in infants, with especially long active sleep durations that could consolidate this state’s maturational functions. Curtailment of sleep by stress and nociception may be disadvantageous, especially for preterm infants given the limited value of wakefulness at this age. This could be addressed by environmental interventions in the future.
Collapse
Affiliation(s)
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Wing, University College London Hospitals, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
49
|
Friston KJ, Fagerholm ED, Zarghami TS, Parr T, Hipólito I, Magrou L, Razi A. Parcels and particles: Markov blankets in the brain. Netw Neurosci 2021; 5:211-251. [PMID: 33688613 PMCID: PMC7935044 DOI: 10.1162/netn_a_00175] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/24/2020] [Indexed: 11/04/2022] Open
Abstract
At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions-and analyses-of distributed brain responses: namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks.
Collapse
Affiliation(s)
- Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Erik D. Fagerholm
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - Tahereh S. Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, University of Tehran, Amirabad, Tehran, Iran
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Inês Hipólito
- Berlin School of Mind and Brain, and Institut für Philosophie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Loïc Magrou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| |
Collapse
|
50
|
Pham NT, Nishijo M, Nghiem TTG, Pham TT, Tran NN, Le VQ, Vu TH, Tran HA, Phan HAV, Do Q, Takiguchi T, Nishino Y, Nishijo H. Effects of perinatal dioxin exposure on neonatal electroencephalography (EEG) activity of the quiet sleep stage in the most contaminated area from Agent Orange in Vietnam. Int J Hyg Environ Health 2020; 232:113661. [PMID: 33296778 DOI: 10.1016/j.ijheh.2020.113661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of perinatal dioxin exposure indicated by dioxins in breast milk on neonatal electroencephalography (EEG) power in the quiet sleep stage, and associations with neurodevelopmental outcomes at 2 years of age. STUDY DESIGN Fifty-one mother-newborn pairs were enrolled for neonatal EEG analysis in the quiet sleep stage from a birth cohort recruited at a prefecture hospital in Bien Hoa city, Vietnam. Relative EEG power in intra-burst-intervals and high-voltage-bursts in the trace alternant pattern were computed from EEG data during the quiet sleep stage. Forty-three mother-child pairs participated in a 2-year follow-up survey to examine neurodevelopment using the Bayley-III scale and gaze behavior exhibited by fixation duration on the face of a child talking in videos. The general linear model and regression linear model were used for data analysis after adjusting for confounding factors. RESULTS Perinatal dioxin exposure, particularly 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure, influenced relative EEG power values mainly in the intra-burst-interval part of the trace alternant pattern in the quiet sleep stage. In intra-burst-intervals, decreased frontal delta power and increased frontal and parietal alpha power values in the left hemisphere and temporal beta power values in the right hemisphere were associated with increased TCDD exposure, with significant dose-response relationships. Almost none of the relative power values in these brain regions were associated with Bayley III scores, but relative delta power values were significantly associated with face fixation duration in left frontal and parietal regions at 2 years of age. CONCLUSION Perinatal dioxin exposure influences neuronal activity in the quiet sleep stage, leading to poor communication ability indicated by gaze behavior in early childhood.
Collapse
Affiliation(s)
- Ngoc Thao Pham
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Muneko Nishijo
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
| | - Thi Thuy Giang Nghiem
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - The Tai Pham
- Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Ngoc Nghi Tran
- Ministry of Health, Vietnamese Government, Hanoi, Viet Nam
| | - Van Quan Le
- Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Thi Hoa Vu
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hai Anh Tran
- Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Huy Anh Vu Phan
- Department of Health, Dongnai Prefectural Government, Bienhoa, Dongnai, Viet Nam
| | - Quyet Do
- Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Tomoya Takiguchi
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yoshikazu Nishino
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|