1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
He B, Helmann JD. Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis. Annu Rev Microbiol 2024; 78:83-102. [PMID: 38960447 DOI: 10.1146/annurev-micro-041522-091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Yang R, Xu Y, Xu J, Li Y, Wan X, Kong R, Ding C, Tao H, Wang HL. The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112967. [PMID: 38996773 DOI: 10.1016/j.jphotobiol.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus.
Collapse
Affiliation(s)
- Ruili Yang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jinchun Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yali Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Wan
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Kong
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Ding
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Han Tao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Zhou C, Pawline MB, Pironti A, Morales SM, Perault AI, Ulrich RJ, Podkowik M, Lejeune A, DuMont A, Stubbe FX, Korman A, Jones DR, Schluter J, Richardson AR, Fey PD, Drlica K, Cadwell K, Torres VJ, Shopsin B. Microbiota and metabolic adaptation shape Staphylococcus aureus virulence and antimicrobial resistance during intestinal colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593044. [PMID: 38766195 PMCID: PMC11100824 DOI: 10.1101/2024.05.11.593044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC, which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA's antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA's wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA's survival and fitness during and after host hospitalization and antimicrobial treatment.
Collapse
Affiliation(s)
- Chunyi Zhou
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda B. Pawline
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sabrina M. Morales
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aryeh Korman
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonas Schluter
- Institute for Systems Genetics, Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
6
|
Wang C, Zhu JZJ, Vi-Tang S, Peng B, Ni C, Li Q, Chang X, Huang A, Yang Z, Savage EJ, Uemura S, Katsuyama Y, El-Kady MF, Kaner RB. Labile Coordination Interphase for Regulating Lean Ion Dynamics in Reversible Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306145. [PMID: 37903216 DOI: 10.1002/adma.202306145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Indexed: 11/01/2023]
Abstract
Rechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large-scale energy storage. In this study, a zinc-coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn2+ ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite-free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm-2 and high reversibility of dendrite-free zinc plating/stripping for over 200 hours. A Zn||LiMn2 O4 cell with 74.7 mWh g-1 energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean-electrolyte full cell using only 10 µL mAh-1 electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof-of-concept design for low-electrolyte, high-energy-density batteries by modulating coordination interphases on Zn anodes.
Collapse
Affiliation(s)
- Chenxiang Wang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jason Zi Jie Zhu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Vi-Tang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Bosi Peng
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Chenhao Ni
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Qizhou Li
- Department of Chemical Engineering and Materials Science, University of Southern California, CA, 90089, USA
| | - Xueying Chang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ethan J Savage
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophia Uemura
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yuto Katsuyama
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Chowdhury G, Biswas S, Dholey Y, Panja P, Das S, Adak S. Importance of aspartate 4 in the Mg 2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140964. [PMID: 37726028 DOI: 10.1016/j.bbapap.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
Collapse
Affiliation(s)
- Gaurab Chowdhury
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Yuthika Dholey
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Puja Panja
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
8
|
Sharkey LKR, Guerillot R, Walsh CJ, Turner AM, Lee JYH, Neville SL, Klatt S, Baines SL, Pidot SJ, Rossello FJ, Seemann T, McWilliam HEG, Cho E, Carter GP, Howden BP, McDevitt CA, Hachani A, Stinear TP, Monk IR. The two-component system WalKR provides an essential link between cell wall homeostasis and DNA replication in Staphylococcus aureus. mBio 2023; 14:e0226223. [PMID: 37850732 PMCID: PMC10746227 DOI: 10.1128/mbio.02262-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.
Collapse
Affiliation(s)
- Liam K. R. Sharkey
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Calum J. Walsh
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrianna M. Turner
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Y. H. Lee
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Fernando J. Rossello
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Xing J, Gumerov VM, Zhulin IB. Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor. SCIENCE ADVANCES 2023; 9:eadi4517. [PMID: 37647406 PMCID: PMC10468136 DOI: 10.1126/sciadv.adi4517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Signal perception is a key function in regulating biological activities and adapting to changing environments. Per-Arnt-Sim (PAS) domains are ubiquitous sensors found in diverse receptors in bacteria, archaea, and eukaryotes, but their origins, distribution across the tree of life, and extent of their functional diversity are not fully characterized. Here, we show that using sequence conservation and structural information, it is possible to propose specific and potential functions for a large portion of nearly 3 million PAS domains. Our analysis suggests that PAS domains originated in bacteria and were horizontally transferred to archaea and eukaryotes. We reveal that gas sensing via a heme cofactor evolved independently in several lineages, whereas redox and light sensing via flavin adenine dinucleotide and flavin mononucleotide cofactors have the same origin. The close relatedness of human PAS domains to those in bacteria provides an opportunity for drug design by exploring potential natural ligands and cofactors for bacterial homologs.
Collapse
Affiliation(s)
- Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| |
Collapse
|
10
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
11
|
Fang F, Xu H, Chai B, Li D, Nie L, Wen Z, Yu Z, Zheng J, Zhang H. Neobavaisoflavone Inhibits Biofilm Formation and α-Toxin Activity of Staphylococcus aureus. Curr Microbiol 2023; 80:258. [PMID: 37358668 DOI: 10.1007/s00284-023-03355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Neobavaisoflavone had antimicrobial activities against Gram-positive multidrug-resistant (MDR) bacteria, but the effect of neobavaisoflavone on the virulence and biofilm formation of S. aureus has not been explored. The present study aimed to investigate the possible inhibitory effect of neobavaisoflavone on the biofilm formation and α-toxin activity of S. aureus. Neobavaisoflavone presented strong inhibitory effect on the biofilm formation and α-toxin activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains at 25 µM, but did not affect the growth of S. aureus planktonic cells. Genetic mutations were identified in four coding genes, including cell wall metabolism sensor histidine kinase walK, RNA polymerase sigma factor rpoD, tetR family transcriptional regulator, and a hypothetical protein. The mutation of WalK (K570E) protein was identified and verified in all the neobavaisoflavone-induced mutant S. aureus isolates. The ASN501, LYS504, ILE544 and GLY565 of WalK protein act as hydrogen acceptors to form four hydrogen bonds with neobavaisoflavone by molecular docking analysis, and TRY505 of WalK protein contact with neobavaisoflavone to form a pi-H bond. In conclusion, neobavaisoflavone had excellent inhibitory effect on the biofilm formation and α-toxin activity of S. aureus. The WalK protein might be a potential target of neobavaisoflavone against S. aureus.
Collapse
Affiliation(s)
- Fang Fang
- Department of Infectious Diseases and Department of General Medicine, the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Hongbo Xu
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Bao Chai
- Department of Dermatology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Lei Nie
- Department of Infectious Diseases and Department of General Medicine, the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Haigang Zhang
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| |
Collapse
|
12
|
Tomlinson KL, Riquelme SA, Baskota SU, Drikic M, Monk IR, Stinear TP, Lewis IA, Prince AS. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep 2023; 42:112064. [PMID: 36724077 PMCID: PMC10387506 DOI: 10.1016/j.celrep.2023.112064] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Neutrophils are critical in the host defense against Staphylococcus aureus, a major human pathogen. However, even in the setting of a robust neutrophil response, S. aureus can evade immune clearance. Here, we demonstrate that S. aureus impairs neutrophil function by triggering the production of the anti-inflammatory metabolite itaconate. The enzyme that synthesizes itaconate, Irg1, is selectively expressed in neutrophils during S. aureus pneumonia. Itaconate inhibits neutrophil glycolysis and oxidative burst, which impairs survival and bacterial killing. In a murine pneumonia model, neutrophil Irg1 expression protects the lung from excessive inflammation but compromises bacterial clearance. S. aureus is thus able to evade the innate immune response by targeting neutrophil metabolism and inducing the production of the anti-inflammatory metabolite itaconate.
Collapse
Affiliation(s)
- Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alice S Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Dietrich A, Gajdiss M, Türck M, Monk I, Bierbaum G. Bacterial Two Component Systems: Overexpression and Purification: In Vitro and In Vivo Inhibitor Screens. Methods Mol Biol 2023; 2601:313-333. [PMID: 36445592 DOI: 10.1007/978-1-0716-2855-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial histidine kinases are promising targets for new antimicrobial agents. In antibacterial therapy, such agents could inhibit bacterial growth by targeting essential two-component regulatory systems or resensitize bacteria to known antibiotics by blocking stress responses upon cell wall or cell membrane damage. However, (i) activity assays using truncated kinase proteins, that is, the cytoplasmic domains containing the conserved histidine residue for phosphorylation, have been shown to produce artifacts, and (ii) the purification of the full-length histidine kinases is complicated. Here, we describe a standard protocol for the recombinant expression and purification of functional full-length histidine kinases and other membrane proteins from Gram-positive bacteria that do not harbor more than two trans-membrane domains in an Escherichia coli host. This guide also presents in vitro and in vivo phosphorylation assays to screen for new antimicrobial compounds that target bacterial histidine kinases, either using a traditional radioactively labeled ATP assay to quantify histidine kinase phosphorylation or Phos-tag acrylamide gel electrophoresis to examine histidine kinase phosphorylation through mobility shift in the polyacrylamide gel. In addition, we describe the use of Phos-tag combined with a western blot approach to visualize the phosphorylation of a response regulator in vivo.
Collapse
Affiliation(s)
- Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Michael Türck
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Ian Monk
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
- Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|
15
|
Wu S, Gan T, Xie L, Deng S, Liu Y, Zhang H, Hu X, Lei L. Antibacterial performance of graphene oxide/alginate-based antisense hydrogel for potential therapeutic application in Staphylococcus aureus infection. BIOMATERIALS ADVANCES 2022; 141:213121. [PMID: 36162343 DOI: 10.1016/j.bioadv.2022.213121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic bacterium that causes several infections in humans. However, chronic biofilms remain a major challenge associated with recalcitrance toward traditional treatments. Herein, an antibacterial hydrogel composed of antisense DNA oligonucleotides, graphene oxide and alginate is construed for biofilm management and infection care. The hydrogel is established through noncovalent binding and possesses injectability and degradability properties. Furthermore, hydrogels present controllable release of cargoes, genetic targeting antibacterial effects and stem cell supporting capabilities. Our in vivo results reveal a high antibiofilm performance and good biocompatibility, which significantly improve tissue regeneration. The hydrogel inhibits biofilm formation by decreasing the expression of YycFG with antisense and viability of strains by graphene oxide. Thus, antisense hydrogels can be a promising antibacterial bioactive material for potential therapeutic S. aureus infection.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingjiang Gan
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Deng
- Boston University Henry M Goldman School of Dental Medicine, Boston, MA 02101, USA
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu City, Sichuan 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Biomaterials Building, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Widagdo J, Udagedara S, Bhembre N, Tan JZA, Neureiter L, Huang J, Anggono V, Lee M. Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons. Open Biol 2022; 12:220187. [PMID: 36168806 PMCID: PMC9516340 DOI: 10.1098/rsob.220187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Saumya Udagedara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lara Neureiter
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jie Huang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
17
|
Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ, Stinear TP, Howden BP. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 2022; 11:e77195. [PMID: 35699423 PMCID: PMC9270034 DOI: 10.7554/elife.77195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues and is exposed to new selective pressures, thus, potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation; however, a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation, we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.
Collapse
Affiliation(s)
- Stefano G Giulieri
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourneAustralia
| | - Romain Guérillot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Sebastian Duchene
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Diane Daniel
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Joshua S Davis
- Department of Infectious Diseases, John Hunter HospitalNewcastle, New South WalesAustralia
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
| | - Steven YC Tong
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of OxfordOxfordUnited Kingdom
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Benjamin P Howden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
18
|
Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Front Microbiol 2022; 13:820089. [PMID: 35558126 PMCID: PMC9087282 DOI: 10.3389/fmicb.2022.820089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.
Collapse
Affiliation(s)
- Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanshan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Min Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingquan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shida Wang
- State Key Laboratory for Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Florey Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
20
|
Wu S, Zhang J, Peng Q, Liu Y, Lei L, Zhang H. The Role of Staphylococcus aureus YycFG in Gene Regulation, Biofilm Organization and Drug Resistance. Antibiotics (Basel) 2021; 10:antibiotics10121555. [PMID: 34943766 PMCID: PMC8698359 DOI: 10.3390/antibiotics10121555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is a serious global health concern that may have significant social and financial consequences. Methicillin-resistant Staphylococcus aureus (MRSA) infection is responsible for substantial morbidity and leads to the death of 21.8% of infected patients annually. A lack of novel antibiotics has prompted the exploration of therapies targeting bacterial virulence mechanisms. The two-component signal transduction system (TCS) enables microbial cells to regulate gene expression and the subsequent metabolic processes that occur due to environmental changes. The YycFG TCS in S. aureus is essential for bacterial viability, the regulation of cell membrane metabolism, cell wall synthesis and biofilm formation. However, the role of YycFG-associated biofilm organization in S. aureus antimicrobial drug resistance and gene regulation has not been discussed in detail. We reviewed the main molecules involved in YycFG-associated cell wall biosynthesis, biofilm development and polysaccharide intercellular adhesin (PIA) accumulation. Two YycFG-associated regulatory mechanisms, accessory gene regulator (agr) and staphylococcal accessory regulator (SarA), were also discussed. We highlighted the importance of biofilm formation in the development of antimicrobial drug resistance in S. aureus infections. Data revealed that inhibition of the YycFG pathway reduced PIA production, biofilm formation and bacterial pathogenicity, which provides a potential target for the management of MRSA-induced infections.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Junqi Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Qi Peng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Lei Lei
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
- Correspondence: (L.L.); (H.Z.)
| |
Collapse
|
21
|
Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases. Biomolecules 2021; 11:biom11101524. [PMID: 34680156 PMCID: PMC8534201 DOI: 10.3390/biom11101524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates for novel drug targets. TCSs consist of a sensor histidine kinase (HK) and its cognate response regulator (RR). Upon perception of a signal, HKs autophosphorylate their conserved histidine residues, followed by phosphotransfer to their partner RRs. The phosphorylated RRs mostly function as transcriptional regulators and control the expression of genes necessary for stress response. HKs sense their specific signals not only in their extracytoplasmic sensor domain but also in their cytoplasmic and transmembrane domains. The signals are sensed either directly or indirectly via cofactors and accessory proteins. Accumulating evidence shows that a single HK can sense and respond to multiple signals in different domains. The underlying molecular mechanisms of how HK activity is controlled by these signals have been extensively studied both biochemically and structurally. In this article, we introduce the wide diversity of signal perception in different domains of HKs, together with their recently clarified structures and molecular mechanisms.
Collapse
|
22
|
Baseri N, Najar-Peerayeh S, Bakhshi B. Investigating the effect of an identified mutation within a critical site of PAS domain of WalK protein in a vancomycin-intermediate resistant Staphylococcus aureus by computational approaches. BMC Microbiol 2021; 21:240. [PMID: 34474665 PMCID: PMC8414773 DOI: 10.1186/s12866-021-02298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Vancomycin-intermediate resistant Staphylococcus aureus (VISA) is becoming a common cause of nosocomial infections worldwide. VISA isolates are developed by unclear molecular mechanisms via mutations in several genes, including walKR. Although studies have verified some of these mutations, there are a few studies that pay attention to the importance of molecular modelling of mutations. Method For genomic and transcriptomic comparisons in a laboratory-derived VISA strain and its parental strain, Sanger sequencing and reverse transcriptase quantitative PCR (RT-qPCR) methods were used, respectively. After structural protein mapping of the detected mutation, mutation effects were analyzed using molecular computational approaches and crystal structures of related proteins. Results A mutation WalK-H364R was occurred in a functional zinc ion coordinating residue within the PAS domain in the VISA strain. WalK-H364R was predicted to destabilize protein and decrease WalK interactions with proteins and nucleic acids. The RT-qPCR method showed downregulation of walKR, WalKR-regulated autolysins, and agr locus. Conclusion Overall, WalK-H364R mutation within a critical metal-coordinating site was presumably related to the VISA development. We assume that the WalK-H364R mutation resulted in deleterious effects on protein, which was verified by walKR gene expression changes.. Therefore, molecular modelling provides detailed insight into the molecular mechanism of VISA development, in particular, where allelic replacement experiments are not readily available. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02298-9.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Pardoux R, Dolla A, Aubert C. Metal-containing PAS/GAF domains in bacterial sensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
24
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
25
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
26
|
Stuffle EC, Johnson MS, Watts KJ. PAS domains in bacterial signal transduction. Curr Opin Microbiol 2021; 61:8-15. [PMID: 33647528 DOI: 10.1016/j.mib.2021.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
PAS domains are widespread, versatile domains found in proteins from all kingdoms of life. The PAS fold is composed of an antiparallel β-sheet with several flanking α-helices, and contains a conserved cleft for cofactor or ligand binding. The last few years have seen a prodigious increase in identified PAS domains and resolved PAS structures, including structures with effector and other domains. New bacterial PAS ligands have been discovered, and structure-function studies have improved our understanding of PAS signaling mechanisms. The list of bacterial PAS functions has now expanded to include roles in signal sensing, modulation, transduction, dimerization, protein interaction, and cellular localization.
Collapse
Affiliation(s)
- Erwin C Stuffle
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
27
|
Abstract
Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae. Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae. Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes.
Collapse
|
28
|
Kosek D, Hickman AB, Ghirlando R, He S, Dyda F. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition. EMBO J 2021; 40:e105666. [PMID: 33006208 PMCID: PMC7780238 DOI: 10.15252/embj.2020105666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
Copy-out/paste-in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy-out/paste-in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X-ray structures of ISCth4 transposase, a member of the IS256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N-terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA-binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.
Collapse
Affiliation(s)
- Dalibor Kosek
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Alison B Hickman
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Susu He
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
- Present address:
State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Fred Dyda
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
29
|
Differential Induction of Type I and III Interferons by Staphylococcus aureus. Infect Immun 2020; 88:IAI.00352-20. [PMID: 32690637 DOI: 10.1128/iai.00352-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.
Collapse
|
30
|
Patel Y, Zhao H, Helmann JD. A regulatory pathway that selectively up-regulates elongasome function in the absence of class A PBPs. eLife 2020; 9:57902. [PMID: 32897856 PMCID: PMC7478892 DOI: 10.7554/elife.57902] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria surround themselves with peptidoglycan, an adaptable enclosure that contributes to cell shape and stability. Peptidoglycan assembly relies on penicillin-binding proteins (PBPs) acting in concert with SEDS-family transglycosylases RodA and FtsW, which support cell elongation and division respectively. In Bacillus subtilis, cells lacking all four PBPs with transglycosylase activity (aPBPs) are viable. Here, we show that the alternative sigma factor σI is essential in the absence of aPBPs. Defects in aPBP-dependent wall synthesis are compensated by σI-dependent upregulation of an MreB homolog, MreBH, which localizes the LytE autolysin to the RodA-containing elongasome complex. Suppressor analysis reveals that cells unable to activate this σI stress response acquire gain-of-function mutations in the essential histidine kinase WalK, which also elevates expression of sigI, mreBH and lytE. These results reveal compensatory mechanisms that balance the directional peptidoglycan synthesis arising from the elongasome complex with the more diffusive action of aPBPs.
Collapse
Affiliation(s)
- Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
31
|
Brazeau NF, Levinson KJ, Schranz A, Moser KA, Hollis I, Iyer P, Chien C, Bowen A, van Duin D, Lachiewicz A, Andermann T, Jones M, Miller M, Juliano JJ, Bartelt LA. Loss of daptomycin susceptibility in clinical Staphylococcus epidermidis infection coincided with variants in WalK. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:219-224. [PMID: 33214904 PMCID: PMC7658547 DOI: 10.1093/emph/eoaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 01/25/2023]
Abstract
Daptomycin (DAP) is key in treating multidrug-resistant Staphylococcus infections. Diminished susceptibility to DAP is emerging among Staphylococcus epidermidis strains although mechanisms for non-susceptibility (NS) remain poorly understood. We report a case of persistent S. epidermidis bacteremia in which loss of DAP susceptibility arose during prolonged treatment. Whole genome sequencing identified two mutations, Q371del and P415L, in a single-affected gene, WalK, that coincided with the emergence of DAP-NS. Protein modeling of the mutations predicted a disruption of WalK protein configuration. The emergence of mutations in a single-gene during DAP exposure raises concerns in an era of increasingly treatment-resistant infections. Lay summary: Daptomycin is an important antibiotic for fighting Staphylococcus infections. We identified variants in the WalK gene that were coincident with resistance in a clinical Staphylococcus epidermidis infection. Clinicians, hospital epidemiologists, and microbiology laboratories need to be aware of the potential for the evolution of drug resistance during prolonged daptomycin therapy.
Collapse
Affiliation(s)
- Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kara J Levinson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Asher Schranz
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kara A Moser
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ian Hollis
- University of North Carolina Health, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Prashanth Iyer
- University of North Carolina Health, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Christopher Chien
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda Bowen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David van Duin
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anne Lachiewicz
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tessa Andermann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Melissa Jones
- Clinical Microbiology Laboratory, University of North Carolina Health Care, Chapel Hill, NC 27599, USA
| | - Melissa Miller
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
Werth BJ, Ashford NK, Penewit K, Waalkes A, Holmes EA, Ross DH, Shen T, Hines KM, Salipante SJ, Xu L. Dalbavancin exposure in vitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2020; 27:910.e1-910.e8. [PMID: 32866650 DOI: 10.1016/j.cmi.2020.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Dalbavancin is a lipoglycopeptide active against methicillin-resistant Staphylococcus aureus (MRSA). Its long half-life (8.5-16 days) allows for once-weekly or single-dose treatments but could prolong the mutant selection window, promoting resistance and cross-resistance to related antimicrobials such as vancomycin. The objective of this study was to evaluate the capacity of post-distributional pharmacokinetic exposures of dalbavancin to select for resistance and cross-resistance in MRSA. METHODS We simulated average, post-distributional exposures of single-dose (1500 mg) dalbavancin (fCmax 9.9 μg/mL, β-elimination t1/2 204 h) in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model for 28 days (672 h) against five MRSA strains and one methicillin-susceptible strain (MSSA). Samples were collected at least daily, and surviving colonies were enumerated and screened for resistance on drug-free and dalbavancin-supplemented medium respectively. Isolates from resistance screening plates were subjected to whole-genome sequencing (WGS) and susceptibly testing against dalbavancin, vancomycin, daptomycin, and six β-lactams with varying penicillin-binding protein (PBP) affinities. RESULTS Dalbavancin was bactericidal against most strains for days 1-4 before regrowth of less susceptible subpopulations occurred. Isolates with eight-fold increases in dalbavancin MIC were detected as early as day 4 but increased 64-128-fold in all models by day 28. Vancomycin and daptomycin MICs increased 4-16-fold, exceeding the susceptibly breakpoints for both antibiotics; β-lactam MICs generally decreased by two-to eight-fold, suggesting a dalbavancin-β-lactam seesaw effect, but increased by eight-fold or more in certain isolates. Resistant isolates carried mutations in a variety of genes, most commonly walKR, apt, stp1, and atl. CONCLUSIONS In our in vitro system, post-distributional dalbavancin exposures selected for stable mutants with reduced susceptibility to dalbavancin, vancomycin, and daptomycin, and generally increased susceptibility to β-lactams in all strains of MRSA tested. The clinical significance of these findings remains unclear, but created an opportunity to genotype a unique collection of dalbavancin-resistant strains for the first time. Mutations involved genes previously associated with vancomycin intermediate susceptibility and daptomycin non-susceptibility, most commonly walKR-associated genes.
Collapse
Affiliation(s)
- Brian J Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Nathaniel K Ashford
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Dylan H Ross
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Tianwei Shen
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA; University of Georgia, Department of Chemistry, Athens, GA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Abstract
Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family. In bacteria, adaptation to changes in the environment is mainly controlled through two-component signal transduction systems (TCSs). Most bacteria contain dozens of TCSs, each of them responsible for sensing a different range of signals and controlling the expression of a repertoire of target genes (regulon). Over the years, identification of the regulon controlled by each individual TCS in different bacteria has been a recurrent question. However, limitations associated with the classical approaches used have left our knowledge far from complete. In this report, using a pioneering approach in which a strain devoid of the complete nonessential TCS network was systematically complemented with the constitutively active form of each response regulator, we have reconstituted the regulon of each TCS of S. aureus in the absence of interference between members of the family. Transcriptome sequencing (RNA-Seq) and proteomics allowed us to determine the size, complexity, and insulation of each regulon and to identify the genes regulated exclusively by one or many TCSs. This gain-of-function strategy provides the first description of the complete TCS regulon in a living cell, which we expect will be useful to understand the pathobiology of this important pathogen. IMPORTANCE Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family.
Collapse
|
34
|
Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, Dietrich A, Hort M, Sib E, Stinear TP, Bierbaum G. YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Microorganisms 2020; 8:microorganisms8060870. [PMID: 32526915 PMCID: PMC7355866 DOI: 10.3390/microorganisms8060870] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.
Collapse
Affiliation(s)
- Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Janina Kienemund
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Tanja Funk
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
- Correspondence:
| |
Collapse
|
35
|
Ge C, Monk IR, Monard SC, Bedford JG, Braverman J, Stinear TP, Wakim LM. Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of
Staphylococcus aureus
from the upper to the lower airways. Immunol Cell Biol 2020; 98:577-594. [DOI: 10.1111/imcb.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenghao Ge
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
- School of Medicine Tsinghua University Beijing China
| | - Ian R Monk
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Sarah C Monard
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - James G Bedford
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Jessica Braverman
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| |
Collapse
|
36
|
Biswas S, Adhikari A, Mukherjee A, Das S, Adak S. Regulation of Leishmania major PAS domain-containing phosphoglycerate kinase by cofactor Mg 2+ ion at neutral pH. FEBS J 2020; 287:5183-5195. [PMID: 32196942 DOI: 10.1111/febs.15305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/26/2022]
Abstract
Recently, we described the PAS domain-containing phosphoglycerate kinase (PGK) from Leishmania major (LmPAS-PGK) that shows acidic pH (5.5)-dependent optimum catalytic activity. The PAS domain of LmPAS-PGK is expected to regulate PGK activity during catalysis, but the mechanism of regulation by PAS domain at the molecular level is uncharacterized. In this work, we have utilized the full-length, PAS domain-deleted, and mutant enzymes to measure the enzymatic activity in the presence of divalent cation at various pH values. Catalytic activity measurement indicates that Mg2+ binding through PAS domain inhibits the PGK activity at pH 7.5, and this inhibition is withdrawn at pH 5.5. To identify the Mg2+ binding residues of the PAS domain, we exploited a systematic mutational analysis of all (four) His residues in the PAS domain for potential divalent cation binding. Replacement of His-57 with alanine resulted in depression in the presence of Mg2+ at pH 7.5, but H71A, H89A, and H111A showed similar characteristics with respect to the wild-type protein. Fluorescence and isothermal titration calorimetry studies revealed that H57 is responsible for Mg2+ binding in the absence of substrates. Thus, the protonated form of His57 at acidic pH 5.5 destabilizes the Mg2+ binding in the PAS domain, which is an essential requirement in the wild-type LmPAS-PGK for a conformational alteration in the sensor domain that, sequentially, activates the PGK domain, resulting in the synthesis of higher amounts of ATP.
Collapse
Affiliation(s)
- Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ayan Adhikari
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aditi Mukherjee
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|