1
|
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJH, Roelfsema P, Badura A, De Zeeuw CI. Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques. eLife 2025; 13:RP99696. [PMID: 39819496 PMCID: PMC11737872 DOI: 10.7554/elife.99696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.
Collapse
Affiliation(s)
- Nico A Flierman
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Sue Ann Koay
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tom JH Ruigrok
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Pieter Roelfsema
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
| | | | - Chris I De Zeeuw
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| |
Collapse
|
2
|
Pemberton J, Chadderton P, Costa RP. Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation. Nat Commun 2024; 15:10913. [PMID: 39738061 DOI: 10.1038/s41467-024-55315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions. First, using sensorimotor tasks, we show that cerebellar feedback in the presence of stable cortical networks is sufficient for rapid task acquisition and switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dynamics in the cortex, explaining a range of optogenetic and behavioural observations. Finally, using our model, we introduce a systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex. In summary, our findings suggest that cortico-cerebellar loops are an important component of task acquisition, switching, and consolidation in the brain.
Collapse
Affiliation(s)
- Joseph Pemberton
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Cai XY, Wang XT, Guo JW, Xu FX, Ma KY, Wang ZX, Zhao Y, Xie W, Schonewille M, De Zeeuw C, Chen W, Shen Y. Aberrant outputs of cerebellar nuclei and targeted rescue of social deficits in an autism mouse model. Protein Cell 2024; 15:872-888. [PMID: 39066574 PMCID: PMC11637611 DOI: 10.1093/procel/pwae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebellum is heavily connected with other brain regions, sub-serving not only motor but also nonmotor functions. Genetic mutations leading to cerebellar dysfunction are associated with mental diseases, but cerebellar outputs have not been systematically studied in this context. Here, we present three dimensional distributions of 50,168 target neurons of cerebellar nuclei (CN) from wild-type mice and Nlgn3R451C mutant mice, a mouse model for autism. Our results derived from 36 target nuclei show that the projections from CN to thalamus, midbrain and brainstem are differentially affected by Nlgn3R451C mutation. Importantly, Nlgn3R451C mutation altered the innervation power of CN→zona incerta (ZI) pathway, and chemogenetic inhibition of a neuronal subpopulation in the ZI that receives inputs from the CN rescues social defects in Nlgn3R451C mice. Our study highlights potential role of cerebellar outputs in the pathogenesis of autism and provides potential new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Xin-Yu Cai
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Tai Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Wen Guo
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuang-Yi Ma
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | - Yue Zhao
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA Amsterdam, The Netherlands
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
4
|
Nozari N, Martin RC. Is working memory domain-general or domain-specific? Trends Cogn Sci 2024; 28:1023-1036. [PMID: 39019705 PMCID: PMC11540753 DOI: 10.1016/j.tics.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Given the fundamental role of working memory (WM) in all domains of cognition, a central question has been whether WM is domain-general. However, the term 'domain-general' has been used in different, and sometimes misleading, ways. By reviewing recent evidence and biologically plausible models of WM, we show that the level of domain-generality varies substantially between three facets of WM: in terms of computations, WM is largely domain-general. In terms of neural correlates, it contains both domain-general and domain-specific elements. Finally, in terms of application, it is mostly domain-specific. This variance encourages a shift of focus towards uncovering domain-general computational principles and away from domain-general approaches to the analysis of individual differences and WM training, favoring newer perspectives, such as training-as-skill-learning.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| |
Collapse
|
5
|
Miranda MF. A canonical polyadic tensor basis for fast Bayesian estimation of multi-subject brain activation patterns. Front Neuroinform 2024; 18:1399391. [PMID: 39188665 PMCID: PMC11345152 DOI: 10.3389/fninf.2024.1399391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Task-evoked functional magnetic resonance imaging studies, such as the Human Connectome Project (HCP), are a powerful tool for exploring how brain activity is influenced by cognitive tasks like memory retention, decision-making, and language processing. A fast Bayesian function-on-scalar model is proposed for estimating population-level activation maps linked to the working memory task. The model is based on the canonical polyadic (CP) tensor decomposition of coefficient maps obtained for each subject. This decomposition effectively yields a tensor basis capable of extracting both common features and subject-specific features from the coefficient maps. These subject-specific features, in turn, are modeled as a function of covariates of interest using a Bayesian model that accounts for the correlation of the CP-extracted features. The dimensionality reduction achieved with the tensor basis allows for a fast MCMC estimation of population-level activation maps. This model is applied to one hundred unrelated subjects from the HCP dataset, yielding significant insights into brain signatures associated with working memory.
Collapse
Affiliation(s)
- Michelle F. Miranda
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
6
|
Sendhilnathan N, Bostan AC, Strick PL, Goldberg ME. A cerebro-cerebellar network for learning visuomotor associations. Nat Commun 2024; 15:2519. [PMID: 38514616 PMCID: PMC10957870 DOI: 10.1038/s41467-024-46281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Consensus is rapidly building to support a role for the cerebellum beyond motor function, but its contributions to non-motor learning remain poorly understood. Here, we provide behavioral, anatomical and computational evidence to demonstrate a causal role for the primate posterior lateral cerebellum in learning new visuomotor associations. Reversible inactivation of the posterior lateral cerebellum of male monkeys impeded the learning of new visuomotor associations, but had no effect on movement parameters, or on well-practiced performance of the same task. Using retrograde transneuronal transport of rabies virus, we identified a distinct cerebro-cerebellar network linking Purkinje cells in the posterior lateral cerebellum with a region of the prefrontal cortex that is critical in learning visuomotor associations. Together, these results demonstrate a causal role for the primate posterior lateral cerebellum in non-motor, reinforcement learning.
Collapse
Affiliation(s)
- Naveen Sendhilnathan
- Doctoral program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Andreea C Bostan
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael E Goldberg
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neurology, Psychiatry, and Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Do J, Jung MW, Lee D. Automating licking bias correction in a two-choice delayed match-to-sample task to accelerate learning. Sci Rep 2023; 13:22768. [PMID: 38123637 PMCID: PMC10733387 DOI: 10.1038/s41598-023-49862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Animals often display choice bias, or a preference for one option over the others, which can significantly impede learning new tasks. Delayed match-to-sample (DMS) tasks with two-alternative choices of lickports on the left and right have been widely used to study sensory processing, working memory, and associative memory in head-fixed animals. However, extensive training time, primarily due to the animals' biased licking responses, limits their practical utility. Here, we present the implementation of an automated side bias correction system in an olfactory DMS task, where the lickport positions and the ratio of left- and right-rewarded trials are dynamically adjusted to counterbalance mouse's biased licking responses during training. The correction algorithm moves the preferred lickport farther away from the mouse's mouth and the non-preferred lickport closer, while also increasing the proportion of non-preferred side trials when biased licking occurs. We found that adjusting lickport distances and the proportions of left- versus right-rewarded trials effectively reduces the mouse's side bias. Further analyses reveal that these adjustments also correlate with subsequent improvements in behavioral performance. Our findings suggest that the automated side bias correction system is a valuable tool for enhancing the applicability of behavioral tasks involving two-alternative lickport choices.
Collapse
Affiliation(s)
- Jongrok Do
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea.
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
8
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Zang Y, De Schutter E. Recent data on the cerebellum require new models and theories. Curr Opin Neurobiol 2023; 82:102765. [PMID: 37591124 DOI: 10.1016/j.conb.2023.102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The cerebellum has been a popular topic for theoretical studies because its structure was thought to be simple. Since David Marr and James Albus related its function to motor skill learning and proposed the Marr-Albus cerebellar learning model, this theory has guided and inspired cerebellar research. In this review, we summarize the theoretical progress that has been made within this framework of error-based supervised learning. We discuss the experimental progress that demonstrates more complicated molecular and cellular mechanisms in the cerebellum as well as new cell types and recurrent connections. We also cover its involvement in diverse non-motor functions and evidence of other forms of learning. Finally, we highlight the need to explain these new experimental findings into an integrated cerebellar model that can unify its diverse computational functions.
Collapse
Affiliation(s)
- Yunliang Zang
- Academy of Medical Engineering and Translational Medicine, Medical Faculty, Tianjin University, Tianjin 300072, China; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan. https://twitter.com/DeschutterOIST
| |
Collapse
|
10
|
Alahmadi AA, Alotaibi NO, Hakami NY, Almutairi RS, Darwesh AM, Abdeen R, Alghamdi J, Abdulaal OM, Alsharif W, Sultan SR, Kanbayti IH. Gender and cytoarchitecture differences: Functional connectivity of the hippocampal sub-regions. Heliyon 2023; 9:e20389. [PMID: 37780771 PMCID: PMC10539667 DOI: 10.1016/j.heliyon.2023.e20389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The hippocampus plays a significant role in learning, memory encoding, and spatial navigation. Typically, the hippocampus is investigated as a whole region of interest. However, recent work has developed fully detailed atlases based on cytoarchitecture properties of brain regions, and the hippocampus has been sub-divided into seven sub-areas that have structural differences in terms of distinct numbers of cells, neurons, and other structural and chemical properties. Moreover, gender differences are of increasing concern in neuroscience research. Several neuroscience studies have found structural and functional variations between the brain regions of females and males, and the hippocampus is one of these regions. Aim The aim of this study to explore whether the cytoarchitecturally distinct sub-regions of the hippocampus have varying patterns of functional connectivity with different networks of the brain and how these functional connections differ in terms of gender differences. Method This study investigated 200 healthy participants using seed-based resting-state functional magnetic resonance imaging (rsfMRI). The primary aim of this study was to explore the resting connectivity and gender distinctions associated with specific sub-regions of the hippocampus and their relationship with major functional brain networks. Results The findings revealed that the majority of the seven hippocampal sub-regions displayed functional connections with key brain networks, and distinct patterns of functional connectivity were observed between the hippocampal sub-regions and various functional networks within the brain. Notably, the default and visual networks exhibited the most consistent functional connections. Additionally, gender-based analysis highlighted evident functional resemblances and disparities, particularly concerning the anterior section of the hippocampus. Conclusion This study highlighted the functional connectivity patterns and involvement of the hippocampal sub-regions in major brain functional networks, indicating that the hippocampus should be investigated as a region of multiple distinct functions and should always be examined as sub-regions of interest. The results also revealed clear gender differences in functional connectivity.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nada O. Alotaibi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Y. Hakami
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad S. Almutairi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan M.F. Darwesh
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawan Abdeen
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamaan Alghamdi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osamah M. Abdulaal
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Walaa Alsharif
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Salahaden R. Sultan
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahem H. Kanbayti
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Chao OY, Pathak SS, Zhang H, Augustine GJ, Christie JM, Kikuchi C, Taniguchi H, Yang YM. Social memory deficit caused by dysregulation of the cerebellar vermis. Nat Commun 2023; 14:6007. [PMID: 37752149 PMCID: PMC10522595 DOI: 10.1038/s41467-023-41744-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Jason M Christie
- University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chikako Kikuchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hiroki Taniguchi
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Chronic Brain Injury, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Verpeut JL, Bergeler S, Kislin M, William Townes F, Klibaite U, Dhanerawala ZM, Hoag A, Janarthanan S, Jung C, Lee J, Pisano TJ, Seagraves KM, Shaevitz JW, Wang SSH. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol 2023; 6:605. [PMID: 37277453 PMCID: PMC10241932 DOI: 10.1038/s42003-023-04920-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The cerebellum regulates nonmotor behavior, but the routes of influence are not well characterized. Here we report a necessary role for the posterior cerebellum in guiding a reversal learning task through a network of diencephalic and neocortical structures, and in flexibility of free behavior. After chemogenetic inhibition of lobule VI vermis or hemispheric crus I Purkinje cells, mice could learn a water Y-maze but were impaired in ability to reverse their initial choice. To map targets of perturbation, we imaged c-Fos activation in cleared whole brains using light-sheet microscopy. Reversal learning activated diencephalic and associative neocortical regions. Distinctive subsets of structures were altered by perturbation of lobule VI (including thalamus and habenula) and crus I (including hypothalamus and prelimbic/orbital cortex), and both perturbations influenced anterior cingulate and infralimbic cortex. To identify functional networks, we used correlated variation in c-Fos activation within each group. Lobule VI inactivation weakened within-thalamus correlations, while crus I inactivation divided neocortical activity into sensorimotor and associative subnetworks. In both groups, high-throughput automated analysis of whole-body movement revealed deficiencies in across-day behavioral habituation to an open-field environment. Taken together, these experiments reveal brainwide systems for cerebellar influence that affect multiple flexible responses.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| | - Silke Bergeler
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Mikhail Kislin
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - F William Townes
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 01451, USA
| | - Zahra M Dhanerawala
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Austin Hoag
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Sanjeev Janarthanan
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Caroline Jung
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Junuk Lee
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Thomas J Pisano
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Kelly M Seagraves
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
13
|
Zyuzin J, Combs D, Melrose J, Kodaverdian N, Leather C, Carrillo JD, Monterosso JR, Brocas I. The neural correlates of value representation: From single items to bundles. Hum Brain Mapp 2023; 44:1476-1495. [PMID: 36440955 PMCID: PMC9921239 DOI: 10.1002/hbm.26137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
One of the core questions in Neuro-economics is to determine where value is represented. To date, most studies have focused on simple options and identified the ventromedial prefrontal cortex (VMPFC) as the common value region. We report the findings of an fMRI study in which we asked participants to make pairwise comparisons involving options of varying complexity: single items (Control condition), bundles made of the same two single items (Scaling condition) and bundles made of two different single items (Bundling condition). We construct a measure of choice consistency to capture how coherent the choices of a participant are with one another. We also record brain activity while participants make these choices. We find that a common core of regions involving the left VMPFC, the left dorsolateral prefrontal cortex (DLPFC), regions associated with complex visual processing and the left cerebellum track value across all conditions. Also, regions in the DLPFC, the ventrolateral prefrontal cortex (VLPFC) and the cerebellum are differentially recruited across conditions. Last, variations in activity in VMPFC and DLPFC value-tracking regions are associated with variations in choice consistency. This suggests that value based decision-making recruits a core set of regions as well as specific regions based on task demands. Further, correlations between consistency and the magnitude of signal change with lateral portions of the PFC suggest the possibility that activity in these regions may play a causal role in decision quality.
Collapse
Affiliation(s)
| | - Dalton Combs
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - James Melrose
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Niree Kodaverdian
- Argyros School of Business and EconomicsChapman UniversityOrangeCAUSA
| | - Calvin Leather
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Juan D. Carrillo
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - John R. Monterosso
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Isabelle Brocas
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Boven E, Pemberton J, Chadderton P, Apps R, Costa RP. Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat Commun 2023; 14:51. [PMID: 36599827 DOI: 10.1038/s41467-022-35658-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.
Collapse
Affiliation(s)
- Ellen Boven
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Joseph Pemberton
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK.
| |
Collapse
|
15
|
Kassa M, Bradley J, Jalil A, Llano I. KCa1.1 channels contribute to optogenetically driven post-stimulation silencing in cerebellar molecular layer interneurons. J Gen Physiol 2022; 155:213661. [PMID: 36326690 PMCID: PMC9640226 DOI: 10.1085/jgp.202113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Using cell-attached recordings from molecular layer interneurons (MLI) of the cerebellar cortex of adult mice expressing channel rhodopsin 2, we show that wide-field optical activation induces an increase in firing rate during illumination and a firing pause when the illumination ends (post-stimulation silencing; PSS). Significant spike rate changes with respect to basal firing rate were observed for optical activations lasting 200 ms and 1 s as well as for 1 s long trains of 10 ms pulses at 50 Hz. For all conditions, the net effect of optical activation on the integrated spike rate is significantly reduced because of PSS. Three lines of evidence indicate that this PSS is due to intrinsic factors. Firstly, PSS is induced when the optical stimulation is restricted to a single MLI using a 405-nm laser delivering a diffraction-limited spot at the focal plane. Secondly, PSS is not affected by block of GABA-A or GABA-B receptors, ruling out synaptic interactions amongst MLIs. Thirdly, PSS is mimicked in whole-cell recording experiments by step depolarizations under current clamp. Activation of Ca-dependent K channels during the spike trains appears as a likely candidate to underlie PSS. Using immunocytochemistry, we find that one such channel type, KCa1.1, is present in the somato-dendritic and axonal compartments of MLIs. In cell-attached recordings, charybdotoxin and iberiotoxin significantly reduce the optically induced PSS, while TRAM-34 does not affect it, suggesting that KCa1.1 channels, but not KCa3.1 channels, contribute to PSS.
Collapse
Affiliation(s)
- Merouann Kassa
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Jonathan Bradley
- Institut de Biologie de l’Ecole Normale Superieure (IBENS), Ecole Normale Superieure, Centre National de la Recherche Scientifique, INSERM, Paris Sciences et Lettres Research University, Paris, France
| | - Abdelali Jalil
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Isabel Llano
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| |
Collapse
|
16
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Chen X, Yao T, Cai J, Zhang Q, Li S, Li H, Fu X, Wu J. A novel genetic variant potentially altering the expression of MANBA in the cerebellum associated with attention deficit hyperactivity disorder in Han Chinese children. World J Biol Psychiatry 2022; 23:548-559. [PMID: 34870556 DOI: 10.1080/15622975.2021.2014248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To obtain additional insight into the genetic factors of attention deficit hyperactivity disorder (ADHD). METHODS First, we performed a transcriptome-wide association study (TWAS) integrating human cerebellum-specific variant-expression/splicing correlations to identify ADHD susceptibility genes. Then, the associations between expression/splicing quantitative trait loci (eQTLs/sQTLs) of the transcriptome-wide significant genes and ADHD were observed in a case-control study of Han Chinese children. Furthermore, dual luciferase reporter gene assays were performed to validate the regulatory function of ADHD risk variants. Additionally, the transcription level of target genes in blood was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS TWAS identified that the genetically regulated expression of MANBA in the cerebellum was significantly associated with ADHD risk. Furthermore, we observed a higher risk of ADHD and more severe clinical symptoms in subjects harbouring heterozygous (TC) or mutant homozygous (TT) genotypes of MANBA rs1054037 than CC carriers. The dual luciferase reporter gene assay revealed that the mutation of rs1054037(C > T) potentially upregulated MANBA expression by eliminating the binding site for hsa-miR-5591-3P. Finally, RT-qPCR showed that MANBA expression in blood samples of patients was significantly higher than that of controls. CONCLUSIONS Taken together, these results suggest a role of MANBA in the development of ADHD.
Collapse
Affiliation(s)
- Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinliang Cai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanyawen Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
19
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
20
|
Maturana CJ, Verpeut JL, Engel EA. Single-Cell Quantification of Triple-AAV Vector Genomes Coexpressed in Neurons. Curr Protoc 2022; 2:e430. [PMID: 35616444 DOI: 10.1002/cpz1.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adeno-associated viruses (AAVs) are one of the most widely used types of viral vectors for research and gene therapy. AAV vectors are safe, have a low immunogenic profile, and provide efficient and long-term transgene expression in a variety of tissues and organs targeted by a specific serotype. Despite these unique features, therapeutic applications, as well as basic research studies, of AAVs have been limited by their packaging capacity of less than 5 kb. Multiple strategies have been explored to deliver large genes. One strategy is to split large transgenes into two or three fragments and package them into separate AAV capsids, generating dual or triple AAV vectors. Combining the fragments potentially allows reconstitution of an mRNA transcript containing the complete sequence of transgene in the same cell. The success of AAVs as vectors for the delivery of large or multiple genes depends directly on the efficiency of co-transduction. Here, we describe a method to measure the efficacy of codelivery, quantifying the number of AAV vectors per cell. We detail how to calculate the average number of incoming AAV genomes in neurons, given the distribution of cell fluorescence across in vitro and in vivo experimental models. To validate the method, we simulated a triple AAV strategy using three fluorescent-protein-encoding genes. We provide a general protocol for constructing plasmids and producing and purifying AAV vectors. We also include a protocol for triple AAV vector co-transduction in primary neuronal cultures and mouse brain. The method can be applied to multiple organs and tissues for the treatment of disorders caused by mutations in multiple or large genes. These protocols will be useful for researchers working to develop and improve new gene delivery technologies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Construction of AAV plasmids and production of AAVs Basic Protocol 2: AAV transduction of primary superior cervical ganglia (SCG) neuronal cultures Basic Protocol 3: Mouse surgery, AAV injection, and tissue collection and processing Basic Protocol 4: Image analysis and AAV genome quantification.
Collapse
Affiliation(s)
- Carola J Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
21
|
Chen X, Du Y, Broussard GJ, Kislin M, Yuede CM, Zhang S, Dietmann S, Gabel H, Zhao G, Wang SSH, Zhang X, Bonni A. Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature 2022; 605:722-727. [PMID: 35545673 PMCID: PMC9887520 DOI: 10.1038/s41586-022-04711-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/31/2022] [Indexed: 02/03/2023]
Abstract
Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Hope Center for Neurological Disorders,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanhua Du
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | - Mikhail Kislin
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Shuwei Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Sabine Dietmann
- Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
- Insitute for Informatics, Washington University School of Medicine, St Louis, MO, USA
| | - Harrison Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA.
| | - Xiaoqing Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China.
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
23
|
Jacob MS, Roach BJ, Sargent KS, Mathalon DH, Ford JM. Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study. Neuroimage 2021; 245:118705. [PMID: 34798229 DOI: 10.1016/j.neuroimage.2021.118705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Collapse
Affiliation(s)
- Michael S Jacob
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Kaia S Sargent
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| |
Collapse
|
24
|
Deng L, Liu H, Liu H, Liu J, Liu W, Liu Y, Zhang Y, Rong P, Liang Q, Wang W. Concomitant functional impairment and reorganization in the linkage between the cerebellum and default mode network in patients with type 2 diabetes mellitus. Quant Imaging Med Surg 2021; 11:4310-4320. [PMID: 34603986 PMCID: PMC8408787 DOI: 10.21037/qims-21-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence shows that the default mode network (DMN) and cerebellum are prone to structural and functional abnormalities in patients with type 2 diabetes mellitus (T2DM). However, the type of change in the functional connection between the DMN and cerebellum is still unknown. METHODS In this study, seed-based functional connectivity (FC) analysis was used to examine the intrinsic FC of the cerebellum-DMN between healthy controls (HCs) and T2DM patients. Pearson correlation analysis was used to explore the relationship between clinical variables and changes in FC. RESULTS Compared with HCs, T2DM patients showed significantly increased FC of the left crus I-left medial superior frontal gyrus, left crus I-right medial superior frontal gyrus, and right crus I-left medial orbitofrontal cortex. Compared with HCs, T2DM patients showed decreased FC of the lobule IX-the right angular gyrus. Moreover, diabetes duration was positively correlated with increased FC of the left crus I-right medial superior frontal gyrus (r=0.438, P=0.007). CONCLUSIONS Concomitant functional impairment and reorganization in the linkage between the cerebellum and DMN in patients with T2DM may be a biomarker of early brain damage that can help us better understand the pathogenesis of cognitive impairment in T2DM.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huanghui Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Nozais V, Forkel SJ, Foulon C, Petit L, Thiebaut de Schotten M. Functionnectome as a framework to analyse the contribution of brain circuits to fMRI. Commun Biol 2021; 4:1035. [PMID: 34475518 PMCID: PMC8413369 DOI: 10.1038/s42003-021-02530-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, the field of functional neuroimaging has moved away from a pure localisationist approach of isolated functional brain regions to a more integrated view of these regions within functional networks. However, the methods used to investigate functional networks rely on local signals in grey matter and are limited in identifying anatomical circuitries supporting the interaction between brain regions. Mapping the brain circuits mediating the functional signal between brain regions would propel our understanding of the brain's functional signatures and dysfunctions. We developed a method to unravel the relationship between brain circuits and functions: The Functionnectome. The Functionnectome combines the functional signal from fMRI with white matter circuits' anatomy to unlock and chart the first maps of functional white matter. To showcase this method's versatility, we provide the first functional white matter maps revealing the joint contribution of connected areas to motor, working memory, and language functions. The Functionnectome comes with an open-source companion software and opens new avenues into studying functional networks by applying the method to already existing datasets and beyond task fMRI.
Collapse
Affiliation(s)
- Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Stephanie J Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| |
Collapse
|
26
|
Why Does the Neocortex Need the Cerebellum for Working Memory? J Neurosci 2021; 41:6368-6370. [PMID: 34321336 DOI: 10.1523/jneurosci.0701-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
|
27
|
Ramirez AD, Aksay ERF. Ramp-to-threshold dynamics in a hindbrain population controls the timing of spontaneous saccades. Nat Commun 2021; 12:4145. [PMID: 34230474 PMCID: PMC8260785 DOI: 10.1038/s41467-021-24336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Organisms have the capacity to make decisions based solely on internal drives. However, it is unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide a comprehensive map of the activity patterns underlying the generation of saccades made in the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover a range of responses surrounding spontaneous saccades, from cells that display tonic discharge only during fixations to neurons whose activity rises in advance of saccades by multiple seconds. When we lesion cells in these populations we find that ablation of neurons with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation using a ramp-to-threshold model and are able to predict the times of upcoming saccades using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a bound is a critical component of self-initiated saccadic movements.
Collapse
Affiliation(s)
- Alexandro D Ramirez
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Bohne P, Mourabit DBE, Josten M, Mark MD. Cognitive deficits in episodic Ataxia type 2 mouse models. Hum Mol Genet 2021; 30:1811-1832. [PMID: 34077522 PMCID: PMC8444449 DOI: 10.1093/hmg/ddab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder characterized by motor incoordination, paroxysmal dystonia, vertigo, nystagmus and more recently cognitive deficits. To date over 100 mutations in the CACNA1A gene have been identified in EA2 patients leading to a loss of P/Q-type channel activity, dysfunction of cerebellar Purkinje cells (PC) and motor incoordination. To determine if the cerebellum is contributing to these cognitive deficits, we examined 2 different EA2 mouse models for cognition impairments where CACNA1A was removed specifically from cerebellar Purkinje or granule cells postnatally. Both mutant mouse models showed anxiolytic behavior to lighted, open areas in the open field and light/dark place preference tests but enhanced anxiousness in the novel suppressed feeding test. However, EA2 mice continued to show augmented latencies in the light/dark preference test and when the arena was divided into 2 dark zones in the dark/dark preference test. Moreover, increased latencies were also displayed in the novel object recognition test, indicating that EA2 mice are indecisive and anxious to explore new territories and objects and may have memory recognition deficits. Exposure to a foreign mouse led to deficiencies in attention and sniffing as well as social and genital sniffing were observed. These data suggest that postnatal removal of the P/Q type calcium channel from the cerebellum regulates neuronal activity involved in anxiety, memory, decision making and social interactions. Our EA2 mice will provide a model to identify the mechanisms and therapeutic agents underlying cognitive and psychiatric disorders seen in EA2 patients.
Collapse
Affiliation(s)
- Pauline Bohne
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | - Mareike Josten
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
29
|
Zhang X, Chai C, Ghassaban K, Ye J, Huang Y, Zhang T, Wu W, Zhu J, Zhang X, Haacke EM, Wang Z, Xue R, Xia S. Assessing brain iron and volume of subcortical nuclei in idiopathic rapid eye movement sleep behavior disorder. Sleep 2021; 44:6279094. [PMID: 34015127 DOI: 10.1093/sleep/zsab131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The relationship of iron with cognitive and motor impairment in idiopathic rapid eye movement sleep behavior disorder (iRBD) remains unknown. METHODS Twenty-nine (29) patients and 28 healthy controls (HCs) underwent susceptibility weighted imaging and susceptibility mapping. These images were used to evaluate the nigrosome-1 (N1) sign in the substantia nigra (SN), global and regional high-iron (RII) content and volume of subcortical nuclei. RESULTS The number of iRBD patients with N1 loss (12) was significantly higher than HCs (2) (P=0.005). Compared with HCs, the iRBD patients had reduced volume of the right caudate nucleus (RCN) (P<0.05, FDR correction) but no significant changes in global and RII iron of the subcortical nuclei (all P>0.05, FDR correction). Multiple regression analysis revealed that: for cognitive function, the RII iron of the RCN was significantly correlated with visuospatial function and the global iron of the right dentate nucleus (RDN) was correlated with memory function; for motor function, the RII iron of the left DN (LDN) and global iron of the left CN correlated with the Alternate-Tap test (left, average), the global iron of the LDN correlated with the Alternate-Tap test (right), and the global iron of the left GP correlated with the 3-meter Timed Up and Go test (all P<0.05, FDR correction). CONCLUSIONS Our exploratory analysis found that iRBD patients had a higher incidence of N1 loss and reduced RCN volume after FDR correction. Cognitive and motor impairment were associated with iron deposition in several cerebral nuclei after FDR correction.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Kiarash Ghassaban
- Department of Radiology, Wayne State University, Detroit, Michigan, USA.,SpinTech MRI Inc., Bingham Farms, Michigan, USA
| | - Jingyi Ye
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd., Beijing, China
| | | | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan, USA.,SpinTech MRI Inc., Bingham Farms, Michigan, USA
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China.,Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Tian X, Silva AC, Liu C. The Brain Circuits and Dynamics of Curiosity-Driven Behavior in Naturally Curious Marmosets. Cereb Cortex 2021; 31:4220-4232. [PMID: 33839768 PMCID: PMC8485152 DOI: 10.1093/cercor/bhab080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
Curiosity is a fundamental nature of animals for adapting to changing environments, but its underlying brain circuits and mechanisms remain poorly understood. One main barrier is that existing studies use rewards to train animals and motivate their engagement in behavioral tasks. As such, the rewards become significant confounders in interpreting curiosity. Here, we overcame this problem by studying research-naïve and naturally curious marmosets that can proactively and persistently participate in a visual choice task without external rewards. When performing the task, the marmosets manifested a strong innate preference towards acquiring new information, associated with faster behavioral responses. Longitudinally functional magnetic resonance imaging revealed behavior-relevant brain states that reflected choice preferences and engaged several brain regions, including the cerebellum, the hippocampus, and cortical areas 19DI, 25, and 46D, with the cerebellum being the most prominent. These results unveil the essential brain circuits and dynamics underlying curiosity-driven activity.
Collapse
Affiliation(s)
- Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh PA 15261, USA.,Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh PA 15261, USA.,Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | - Cirong Liu
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh PA 15261, USA.,Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA.,Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
31
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
32
|
Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. THE CEREBELLUM 2020; 20:186-202. [PMID: 33098550 DOI: 10.1007/s12311-020-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.
Collapse
Affiliation(s)
| | - Ana María Bernal-Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Maria Ribeiro
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
33
|
Miquel M, Gil-Miravet I, Guarque-Chabrera J. The Cerebellum on Cocaine. Front Syst Neurosci 2020; 14:586574. [PMID: 33192350 PMCID: PMC7641605 DOI: 10.3389/fnsys.2020.586574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
The traditional cerebellum’s role has been linked to the high computational demands for sensorimotor control. However, several findings have pointed to its involvement in executive and emotional functions in the last decades. First in 2009 and then, in 2016, we raised why we should consider the cerebellum when thinking about drug addiction. A decade later, mounting evidence strongly suggests the cerebellar involvement in this disorder. Nevertheless, direct evidence is still partial and related mainly to drug-induced reward memory, but recent results about cerebellar functions may provide new insights into its role in addiction. The present review does not intend to be a compelling revision on available findings, as we did in the two previous reviews. This minireview focuses on specific findings of the cerebellum’s role in drug-related reward memories and the way ahead for future research. The results discussed here provide grounds for involving the cerebellar cortex’s apical region in regulating behavior driven by drug-cue associations. They also suggest that the cerebellar cortex dysfunction may facilitate drug-induced learning by increasing glutamatergic output from the deep cerebellar nucleus (DCN) to the ventral tegmental area (VTA) and neural activity in its projecting areas.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | | |
Collapse
|
34
|
Kawato M, Ohmae S, Hoang H, Sanger T. 50 Years Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience 2020; 462:151-174. [PMID: 32599123 DOI: 10.1016/j.neuroscience.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals versus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar internal models. In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.
Collapse
Affiliation(s)
- Mitsuo Kawato
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan; Center for Advanced Intelligence Project (AIP), RIKEN, Nihonbashi Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Huu Hoang
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan
| | - Terry Sanger
- Department of Electrical Engineering, University of California, Irvine, 4207 Engineering Hall, Irvine CA 92697-2625, USA; Children's Hospital of Orange County, 1201 W La Veta Ave, Orange, CA 92868, USA.
| |
Collapse
|
35
|
The Optogenetic Revolution in Cerebellar Investigations. Int J Mol Sci 2020; 21:ijms21072494. [PMID: 32260234 PMCID: PMC7212757 DOI: 10.3390/ijms21072494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is most renowned for its role in sensorimotor control and coordination, but a growing number of anatomical and physiological studies are demonstrating its deep involvement in cognitive and emotional functions. Recently, the development and refinement of optogenetic techniques boosted research in the cerebellar field and, impressively, revolutionized the methodological approach and endowed the investigations with entirely new capabilities. This translated into a significant improvement in the data acquired for sensorimotor tests, allowing one to correlate single-cell activity with motor behavior to the extent of determining the role of single neuronal types and single connection pathways in controlling precise aspects of movement kinematics. These levels of specificity in correlating neuronal activity to behavior could not be achieved in the past, when electrical and pharmacological stimulations were the only available experimental tools. The application of optogenetics to the investigation of the cerebellar role in higher-order and cognitive functions, which involves a high degree of connectivity with multiple brain areas, has been even more significant. It is possible that, in this field, optogenetics has changed the game, and the number of investigations using optogenetics to study the cerebellar role in non-sensorimotor functions in awake animals is growing. The main issues addressed by these studies are the cerebellar role in epilepsy (through connections to the hippocampus and the temporal lobe), schizophrenia and cognition, working memory for decision making, and social behavior. It is also worth noting that optogenetics opened a new perspective for cerebellar neurostimulation in patients (e.g., for epilepsy treatment and stroke rehabilitation), promising unprecedented specificity in the targeted pathways that could be either activated or inhibited.
Collapse
|
36
|
Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell 2020; 180:536-551.e17. [PMID: 31955849 DOI: 10.1016/j.cell.2019.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.
Collapse
|
37
|
Cui D, Zhang L, Zheng F, Wang H, Meng Q, Lu W, Liu Z, Yin T, Qiu J. Volumetric reduction of cerebellar lobules associated with memory decline across the adult lifespan. Quant Imaging Med Surg 2020; 10:148-159. [PMID: 31956538 DOI: 10.21037/qims.2019.10.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The human cerebellum plays an essential role in motor control, is involved in cognitive function and helps to regulate emotional responses. However, little is known about the relationship between cerebellar lobules and age-related memory decline. We aimed to investigate volume alterations in cerebellar lobules at different ages and assess their correlations with reduced memory recall abilities. Methods A sample of 275 individuals were divided into the following four groups: 20-35 years (young), 36-50 years (early-middle age), 51-65 years (late-middle age), and 66-89 years (old). Volumes of the cerebellar lobules were obtained using volBrain software. Analysis of covariance and post hoc analysis were used to analyze group differences in cerebellar lobular volumes, and multiple comparisons were performed using the Bonferroni method. Spearman correlation was used to investigate the relationship between lobular volumes and memory recall scores. Results In this study, we found that older adults had smaller cerebellar volumes than the other subjects. Volumetric decreases in size were noted in bilateral lobule VI and lobule crus I. Moreover, the volumes of bilateral lobule crus I, lobule VI, and right lobule IV were significantly associated with memory recall scores. Conclusions In the present study, we found that some lobules of the cerebellum appear more predisposed to age-related changes than other lobules. These findings provide further evidence that specific regions of the cerebellum could be used to assess the risk of memory decline across the adult lifespan.
Collapse
Affiliation(s)
- Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.,College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Zhang
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fenglian Zheng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Huiqin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingjian Meng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Wen Lu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Qiu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
38
|
Gao Z, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N. Response to "Fallacies of Mice Experiments". Neuroinformatics 2019; 17:475-478. [PMID: 31377994 PMCID: PMC6842428 DOI: 10.1007/s12021-019-09433-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181-183, Gao et al. 2018, Nature, 563, 113-116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than the dentate nucleus, given previous anatomical studies in non-human primates. Second, De Schutter suggests that our study design did not delineate different components of the behavior and the fastigial nucleus might play roles in sensory discrimination rather than motor planning. These comments are based on anatomical studies in other species and homology-based arguments and ignore key anatomical data and neurophysiological experiments from our study. Here we outline our interpretation of existing data and point out gaps in knowledge where future studies are needed.
Collapse
Affiliation(s)
- Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Alyse M Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael N Economo
- Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Amada M Abrego
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|