1
|
Schroeter CA, Gorlova A, Sicker M, Umriukhin A, Burova A, Shulgin B, Morozov S, Costa-Nunes JP, Strekalova T. Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility. Biomolecules 2025; 15:67. [PMID: 39858460 PMCID: PMC11764023 DOI: 10.3390/biom15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.
Collapse
Affiliation(s)
- Careen A. Schroeter
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Anna Gorlova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Aleksei Umriukhin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
| | - Alisa Burova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Boris Shulgin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, Kyzylorda 120014, Kazakhstan
| | - Sergey Morozov
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Joao P. Costa-Nunes
- Faculdade de Medicina, Universidade de Lisboa, Campo Grande, 1649-028 Lisboa, Portugal;
| | - Tatyana Strekalova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
2
|
Choudhary A, Kumar A, Jindal M, Rhuthuparna M, Munshi A. MicroRNA signatures in neuroplasticity, neuroinflammation and neurotransmission in association with depression. J Physiol Biochem 2024:10.1007/s13105-024-01065-4. [PMID: 39695016 DOI: 10.1007/s13105-024-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Depression is a multifactorial disorder that occurs mainly on account of the dysregulation of neuroplasticity, neurotransmission and neuroinflammation in the brain. In addition to environmental /lifestyle factors, the pathogenesis of disease has been associated with genetic and epigenetic factors that affect the reprogramming of normal brain function. MicroRNA (miRNAs), a type of non-coding RNAs, are emerging as significant players that play a vital role in the regulation of gene expression and have been extensively explored in neurodegenerative disorders. Recent studies have also shown the role of gut microbiota that forms a complex bidirectional network with gut brain axis, impacting neuroinflammation in case of Parkinson's disease and depression. Translating targeted miRNA-based therapies for the treatment of neurological disorders including depression, into clinical practice remains challenging due to the ineffective delivery of the therapeutic molecules and off-target effects of the specific miRNAs. This review provides significant insights into how miRNAs are emerging as vital players in the development of depression, especially the ones involved in three important processes including neuroplasticity, neurotransmission and neuroinflammation. In this review, the current status of miRNAs as biomarkers for therapeutic interventions in the case of depression has been discussed along with an overview of future perspectives, like use of nanotechnology and gene editing, keeping in view other multifactorial disorders where such interventions by mimics and inhibitors have already reached clinical trials. The challenges for targeting the specific miRNAs for therapeutic outcomes have also been highlighted.
Collapse
Affiliation(s)
- Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - M Rhuthuparna
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Ling Z, Qing T, Chunming X. Epigenetic insight into the suicidal biomarker of depression with suicide Ideation: A narrative review. Neuroscience 2024; 560:48-55. [PMID: 39284435 DOI: 10.1016/j.neuroscience.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024]
Abstract
Suicide ideation (SI) is the major cause of death in persons with depression, whereas effective and accurate biomarkers for suicidal behavior of persons with depression are still lack. Recently, manifold studies in vivo revealed that epigenetic alterations including DNA methylation, non-coding RNA regulation, RNA editing and histone modification, were associated with depressive severity and SI, and peripheral epigenetic molecules may be potential biomarkers for suicidal risk of persons with depression. Therefore, we firstly reviewed recent epigenetic advancements in depression with suicide ideation (DSI) according to studies based on human tissue. Furthermore, we discussed the significance and potential of minimally-invasive peripheral epigenetic molecules to identify potential suicidal biomarkers for DSI, aiming to promote early identification and therapeutic evaluation of DSI.
Collapse
Affiliation(s)
- Zhang Ling
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Tian Qing
- Institute of Mental Health, Suzhou Guangji Hospital, Soochow University Affiliated Guangji Hospital, Suzhou, Jiangsu, China
| | - Xie Chunming
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Bączyńska E, Zaręba-Kozioł M, Ruszczycki B, Krzystyniak A, Wójtowicz T, Bijata K, Pochwat B, Magnowska M, Roszkowska M, Figiel I, Masternak J, Pytyś A, Dzwonek J, Worch R, Olszyński K, Wardak A, Szymczak P, Labus J, Radwańska K, Jahołkowski P, Hogendorf A, Ponimaskin E, Filipkowski R, Szewczyk B, Bijata M, Włodarczyk J. Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. Neurobiol Stress 2024; 33:100683. [PMID: 39524934 PMCID: PMC11543545 DOI: 10.1016/j.ynstr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.
Collapse
Affiliation(s)
- E. Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, 02-781, Poland
| | - M. Zaręba-Kozioł
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - A. Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - T. Wójtowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Pochwat
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - M. Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - I. Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - A. Pytyś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Dzwonek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - R. Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K.H. Olszyński
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - A.D. Wardak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - P. Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - J. Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - K. Radwańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - P. Jahołkowski
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - A. Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - E. Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R.K. Filipkowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - B. Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| |
Collapse
|
5
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Cao H, Sun J, Hua Q, Huang T, Wei Y, Zhan Y, Yao X, Zhang T, Yang Y, Xu W, Bai T, Tian Y, Zhang L, Wang K, Ji GJ. Decreased inter-hemispheric cooperation in major depressive disorder and its association with neurotransmitter profiles. J Affect Disord 2024; 359:109-116. [PMID: 38768823 DOI: 10.1016/j.jad.2024.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inter-hemispheric cooperation is a prominent feature of the human brain, and previous neuroimaging studies have revealed aberrant inter-hemispheric cooperation patterns in patients with major depressive disorder (MDD). Typically, inter-hemispheric cooperation is examined by calculating the functional connectivity (FC) between each voxel in one hemisphere and its anatomical (structurally homotopic) counterpart in the opposite hemisphere. However, bilateral hemispheres are actually asymmetric in anatomy. METHODS In the present study, we utilized connectivity between functionally homotopic voxels (CFH) to investigate abnormal inter-hemispheric cooperation in 96 MDD patients compared to 173 age- and sex-matched healthy controls (HCs). In addition, we analyzed the spatial correlations between abnormal CFH and the density maps of 13 neurotransmitter receptors and transporters. RESULTS The CFH values in bilateral orbital frontal gyri and bilateral postcentral gyri were abnormally decreased in patients with MDD. Furthermore, these CFH abnormalities were correlated with clinical symptoms. In addition, the abnormal CFH pattern in MDD patients was spatially correlated with the distribution pattern of 5-HT1AR. LIMITATIONS drug effect; the cross-sectional research design precludes causal inferences; the neurotransmitter atlases selected were constructed from healthy individuals rather than MDD patients. CONCLUSION These findings characterized the abnormal inter-hemispheric cooperation in MDD using a novel method and the underlying neurotransmitter mechanism, which promotes our understanding of the pathophysiology of depression.
Collapse
Affiliation(s)
- Hai Cao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongqing Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqing Wei
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqian Zhan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Xiaoqing Yao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ting Zhang
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinian Yang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
7
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Wang SY, Xia ZX, Yang SW, Chen WK, Zhao YL, Li MD, Tian D, Pan Y, Lin XS, Zhu XQ, Huang Z, Liu JM, Lai ZM, Tao WC, Shen ZC. Regulation of depressive-like behaviours by palmitoylation: Role of AKAP150 in the basolateral amygdala. Br J Pharmacol 2024; 181:1897-1915. [PMID: 38413375 DOI: 10.1111/bph.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.
Collapse
Affiliation(s)
- Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Voelz C, Trinh S, Käver L, Tran MT, Beyer C, Seitz J. MiRNA research-The potential for understanding the multiple facets of anorexia nervosa. Int J Eat Disord 2024; 57:1489-1494. [PMID: 38545802 DOI: 10.1002/eat.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 07/23/2024]
Abstract
Anorexia nervosa (AN) has a multifaceted and complex pathology, yet major gaps remain in our understanding of factors involved in AN pathology. MicroRNAs (miRNAs) play a regulatory role in translating genes into proteins and help understand and treat diseases. An extensive literature review on miRNAs with AN and comorbidities has uncovered a significant lack in miRNA research. To demonstrate the importance of understanding miRNA deregulation, we surveyed the literature on depression and obesity providing examples of relevant miRNAs. For AN, no miRNA sequencing or array studies have been found, unlike other psychiatric disorders. For depression and obesity, screenings and mechanistic studies were conducted, leading to clinical studies to improve understanding of their regulatory influences. MiRNAs are promising targets for studying AN due to their role as signaling molecules, involvement in psychiatric-metabolic axes, and potential as biomarkers. These characteristics offer valuable insights into the disease's etiology and potential new treatment options. The first miRNA-based treatment for rare metabolic disorders has been approved by the FDA and it is expected that these advancements will increase in the next decade. MiRNA research in AN is essential to examine its role in the development, manifestation, and progression of the disease. PUBLIC SIGNIFICANCE: The current understanding of the development and treatment of AN is insufficient. miRNAs are short regulatory sequences that influence the translation of genes into proteins. They are the subject of research in various diseases, including both metabolic and psychiatric disorders. Studying miRNAs in AN may elucidate their causal and regulatory role, uncover potential biomarkers, and allow for future targeted treatments.
Collapse
Affiliation(s)
- Clara Voelz
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Stefanie Trinh
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Larissa Käver
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Mai-Tam Tran
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
- RWTH Aachen University, JARA-Brain, Aachen, Germany
| | - Jochen Seitz
- RWTH Aachen University Hospital, Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Ye J, Shi R, Fan H, Wang D, Xiao C, Yang T, Ye P, Xia B, Zhao B, Wang Y, Liu X. Stevioside Ameliorates Prenatal Obesity Induced Postpartum Depression: The Potential Role of Gut Barrier Homeostasis. Mol Nutr Food Res 2024; 68:e2300255. [PMID: 38100291 DOI: 10.1002/mnfr.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Indexed: 12/17/2023]
Abstract
SCOPE Postpartum depression and cognitive impairment are the common complications of prenatal obesity. Stevioside is a non-nutritive natural sweetener with antioxidant and anti-inflammatory. However, its effects on depression behaviors and cognitive impairment induced by a high-fat diet (HFD) remain unclear. METHODS AND RESULTS An 8-week HFD is used to establish a prenatal obesity model in female C57BL/6J mice to explore the improvement effects of stevioside (0.5 mg mL-1 in drinking water) on maternal depression and cognitive dysfunction after weaning. The results demonstrated that stevioside improves behavioral performance of obese maternal mice, and inhibits neuronal damage and 5-hydroxytryptamine (5-HT) abnormality induced by HFD. In addition, stevioside inhibits oxidative stress by reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) activities in the brains of obese maternal mice. Additionally, stevioside improves gut barrier integrity and prevented lipopolysaccharide (LPS) extravasation, and alleviates neuroinflammation. Correlation analysis shows that gut barrier and serum LPS are closely related to behavioral performance and brain biochemical indicators. CONCLUSION Stevioside is capable to prevent prenatal obesity-induced cognitive and mood disorders by restoring intestinal barrier damage and inhibiting inflammation.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyingzi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Zhou P, Yu X, Song T, Hou X. Safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. PLoS One 2024; 19:e0296926. [PMID: 38547138 PMCID: PMC10977718 DOI: 10.1371/journal.pone.0296926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE To systematically evaluate the safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder (ADHD). METHODS Randomized controlled trials and prospective studies on antioxidant therapy in children and adolescents with ADHD were searched in PubMed, Embase, and Cochrane Library from the inception of databases to November 12, 2022. Two investigators independently screened the literature, extracted data, and evaluated the quality of the included studies. Network meta-analysis (PROSPERO registration number CRD 42023382824) was carried out by using R Studio 4.2.1. RESULTS 48 studies involving 12 antioxidant drugs (resveratrol, pycnogenol, omega-3, omega-6, quercetin, phosphatidylserine, almond, vitamin D, zinc, folic acid, ginkgo biloba, Acetyl-L-carnitine) were finally included, with 3,650 patients. Network meta-analysis showed that omega-6 (0.18), vitamin D (0.19), and quercetin (0.24) were the top three safest drugs according to SUCRA. The omega-3 (SUCRA 0.35), pycnogenol (SUCRA 0.36), and vitamin D (SUCRA 0.27) were the most effective in improving attention, hyperactivity, and total score of Conners' parent rating scale (CPRS), respectively. In terms of improving attention, hyperactivity, and total score of Conners' teacher rating scale (CTRS), pycnogenol (SUCRA 0.32), phosphatidylserine+omega-3 (SUCRA 0.26), and zinc (SUCRA 0.34) were the most effective, respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Parent, the optimal agents were phosphatidylserine (SUCRA 0.39), resveratrol+MPH (SUCRA 0.24), and phosphatidylserine (SUCRA 0.34), respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Teacher, pycnogenol (SUCRA 0.32), vitamin D (SUCRA 0.31) and vitamin D (SUCRA 0.18) were the optimal agents, respectively. The response rate of omega-3+6 was the highest in CGI (SUCRA 0.95) and CPT (SUCRA 0.42). CONCLUSION The rankings of safety and efficacy of the 12 antioxidants vary. Due to the low methodological quality of the included studies, the probability ranking cannot fully explain the clinical efficacy, and the results need to be interpreted with caution. More high-quality studies are still needed to verify our findings.
Collapse
Affiliation(s)
- Peike Zhou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaohui Yu
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tao Song
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaoli Hou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Höglund A, Henriksen R, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The regulation of methylation on the Z chromosome and the identification of multiple novel Male Hyper-Methylated regions in the chicken. PLoS Genet 2024; 20:e1010719. [PMID: 38457441 PMCID: PMC10954189 DOI: 10.1371/journal.pgen.1010719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/20/2024] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.
Collapse
Affiliation(s)
- Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M. Guerrero-Bosagna
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
14
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
15
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Shen ZC, Liu JM, Zheng JY, Li MD, Tian D, Pan Y, Tao WC, Gao SQ, Xia ZX. Regulation of anxiety-like behaviors by S-palmitoylation and S-nitrosylation in basolateral amygdala. Biomed Pharmacother 2023; 169:115859. [PMID: 37948993 DOI: 10.1016/j.biopha.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China.
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
17
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
18
|
Huang J, Huang W, Yi J, Deng Y, Li R, Chen J, Shi J, Qiu Y, Wang T, Chen X, Zhang X, Xiang AP. Mesenchymal stromal cells alleviate depressive and anxiety-like behaviors via a lung vagal-to-brain axis in male mice. Nat Commun 2023; 14:7406. [PMID: 37973914 PMCID: PMC10654509 DOI: 10.1038/s41467-023-43150-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common and disabling mental disorders, and current strategies remain inadequate. Although mesenchymal stromal cells (MSCs) have shown beneficial effects in experimental models of depression, underlying mechanisms remain elusive. Here, using murine depression models, we demonstrated that MSCs could alleviate depressive and anxiety-like behaviors not due to a reduction in proinflammatory cytokines, but rather activation of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neurons. Mechanistically, peripheral delivery of MSCs activated pulmonary innervating vagal sensory neurons, which projected to the nucleus tractus solitarius, inducing the release of 5-HT in DRN. Furthermore, MSC-secreted brain-derived neurotrophic factor activated lung sensory neurons through tropomyosin receptor kinase B (TrkB), and inhalation of a TrkB agonist also achieved significant therapeutic effects in male mice. This study reveals a role of peripheral MSCs in regulating central nervous system function and demonstrates a potential "lung vagal-to-brain axis" strategy for MDD.
Collapse
Affiliation(s)
- Jing Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Junzhe Yi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yiwen Deng
- Key Laboratory of Medical Transformation of Jiujiang, Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Ruijie Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
19
|
Zhang M, Liu LY, Xu Y, Wang WZ, Qiu NZ, Zhang FF, Zhang F, Wang XD, Chen W, Xu XY, Gao YF, Chen MH, Li YQ, Zhang HT, Wang H. Imbalance of multiple neurotransmitter pathways leading to depression-like behavior and cognitive dysfunction in the triple transgenic mouse model of Alzheimer disease. Metab Brain Dis 2023; 38:2465-2476. [PMID: 37256468 DOI: 10.1007/s11011-023-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Depression is among the most frequent psychiatric comorbid conditions in Alzheimer disease (AD). However, pharmacotherapy for depressive disorders in AD is still a big challenge, and the data on the efffcacy of current antidepressants used clinically for depressive symptoms in patients with AD remain inconclusive. Here we investigated the mechanism of the interactions between depression and AD, which we believe would aid in the development of pharmacological therapeutics for the comorbidity of depression and AD. Female APP/PS1/Tau triple transgenic (3×Tg-AD) mice at 24 months of age and age- and sex-matched wild-type (WT) mice were used. The shuttle-box passive avoidance test (PAT) were implemented to assess the abilities of learning and memory, and the open field test (OFT) and the tail suspension test (TST) were used to assess depression-like behavior. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used to detect the level of neurotransmitters related to depression in the hippocampus of mice. The data was identified by orthogonal projections to latent structures discriminant analysis (OPLS-DA). Most neurotransmitters exert their effects by binding to the corresponding receptor, so the expression of relative receptors in the hippocampus of mice was detected using Western blot. Compared to WT mice, 3×Tg-AD mice displayed significant cognitive impairment in the PAT and depression-like behavior in the OFT and TST. They also showed significant decreases in the levels of L-tyrosine, norepinephrine, vanillylmandelic acid, 5-hydroxytryptamine, and acetylcholine, in contrast to significant increases in 5-hydroxyindoleacetic acid, L-histidine, L-glutamine, and L-arginine in the hippocampus. Moreover, the expression of the alpha 1a adrenergic receptor (ADRA1A), serotonin 1 A receptor (5HT1A), and γ-aminobutyric acid A receptor subunit alpha-2 (GABRA2) was significantly downregulated in the hippocampus of 3×Tg-AD mice, while histamine H3 receptor (H3R) expression was significantly upregulated. In addition, the ratio of phosphorylated cAMP-response element-binding protein (pCREB) and CREB was significantly decreased in the hippocampus of 3×Tg-AD mice than WT mice. We demonstrated in the present study that aged female 3×Tg-AD mice showed depression-like behavior accompanied with cognitive dysfunction. The complex and diverse mechanism appears not only relevant to the imbalance of multiple neurotransmitter pathways, including the transmitters and receptors of the monoaminergic, GABAergic, histaminergic, and cholinergic systems, but also related to the changes in L-arginine and CREB signaling molecules.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Li-Yuan Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong Xu
- Taian City Central Hospital, Tai'an, Shandong, 271016, China
| | - Wen-Zhi Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Nian-Zhuang Qiu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Dan Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Yan Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong-Feng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yu-Qin Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, 266073, China.
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| |
Collapse
|
20
|
Kaurani L, Besse M, Methfessel I, Methi A, Zhou J, Pradhan R, Burkhardt S, Kranaster L, Sartorius A, Habel U, Grözinger M, Fischer A, Wiltfang J, Zilles-Wegner D. Baseline levels of miR-223-3p correlate with the effectiveness of electroconvulsive therapy in patients with major depression. Transl Psychiatry 2023; 13:294. [PMID: 37699900 PMCID: PMC10497550 DOI: 10.1038/s41398-023-02582-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the systems level. Here, we investigate the role of circulating microRNAs in depression and response prediction towards ECT. Of the 64 patients with treatment-resistant major depression (MDD) who received ECT treatment, 62.5% showed a response, defined as a reduction of ≥50% in the MADRS total score from baseline. We performed smallRNA sequencing in blood samples that were taken before the first ECT, after the first and the last ECT. The microRNAome was compared between responders and non-responders. Co-expression network analysis identified three significant microRNA modules with reverse correlation between ECT- responders and non-responders, that were amongst other biological processes linked to inflammation. A candidate microRNA, namely miR-223-3p was down-regulated in ECT responders when compared to non-responders at baseline. In line with data suggesting a role of miR-223-3p in inflammatory processes we observed higher expression levels of proinflammatory factors Il-6, Il-1b, Nlrp3 and Tnf-α in ECT responders at baseline when compared to non-responders. ROC analysis of confirmed the diagnostic power of miR-223-3p demarcating ECT-responders from non-responder subjects (AUC = 0.76, p = 0.0031). Our data suggest that miR-223-3p expression and related cytokine levels could serve as predictors of response to ECT in individuals with treatment-resistant depressive disorders.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Isabel Methfessel
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Laura Kranaster
- Department of Psychiatry, Vitos Klinikum Heppenheim, 64646, Heppenheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim and University of Heidelberg, 68159, Mannheim, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Cluster of Excellence MBExC, University of Göttingen & University Medical Center Goettingen, 37075, Göttingen, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
| |
Collapse
|
21
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
22
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
23
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
24
|
Shaikh A, Roy H. Folate deprivation induced neuroinflammation impairs cognition. Neurosci Lett 2023; 807:137264. [PMID: 37086862 DOI: 10.1016/j.neulet.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Nutritional status is associated with many neurocognitive diseases. Folate is one of the micronutrients, and its deficiency is associated with clinical outcomes of neurological diseases. Nevertheless, molecular mechanism behind the folate deficiency induced neurological disorders are not well-known. We have hypothesized that folate-deficiency is a cardinal determinant responsible for manifestation of cognitive impairment through inflammation mediated neurodegenerative pathologies. Objective of the current study was to assess whether folate deficiency is associated with cognitive dysfunction or is merely an epiphenomenon and to identify the underlying mechanisms. We developed folate insufficient zebrafish model through intra-peritoneal treatment of methotrexate. T-maze test was carried to assess the spatial learning and memory of the fish. Higher latency of the folate-deprived zebrafishes in the T-maze test is a reflection of altered cognition. This result is supported by declined levels of dopamine and serotonin, neurotransmitters linked with learning and memory. Elevated IL-6 and CRP in peripheral blood, along with increased expression of NF-ĸB in brain indicates manifestation of neuroinflammation. Indeed, together with upregulation of maptb gene it can be implied that folate deficiency acts as a risk factor for neurodegeneration in the form of tauopathies. Furthermore, diminished localisation of synaptopodin, a protein linked to neural plasticity, suggests that neuroinflammation caused by folate deprivation hampers the plasticity of brain. Histological analysis of brain revealed the development of histopathological features including spongiform degeneration and neuronal loss in folate deprived condition. We thus conclude that folate deficiency results in NF-ĸB activation, which through multiple processes mediated by neuroinflammation could lead to cognitive decline.
Collapse
Affiliation(s)
- Afridi Shaikh
- Nutrigenomics and Cancer Biology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Hetal Roy
- Nutrigenomics and Cancer Biology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
25
|
Harada K, Sho R, Takakura H, Yokoyama E, Koyama R, Yamamoto Y, Adachi N, Tanaka S, Hide I, Sakai N. S-Palmitoylation of the serotonin transporter promotes its cell surface expression and serotonin uptake. Biochem Biophys Res Commun 2023; 662:58-65. [PMID: 37099811 DOI: 10.1016/j.bbrc.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
The neurotransmitter serotonin (5-HT) is transported back into serotonergic neurons by the serotonin transporter (SERT). SERT is a main target of antidepressants, and much effort has therefore focused on finding relationships between SERT and depression. However, it is not fully understood how SERT is regulated at the cellular level. Here, we report post-translational regulation of SERT by S-palmitoylation, in which palmitate is covalently attached to cysteine residues of proteins. Using AD293 cells (a human embryonic kidney 293-derived cell line with improved cell adherence) transiently transfected with FLAG-tagged human SERT, we observed S-palmitoylation of immature SERT containing high-mannose type N-glycans or no N-glycan, which is presumed to be localized in the early secretory pathway, such as the endoplasmic reticulum. Mutational analysis by alanine substitutions shows that S-palmitoylation of immature SERT occurs at least at Cys-147 and Cys-155, juxtamembrane cysteine residues within the first intracellular loop. Furthermore, mutation of Cys-147 reduced cellular uptake of a fluorescent SERT substrate that mimics 5-HT without decreasing SERT on the cell surface. On the other hand, combined mutation of Cys-147 and Cys-155 inhibited SERT surface expression and reduced the uptake of the 5-HT mimic. Thus, S-palmitoylation of Cys-147 and Cys-155 is important for both the cell surface expression and 5-HT uptake capacity of SERT. Given the importance of S-palmitoylation in brain homeostasis, further investigation of SERT S-palmitoylation could provide new insights into the treatment of depression.
Collapse
Affiliation(s)
- Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryoma Sho
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiromiki Takakura
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Eri Yokoyama
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Reika Koyama
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuka Yamamoto
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
26
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
27
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
28
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
29
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
30
|
Perić M, Bečeheli I, Čičin-Šain L, Desoye G, Štefulj J. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol (Lausanne) 2022; 13:1061317. [PMID: 36531448 PMCID: PMC9751904 DOI: 10.3389/fendo.2022.1061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT) is a chemical messenger widely distributed in the brain and various other organs. Its homeostasis is maintained by the coordinated activity of a variety of proteins, including enzymes of serotonin metabolism, transmembrane transporters of serotonin, and serotonin receptors. The serotonin system has been identified also in the placenta in rodent models as a key component of placental physiology. However, serotonin pathways in the human placenta are far from well understood. Their alterations may have long-lasting consequences for the fetus that can manifest later in life. In this review, we summarize information on the location of the components of the serotonin system in the human placenta, their regulation, function, and alterations in pathological pregnancies. We highlight current controversies and discuss important topics for future research.
Collapse
Affiliation(s)
- Maja Perić
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivona Bečeheli
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Jasminka Štefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
31
|
Chalhoub G, McCormick PJ. Palmitoylation and G-protein coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:195-211. [PMID: 36357078 DOI: 10.1016/bs.pmbts.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
More and more it is being appreciated that not all GPCRs are the same, sub-populations of GPCRs exist within a cell and function differently than others. The question is, how does one regulate a given sub-population? One way is through the addition of post-translational modifications to G-protein coupled receptors (GPCR). This process has long been known to occur and play a role in trafficking, pharmacology and ultimately function. This chapter will focus on one particular modification, that of S-palmitoylation, and its impact on GPCR function. We will discuss the history of this modification on these receptors and the connection with disease. We will highlight several examples from the literature of where palmitoylation impacts GPCR function.
Collapse
Affiliation(s)
- Georges Chalhoub
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
32
|
Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J Psychiatry 2022; 12:1150-1168. [PMID: 36186508 PMCID: PMC9521527 DOI: 10.5498/wjp.v12.i9.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Depressive disorder is a complex, heterogeneous disease that affects approximately 280 million people worldwide. Environmental, genetic, and neurobiological factors contribute to the depressive state. Since the nervous system is susceptible to shifts in activity of epigenetic modifiers, these allow for significant plasticity and response to rapid changes in the environment. Among the most studied epigenetic modifications in depressive disorder is DNA methylation, with findings centered on the brain-derived neurotrophic factor gene, the glucocorticoid receptor gene, and the serotonin transporter gene. In order to identify biomarkers that would be useful in clinical settings, for diagnosis and for treatment response, further research on antidepressants and alterations they cause in the epigenetic landscape throughout the genome is needed. Studies on cornerstone antidepressants, such as selective serotonin reuptake inhibitors, selective serotonin and norepinephrine reuptake inhibitors, norepinephrine, and dopamine reuptake inhibitors and their effects on depressive disorder are available, but systematic conclusions on their effects are still hard to draw due to the highly heterogeneous nature of the studies. In addition, two novel drugs, ketamine and esketamine, are being investigated particularly in association with treatment of resistant depression, which is one of the hot topics of contemporary research and the field of precision psychiatry.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
33
|
A chronic unpredictable stress protocol to model anhedonic and resilient behaviors in C57BL/6J mice. STAR Protoc 2022; 3:101659. [PMID: 36097387 PMCID: PMC9463598 DOI: 10.1016/j.xpro.2022.101659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The complexity of the depressive symptoms observed in humans makes modeling depressive behavior in rodents challenging. Here, we present a highly reproducible protocol to generate mouse models that mimic several aspects of depression, namely anhedonia and loss of motivation. We describe acclimatization of animals and baseline determination, followed by the chronic unpredictable stress (CUS) protocol to induce anhedonic and resilient behaviors. The protocol can generate anhedonic and resilient mice at roughly equal frequencies, providing a reliable model for translational research. For complete details on the use and execution of this protocol, please refer to Baczynska et al. (2022), Bijata et al. (2022), and Krzystyniak et al. (2019). Modeling of depressive-like behaviors in mice Mimicking some aspects of human depression including anhedonia and loss of motivation Generation of two subpopulations of mice—anhedonic and resilient mice
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
34
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
35
|
Wild AR, Hogg PW, Flibotte S, Nasseri GG, Hollman RB, Abazari D, Haas K, Bamji SX. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 2022; 11:e75804. [PMID: 35819139 PMCID: PMC9365392 DOI: 10.7554/elife.75804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated S-palmitoylation underlies a number of severe neurological disorders. Dynamic S-palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate S-palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system. We developed a web-tool that enables interactive visualization of the expression patterns for these proteins in the nervous system (http://brainpalmseq.med.ubc.ca/), and explored this resource to find region and cell-type specific expression patterns that give insight into the function of palmitoylating and de-palmitoylating enzymes in the brain and neurological disorders. We found coordinated expression of ZDHHC enzymes with their accessory proteins, de-palmitoylating enzymes and other brain-expressed genes that included an enrichment of S-palmitoylation substrates. Finally, we utilized ZDHHC expression patterns to predict and validate palmitoylating enzyme-substrate interactions.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Peter W Hogg
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British ColumbiaVancouverCanada
| | - Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
36
|
Zhang YM, Ye LY, Li TY, Guo F, Guo F, Li Y, Li YF. New monoamine antidepressant, hypidone hydrochloride (YL-0919), enhances the excitability of medial prefrontal cortex in mice via a neural disinhibition mechanism. Acta Pharmacol Sin 2022; 43:1699-1709. [PMID: 34811511 PMCID: PMC9253340 DOI: 10.1038/s41401-021-00807-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hypidone hydrochloride (YL-0919) is a novel antidepressant in clinical phase II trial. Previous studies show that YL-0919 is a selective 5-HT (serotonin) reuptake inhibitor, 5-HT1A receptor partial agonist, and 5-HT6 receptor agonist, which exerts antidepressant effects in various animal models, but its effects on neural function remain unclear. Medial prefrontal cortex (mPFC), a highly evolved brain region, controls highest order cognitive functions and emotion regulation. In this study we investigated the effects of YL-0919 on the mPFC function, including the changes in neuronal activities using electrophysiological recordings. Extracellular recording (in vivo) showed that chronic administration of YL-0919 significantly increased the spontaneous discharges of mPFC neurons. In mouse mPFC slices, whole-cell recording revealed that perfusion of YL-0919 significantly increased the frequency of sEPSCs, but decreased the frequency of sIPSCs. Then we conducted whole-cell recording in mPFC slices of GAD67-GFP transgenic mice, and demonstrated that YL-0919 significantly inhibited the excitability of GABAergic neurons. In contrast, it did not alter the excitability of pyramidal neurons in mPFC slices of normal mice. Moreover, the inhibition of GABAergic neurons by YL-0919 was prevented by pre-treatment with 5-HT1A receptor antagonist WAY 100635. Finally, chronic administration of YL-0919 significantly increased the phosphorylation levels of mTOR and GSK-3β in the mPFC as compared with vehicle. Taken together, our results demonstrate that YL-0919 enhances the excitability of mPFC via a disinhibition mechanism to fulfill its rapid antidepressant neural mechanism, which was accomplished by 5-HT1A receptor-mediated inhibition of inhibitory GABAergic interneurons.
Collapse
Affiliation(s)
- Yong-mei Zhang
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lu-yu Ye
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian-yu Li
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fan Guo
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Guo
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Li
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yun-feng Li
- grid.410740.60000 0004 1803 4911Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850 China
| |
Collapse
|
37
|
Monoaminergic system involvement in the antidepressant-like and anxiolytic-like properties of novel β-dihydroagarofuran sesquiterpene alkaloid and triterpenes isolated from Gymnosporia heterophylla aerial parts in mice. Neurochem Int 2022; 158:105379. [PMID: 35724873 DOI: 10.1016/j.neuint.2022.105379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
Gymnosporia heterophylla (synonym Maytenus) is widely used in folk medicine for the treatment of various illness including neurological diseases. This study presents the antidepressant-like and anxiolytic-like effects of novel bioactive constituents; 3,4-seco-1-hydroxy-21-oxoolean-3,11-olide (A2), 1β,2β-diacetoxy-9β-benzoyloxy-6α-nicotinoyloxy-β-dihydroagarofuran (A5) as well as known 3-acetoxy-1β-hydroxyLupe-20(29)-ene (selective COX-2; A4) from the aerial parts of G. heterophylla. The antidepressant-like effect was studied using the forced swim test (FST) while the elevated plus maze test (EPMT) and open field test (OFT) were employed for anxiolytic-like effect. Acute treatment with A4 and A5 (0.5, 5 or 10 mg/kg) significantly reduced the duration of immobility and immobile episodes with prolongation of immobility latency in the FST with peak effects observed at 10 and 0.5 mg/kg, respectively. Moreover, antidepressant-like effect of A4 and A5 were relatively better than that of fluoxetine. Conversely, the pretreatment of mice with prazosin (1 mg/kg, α1-adrenoceptor antagonist), yohimbine (1 mg/kg; α2-adrenoceptor antagonist), or sulpiride (50 mg/kg; dopamine D2-receptor antagonist) reversed antidepressant-like effect of A4 and A5 but not WAY 100635 (10 mg/kg, i.p., selective 5-HT1A receptor antagonist), GR 127935 (5 mg/kg, i.p., selective 5-HT1B receptor antagonist), metergoline (4 mg/kg, i.p, non-selective 5-HT2 receptor antagonist), ketanserin (5 mg/kg, i.p., a selective 5-HT2A receptor antagonist) or p-chlorophenylalanine (pCPA) (100 mg/kg, i.p., tryptophan hydroxylase inhibitor) in the FST. Interestingly, A2, A4 and A5 significantly increased the time spent in the open arms of the EPM suggestive of anxiolytic-like action. Findings from this study showed that the novel β-dihydroagarofuran sesquiterpene alkaloid and triterpenes possesses antidepressant-like and anxiolytic-like effects through enhancement of monoaminergic signaling.
Collapse
|
38
|
Palmitoylation of the small GTPase Cdc42 by DHHC5 modulates spine formation and gene transcription. J Biol Chem 2022; 298:102048. [PMID: 35597282 PMCID: PMC9190017 DOI: 10.1016/j.jbc.2022.102048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
The small GTPase Cdc42 exists in the form of two alternatively spliced variants that are modified by hydrophobic chains: the ubiquitously expressed Cdc42-prenyl and a brain-specific isoform that can be palmitoylated, Cdc42-palm. Our previous work demonstrated that Cdc42-palm can be palmitoylated at two cysteine residues, Cys188 and Cys189, while Cys188 can also be prenylated. We showed that palmitoylation of Cys188 is essential for the plasma membrane localization of Cdc42-palm and is critically involved in Cdc42-mediated regulation of gene transcription and neuronal morphology. However, the abundance and regulation of this modification was not investigated. In the present study, we found that only a minor fraction of Cdc42 undergoes monopalmitoylation in neuroblastoma cells and in hippocampal neurons. In addition, we identified DHHC5 as one of the major palmitoyl acyltransferases that could physically interact with Cdc42-palm. We demonstrate that overexpression of dominant negative DHHC5 mutant decreased palmitoylation and plasma membrane localization of Cdc42-palm. In addition, knockdown of DHHC5 significantly reduced Cdc42-palm palmitoylation, leading to a decrease of Cdc42-mediated gene transcription and spine formation in hippocampal neurons. We also found that the expression of DHHC5 in the brain is developmentally regulated. Taken together, these findings suggest that DHHC5-mediated palmitoylation of Cdc42 represents an important mechanism for the regulation of Cdc42 functions in hippocampus.
Collapse
|
39
|
Bijata M, Bączyńska E, Müller FE, Bijata K, Masternak J, Krzystyniak A, Szewczyk B, Siwiec M, Antoniuk S, Roszkowska M, Figiel I, Magnowska M, Olszyński KH, Wardak AD, Hogendorf A, Ruszczycki B, Gorinski N, Labus J, Stępień T, Tarka S, Bojarski AJ, Tokarski K, Filipkowski RK, Ponimaskin E, Wlodarczyk J. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep 2022; 38:110532. [PMID: 35294881 DOI: 10.1016/j.celrep.2022.110532] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ewa Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; The Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franziska E Müller
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Krystian Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Julia Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Marcin Siwiec
- Maj Institute of Pharmacology, Department of Physiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Svitlana Antoniuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matylda Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Marta Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Krzysztof H Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Agnieszka D Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Adam Hogendorf
- Maj Institute of Pharmacology, Department of Medicinal Chemistry, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Nataliya Gorinski
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Tarka
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1, 02-007 Warsaw, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Department of Medicinal Chemistry, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Krzysztof Tokarski
- Maj Institute of Pharmacology, Department of Physiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
40
|
Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch KP, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. Int J Mol Sci 2022; 23:2061. [PMID: 35216176 PMCID: PMC8879061 DOI: 10.3390/ijms23042061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Trofimov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Alexei Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| |
Collapse
|
41
|
Stapel B, Xiao K, Gorinski N, Schmidt K, Pfanne A, Fiedler J, Richter I, Vollbrecht AL, Thum T, Kahl KG, Ponimaskin E. MicroRNAs as novel peripheral markers for suicidality in patients with major depressive disorder. Front Psychiatry 2022; 13:1020530. [PMID: 36506422 PMCID: PMC9729747 DOI: 10.3389/fpsyt.2022.1020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Major depressive disorder (MDD) constitutes a main risk factor for suicide. Suicide risk in psychiatric patients is primarily determined by often unreliable, self-reported information. We assessed serum levels of three microRNAs (miRNAs), previously demonstrated to be dysregulated in post-mortem brain samples of suicide victims, as potential peripheral biomarkers for suicidality. METHODS All study participants were diagnosed with MDD according to Diagnostic and Statistical Manual of Mental Disorders, 5th edition criteria. Suicidality, defined as acute suicide risk or suicide attempt within one week prior to study entry, was assessed by clinical interview. Relative serum levels of miR-30a, miR-30e, and miR-200a, normalized to U6, were measured by quantitative real-time PCR in MDD inpatients with (MDD/SI, N = 19) and without (MDD, N = 31) acute suicide risk. Median age and gender distribution were comparable in both groups. RESULTS Levels of miR-30a, miR-30e, and miR-200a were significantly elevated in MDD/SI compared to MDD. Subgroup analysis of the MDD/SI group showed that levels of miR-30e and miR-200a were significantly higher and miR-30a was increased by trend in patients admitted following a suicide attempt (N = 7) compared to patients with acute suicide risk but without recent suicide attempt (N = 12). Additionally, use of two databases for in silico transcription factor-miRNA interaction prediction indicated early growth response protein (EGR) 1 as potential transcriptional regulator for all three miRNAs. CONCLUSION This study demonstrates suicide risk in MDD patients to be associated with increased levels of miR-30a, miR-30e, and miR-200a. Thus, these miRNAs might constitute potential biomarkers to predict suicidal behavior in MDD patients.
Collapse
Affiliation(s)
- Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | | | - Kevin Schmidt
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Angelika Pfanne
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | - Imke Richter
- Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | | | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany.,Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
42
|
Xia B, Liu X, Li X, Wang Y, Wang D, Kou R, Zhang L, Shi R, Ye J, Bo X, Liu Q, Zhao B, Liu X. Sesamol Ameliorates Dextran Sulfate Sodium-induced Depression-like and Anxiety-like Behaviors in Colitis Mice:The potential involvement of Gut-Brain Axis. Food Funct 2022; 13:2865-2883. [DOI: 10.1039/d1fo03888e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD) is accompanied by some psychiatric disorders, including anxiety and depression. Sesamol has been reported to alleviate colitis symptoms and depression-like behaviors caused by chronic unpredictable mild...
Collapse
|
43
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
44
|
Kondaurova EM, Plyusnina AV, Ilchibaeva TV, Eremin DV, Rodnyy AY, Grygoreva YD, Naumenko VS. Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. Int J Mol Sci 2021; 22:ijms222413319. [PMID: 34948116 PMCID: PMC8707087 DOI: 10.3390/ijms222413319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF.
Collapse
|
45
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
46
|
Ng B, Casazza W, Kim NH, Wang C, Farhadi F, Tasaki S, Bennett DA, De Jager PL, Gaiteri C, Mostafavi S. Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants. PLoS Genet 2021; 17:e1009918. [PMID: 34807913 PMCID: PMC8648125 DOI: 10.1371/journal.pgen.1009918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/06/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms. The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, combines the effect of genetic variants on DNA methylation as well as gene expression. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes.
Collapse
Affiliation(s)
- Bernard Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nam Hee Kim
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chendi Wang
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Farnush Farhadi
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Paul G. Allen School for Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
48
|
Yuan D, Kuan T, Ling H, Wang H, Feng L, Zhao Q, Li J, Ran J. Serum metabolomics of end-stage renal disease patients with depression: potential biomarkers for diagnosis. Ren Fail 2021; 43:1479-1491. [PMID: 34723750 PMCID: PMC8567927 DOI: 10.1080/0886022x.2021.1994995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background End-stage renal disease (ESRD) is the final stage during the development of renal failure. Depression is the most common psychiatric disorder in patients with ESRD, which in turn aggravates the progression of renal failure, however, its underlying mechanism remains unclear. This study aimed to reveal the pathogenesis and to discover novel peripheral biomarkers for ESRD patients with depression through metabolomic analysis. Methods Ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used to explore changes of serum metabolites among healthy controls, ESRD patients with or without depression. The differential metabolites between groups were subjected to clustering analysis, pathway analysis, receiver operating characteristic (ROC) curve analysis. Results A total of 57 significant serum differential metabolites were identified between ESRD patients with or without depression, which were involved in 19 metabolic pathways, such as energy metabolism, glycerolipid metabolism, and glutamate-centered metabolism. Moreover, the area under the ROC curve of gentisic acid, uric acid, 5-hydroxytryptamine, 2-phosphoglyceric acid, leucyl-phenylalanine, propenyl carnitine, naloxone, pregnenolone, 6-thioxanthene 5'-monophosphate, hydroxyl ansoprazole, zileuton O-glucuronide, cabergoline, PA(34:2), PG(36:1), probucol and their combination was greater than 0.90. Conclusions Inflammation, oxidative stress and energy metabolism abnormalities, glycerolipid metabolism, and glutamate-centered metabolism are associated with the pathogenesis of ESRD with depression, which may be promising targets for therapy. Furthermore, the identified differential metabolites may serve as biomarkers for the diagnosis of ESRD patients with depression.
Collapse
Affiliation(s)
- Dezhi Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Kuan
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hu Ling
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Liping Feng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuye Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
The miRNome of Depression. Int J Mol Sci 2021; 22:ijms222111312. [PMID: 34768740 PMCID: PMC8582693 DOI: 10.3390/ijms222111312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Depression is an effect of complex interactions between genetic, epigenetic and environmental factors. It is well established that stress responses are associated with multiple modest and often dynamic molecular changes in the homeostatic balance, rather than with a single genetic factor that has a strong phenotypic penetration. As depression is a multifaceted phenotype, it is important to study biochemical pathways that can regulate the overall allostasis of the brain. One such biological system that has the potential to fine-tune a multitude of diverse molecular processes is RNA interference (RNAi). RNAi is an epigenetic process showing a very low level of evolutionary diversity, and relies on the posttranscriptional regulation of gene expression using, in the case of mammals, primarily short (17–23 nucleotides) noncoding RNA transcripts called microRNAs (miRNA). In this review, our objective was to examine, summarize and discuss recent advances in the field of biomedical and clinical research on the role of miRNA-mediated regulation of gene expression in the development of depression. We focused on studies investigating post-mortem brain tissue of individuals with depression, as well as research aiming to elucidate the biomarker potential of miRNAs in depression and antidepressant response.
Collapse
|
50
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|