1
|
Pinheiro AP, Aucouturier JJ, Kotz SA. Neural adaptation to changes in self-voice during puberty. Trends Neurosci 2024; 47:777-787. [PMID: 39214825 DOI: 10.1016/j.tins.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The human voice is a potent social signal and a distinctive marker of individual identity. As individuals go through puberty, their voices undergo acoustic changes, setting them apart from others. In this article, we propose that hormonal fluctuations in conjunction with morphological vocal tract changes during puberty establish a sensitive developmental phase that affects the monitoring of the adolescent voice and, specifically, self-other distinction. Furthermore, the protracted maturation of brain regions responsible for voice processing, coupled with the dynamically evolving social environment of adolescents, likely disrupts a clear differentiation of the self-voice from others' voices. This socioneuroendocrine framework offers a holistic understanding of voice monitoring during adolescence.
Collapse
Affiliation(s)
- Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal.
| | | | - Sonja A Kotz
- Maastricht University, Maastricht, The Netherlands; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Riede T, Kobrina A, Pasch B. Anatomy and mechanisms of vocal production in harvest mice. J Exp Biol 2024; 227:jeb246553. [PMID: 38269528 DOI: 10.1242/jeb.246553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Characterizing mechanisms of vocal production provides important insight into the ecology of acoustic divergence. In this study, we characterized production mechanisms of two types of vocalizations emitted by western harvest mice (Reithrodontomys megalotis), a species uniquely positioned to inform trait evolution because it is a sister taxon to peromyscines (Peromyscus and Onychomys spp.), which use vocal fold vibrations to produce long-distance calls, but more ecologically and acoustically similar to baiomyines (Baiomys and Scotinomys spp.), which employ a whistle mechanism. We found that long-distance calls (∼10 kHz) were produced by airflow-induced vocal fold vibrations, whereas high-frequency quavers used in close-distance social interactions (∼80 kHz) were generated by a whistle mechanism. Both production mechanisms were facilitated by a characteristic laryngeal morphology. Our findings indicate that the use of vocal fold vibrations for long-distance communication is widespread in reithrodontomyines (Onychomys, Peromyscus, Reithrodontomys spp.) despite overlap in frequency content that characterizes baiomyine whistled vocalizations. The results illustrate how different production mechanisms shape acoustic variation in rodents and contribute to ecologically relevant communication distances.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, Midwestern University Glendale, Glendale, AZ 85308, USA
| | - Anastasiya Kobrina
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bret Pasch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Wildlife Conservation and Management, School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Yano-Nashimoto S, Truzzi A, Shinozuka K, Murayama AY, Kurachi T, Moriya-Ito K, Tokuno H, Miyazawa E, Esposito G, Okano H, Nakamura K, Saito A, Kuroda KO. Anxious about rejection, avoidant of neglect: Infant marmosets tune their attachment based on individual caregiver's parenting style. Commun Biol 2024; 7:212. [PMID: 38378797 PMCID: PMC10879543 DOI: 10.1038/s42003-024-05875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Children's secure attachment with their primary caregivers is crucial for physical, cognitive, and emotional maturation. Yet, the causal links between specific parenting behaviors and infant attachment patterns are not fully understood. Here we report infant attachment in New World monkeys common marmosets, characterized by shared infant care among parents and older siblings and complex vocal communications. By integrating natural variations in parenting styles and subsecond-scale microanalyses of dyadic vocal and physical interactions, we demonstrate that marmoset infants signal their needs through context-dependent call use and selective approaches toward familiar caregivers. The infant attachment behaviors are tuned to each caregiver's parenting style; infants use negative calls when carried by rejecting caregivers and selectively avoid neglectful and rejecting caregivers. Family-deprived infants fail to develop such adaptive uses of attachment behaviors. With these similarities with humans, marmosets offer a promising model for investigating the biological mechanisms of attachment security.
Collapse
Affiliation(s)
- Saori Yano-Nashimoto
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Laboratory of Physiology, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Anna Truzzi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Planning, Review and Research Institute for Social insurance and Medical program, Chiyoda-ku, Japan
| | - Ayako Y Murayama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Neural Circuit Unit, Okinawa Institute Science and Technology Graduate University, Onna, Japan
| | - Takuma Kurachi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Moriya-Ito
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Hironobu Tokuno
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Gianluca Esposito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Atsuko Saito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Department of Psychology, Sophia University, Chiyoda-ku, Japan.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Kuroda Laboratory, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
4
|
Nakamura K, Kanaya M, Matsushima D, Dunn JC, Hirabayashi H, Sato K, Tokuda IT, Nishimura T. Twin vocal folds as a novel evolutionary adaptation for vocal communications in lemurs. Sci Rep 2024; 14:3631. [PMID: 38351102 PMCID: PMC10864409 DOI: 10.1038/s41598-024-54172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Primates have varied vocal repertoires to communicate with conspecifics and sometimes other species. The larynx has a central role in vocal source generation, where a pair of vocal folds vibrates to modify the air flow. Here, we show that Madagascan lemurs have a unique additional pair of folds in the vestibular region, parallel to the vocal folds. The additional fold has a rigid body of a vocal muscle branch and it is covered by a stratified squamous epithelium, equal to those of the vocal fold. Such anatomical features support the hypothesis that it also vibrates in a manner like the vibrations that occur in the vocal folds. To examine the acoustic function of the two pairs of folds, we made a silicone compound model to demonstrate that they can simultaneously vibrate to lower the fundamental frequency and increase vocal efficiency. Similar acoustic effects are achieved using different features of the larynx for the other primates, e.g., by vibrating multiple sets of ventricular folds in several species and further by an evolutionary modification of enlarged larynx in howler monkeys. Our multidisciplinary approaches found that these functions were acquired through a unique evolutionary adaptation of the twin vocal folds in Madagascan lemurs.
Collapse
Affiliation(s)
- Kanta Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | - Mayuka Kanaya
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Daisuke Matsushima
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Jacob C Dunn
- Behavioural Ecology Research Group, Anglia Ruskin University, Cambridge, UK
- Biological Anthropology, The University of Cambridge, Cambridge, UK
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | | | - Kiminori Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Isao T Tokuda
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Nishimura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan.
| |
Collapse
|
5
|
Nojiri T, Takechi M, Furutera T, Brualla NLM, Iseki S, Fukui D, Tu VT, Meguro F, Koyabu D. Development of the hyolaryngeal architecture in horseshoe bats: insights into the evolution of the pulse generation for laryngeal echolocation. EvoDevo 2024; 15:2. [PMID: 38326924 PMCID: PMC10851524 DOI: 10.1186/s13227-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Nicolas L M Brualla
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Dai Fukui
- The University of Tokyo Fuji Iyashinomori Woodland Study Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 341-2 Yamanaka, Yamanakako, Yamanashi, 401-05013, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan
| | - Daisuke Koyabu
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan.
| |
Collapse
|
6
|
Dewi CMS, Dhamayanti Y, Fikri F, Purnomo A, Khairani S, Chhetri S, Purnama MTE. An investigation of syrinx morphometry and sound frequency association during the chirping period in lovebirds ( Agapornis fischeri). F1000Res 2023; 11:354. [PMID: 38779459 PMCID: PMC11109576 DOI: 10.12688/f1000research.108884.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 05/25/2024] Open
Abstract
Background: In the issue of biodiversity, the domestication of birds as pets and trade animals requires special attention as a conservation effort. Lovebirds ( Agapornis fischeri) are popular birds worldwide, due to their varied ornamentation and melodic chirping sound. Syrinx structure is suspected to be the main source of sound production during the chirping period. This study aimed to investigate syrinx morphometry and its correlation with sound frequency produced in lovebirds. Methods: A total of 24 lovebirds of different ages and gender were investigated. Polymerase chain reaction method was performed to determine lovebird gender, meanwhile bird age was identified based on post-hatch recordings at the breeding farm. Thus, we enrolled male (n=12) and female (n=12) lovebirds aged 2 (n=4), 3 (n=4), and 4 (n=4) months in the investigation group, respectively. Fast Fourier Transform (FFT) was performed to evaluate sound frequency during chirping period. Then, syrinx morphometry was identified using a topographic approach and methylene blue staining. Each variable was evaluated with Image J software and vernier caliper. Results: Based on a topographical approach, we reported the general cartilage structure of the tracheosyringeal, bronchosyringeal, paired protrusions, tracheolateral muscles, sternotracheal muscles, and syringeal muscles in lovebird syrinx. In particular, the tympaniform membranes lateral lead a crucial role in modulating the frequency of male lovebirds more significantly (p=0,009) compared to female. On the other hand, the tympaniform membranes lateral dexter (p=0,02) and sinister (p=0,05) in females showed wider compared to male. We also reported a negative correlation between sound frequency compared to tympaniform membranes lateral dexter (y = -913,56x + 6770,8) and sinister (y = -706,16x + 5736). Conclusions: It can be concluded that the tympaniform membranes lateral produced the lovebirds' primary sound. The sound frequency of male lovebirds was higher compared to female, however negatively correlated with the area of tympaniform membranes lateral.
Collapse
Affiliation(s)
- Cytra Meyliana Surya Dewi
- School of Health and Life Sciences, Universitas Airlangga, Surabaya, 60115, Indonesia
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Yeni Dhamayanti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Faisal Fikri
- School of Health and Life Sciences, Universitas Airlangga, Surabaya, 60115, Indonesia
- Division of Veterinary Clinical Pathology and Physiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Agus Purnomo
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Shafia Khairani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung, 45363, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| | - Muhammad Thohawi Elziyad Purnama
- School of Health and Life Sciences, Universitas Airlangga, Surabaya, 60115, Indonesia
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
7
|
Kanaya M, Matsumoto T, Uemura T, Kawabata R, Nishimura T, Tokuda IT. Physical modeling of the vocal membranes and their influence on animal voice production. JASA EXPRESS LETTERS 2022; 2:111201. [PMID: 36456367 DOI: 10.1121/10.0015071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The vocal membrane, i.e., an extended part of the vocal fold, is observed in a wide range of species including bats and primates. A theoretical study [Mergell, Fitch, and Herzel (1999). J. Acoust. Soc. Am. 105(3), 2020-2028] predicted that the vocal membranes can make the animal vocalizations more efficient by lowering the phonation threshold pressure. To examine this prediction, a synthetic model of the vocal membrane was developed, and its oscillation properties were examined. The experiments revealed that the phonation threshold pressure was lower in the vocal membrane model compared to that in a model with no vocal membrane. Chaotic oscillations were observed as well.
Collapse
Affiliation(s)
- Mayuka Kanaya
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takuma Matsumoto
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Taisuke Uemura
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Rei Kawabata
- College of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takeshi Nishimura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan , , , , ,
| | - Isao T Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
8
|
Håkansson J, Mikkelsen C, Jakobsen L, Elemans CPH. Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication. PLoS Biol 2022; 20:e3001881. [PMID: 36445872 PMCID: PMC9707786 DOI: 10.1371/journal.pbio.3001881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Echolocating bats produce very diverse vocal signals for echolocation and social communication that span an impressive frequency range of 1 to 120 kHz or 7 octaves. This tremendous vocal range is unparalleled in mammalian sound production and thought to be produced by specialized laryngeal vocal membranes on top of vocal folds. However, their function in vocal production remains untested. By filming vocal membranes in excised bat larynges (Myotis daubentonii) in vitro with ultra-high-speed video (up to 250,000 fps) and using deep learning networks to extract their motion, we provide the first direct observations that vocal membranes exhibit flow-induced self-sustained vibrations to produce 10 to 95 kHz echolocation and social communication calls in bats. The vocal membranes achieve the highest fundamental frequencies (fo's) of any mammal, but their vocal range is with 3 to 4 octaves comparable to most mammals. We evaluate the currently outstanding hypotheses for vocal membrane function and propose that most laryngeal adaptations in echolocating bats result from selection for producing high-frequency, rapid echolocation calls to catch fast-moving prey. Furthermore, we show that bats extend their lower vocal range by recruiting their ventricular folds-as in death metal growls-that vibrate at distinctly lower frequencies of 1 to 5 kHz for producing agonistic social calls. The different selection pressures for echolocation and social communication facilitated the evolution of separate laryngeal structures that together vastly expanded the vocal range in bats.
Collapse
Affiliation(s)
- Jonas Håkansson
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Cathrine Mikkelsen
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Lasse Jakobsen
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Coen P. H. Elemans
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
9
|
Nishimura T, Tokuda IT, Miyachi S, Dunn JC, Herbst CT, Ishimura K, Kaneko A, Kinoshita Y, Koda H, Saers JPP, Imai H, Matsuda T, Larsen ON, Jürgens U, Hirabayashi H, Kojima S, Fitch WT. Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech. Science 2022; 377:760-763. [PMID: 35951711 DOI: 10.1126/science.abm1574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human speech production obeys the same acoustic principles as vocal production in other animals but has distinctive features: A stable vocal source is filtered by rapidly changing formant frequencies. To understand speech evolution, we examined a wide range of primates, combining observations of phonation with mathematical modeling. We found that source stability relies upon simplifications in laryngeal anatomy, specifically the loss of air sacs and vocal membranes. We conclude that the evolutionary loss of vocal membranes allows human speech to mostly avoid the spontaneous nonlinear phenomena and acoustic chaos common in other primate vocalizations. This loss allows our larynx to produce stable, harmonic-rich phonation, ideally highlighting formant changes that convey most phonetic information. Paradoxically, the increased complexity of human spoken language thus followed simplification of our laryngeal anatomy.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.,Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigehiro Miyachi
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.,Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Jacob C Dunn
- Behavioural Ecology Research Group, School of Life Science, Anglia Ruskin University, Cambridge CB1 1PT, UK.,Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK.,Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Christian T Herbst
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.,Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Kazuyoshi Ishimura
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Akihisa Kaneko
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.,Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Yuki Kinoshita
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.,Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hiroki Koda
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Jaap P P Saers
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Tetsuya Matsuda
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ole Næsbye Larsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Uwe Jürgens
- Section of Neurobiology, German Primate Center, D-37077 Göttingen, Germany
| | | | - Shozo Kojima
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria.,Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Zhang YS, Alvarez JL, Ghazanfar AA. Arousal elevation drives the development of oscillatory vocal output. J Neurophysiol 2022; 127:1519-1531. [PMID: 35475704 PMCID: PMC9169828 DOI: 10.1152/jn.00007.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Adult behaviors, such as vocal production, often exhibit temporal regularity. In contrast, their immature forms are more irregular. We ask whether the coupling of motor behaviors with arousal changes gives rise to temporal regularity: Do they drive the transition from variable to regular motor output over the course of development? We used marmoset monkey vocal production to explore this putative influence of arousal on the nonlinear changes in their developing vocal output patterns. Based on a detailed analysis of vocal and arousal dynamics in marmosets, we put forth a general model incorporating arousal and auditory feedback loops for spontaneous vocal production. Using this model, we show that a stable oscillation can emerge as the baseline arousal increases, predicting the transition from stochastic to periodic oscillations observed during marmoset vocal development. We further provide a solution for how this model can explain vocal development as the joint consequence of energetic growth and social feedback. Together, we put forth a plausible mechanism for the development of arousal-mediated adaptive behavior.NEW & NOTEWORTHY The development of motor behaviors, and the influence of energetic and social factors on it, has long been of interest, yet we lack an integrated picture of how these different systems may interact. Through the lens of vocal development in infant marmosets, this study offers a solution for social behavior development by linking motor production with arousal states. Increases in arousal can drive the system out of stochastic states toward oscillatory dynamics ready for communication.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - John L Alvarez
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
11
|
Håkansson J, Jiang W, Xue Q, Zheng X, Ding M, Agarwal AA, Elemans CPH. Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats. BMC Biol 2022; 20:3. [PMID: 34996429 PMCID: PMC8742360 DOI: 10.1186/s12915-021-01185-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent ultrasonic vocalizations (USVs) are crucial to their social communication and a widely used translational tool for linking gene mutations to behavior. To maximize the causal interpretation of experimental treatments, we need to understand how neural control affects USV production. However, both the aerodynamics of USV production and its neural control remain poorly understood. RESULTS Here, we test three intralaryngeal whistle mechanisms-the wall and alar edge impingement, and shallow cavity tone-by combining in vitro larynx physiology and individual-based 3D airway reconstructions with fluid dynamics simulations. Our results show that in the mouse and rat larynx, USVs are produced by a glottal jet impinging on the thyroid inner wall. Furthermore, we implemented an empirically based motor control model that predicts motor gesture trajectories of USV call types. CONCLUSIONS Our results identify wall impingement as the aerodynamic mechanism of USV production in rats and mice. Furthermore, our empirically based motor control model shows that both neural and anatomical components contribute to USV production, which suggests that changes in strain specific USVs or USV changes in disease models can result from both altered motor programs and laryngeal geometry. Our work provides a quantitative neuromechanical framework to evaluate the contributions of brain and body in shaping USVs and a first step in linking descending motor control to USV production.
Collapse
Affiliation(s)
- Jonas Håkansson
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Weili Jiang
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Qian Xue
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Xudong Zheng
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Anurag A Agarwal
- Department of Engineering, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
12
|
Smarsh GC, Tarnovsky Y, Yovel Y. Hearing, echolocation, and beam steering from day 0 in tongue-clicking bats. Proc Biol Sci 2021; 288:20211714. [PMID: 34702074 PMCID: PMC8548796 DOI: 10.1098/rspb.2021.1714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
Little is known about the ontogeny of lingual echolocation. We examined the echolocation development of Rousettus aegyptiacus, the Egyptian fruit bat, which uses rapid tongue movements to produce hyper-short clicks and steer the beam's direction. We recorded from day 0 to day 35 postbirth and assessed hearing and beam-steering abilities. On day 0, R. aegyptiacus pups emit isolation calls and hyper-short clicks in response to acoustic stimuli, demonstrating hearing. Auditory brainstem response recordings show that pups are sensitive to pure tones of the main hearing range of adult Rousettus and to brief clicks. Newborn pups produced clicks in the adult paired pattern and were able to use their tongues to steer the sonar beam. As they aged, pups produced click pairs faster, converging with adult intervals by age of first flights (7-8 weeks). In contrast with laryngeal bats, Rousettus echolocation frequency and duration are stable through to day 35, but shift by the time pups begin to fly, possibly owing to tongue-diet maturation effects. Furthermore, frequency and duration shift in the opposite direction of mammalian laryngeal vocalizations. Rousettus lingual echolocation thus appears to be a highly functional sensory system from birth and follows a different ontogeny from that of laryngeal bats.
Collapse
Affiliation(s)
- Grace C. Smarsh
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IL 6997801, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, IL 7610001, Israel
| | - Yifat Tarnovsky
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IL 6997801, Israel
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IL 6997801, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IL 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, IL 6997801, Israel
| |
Collapse
|
13
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
14
|
Adam I, Maxwell A, Rößler H, Hansen EB, Vellema M, Brewer J, Elemans CPH. One-to-one innervation of vocal muscles allows precise control of birdsong. Curr Biol 2021; 31:3115-3124.e5. [PMID: 34089645 DOI: 10.1016/j.cub.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The motor control resolution of any animal behavior is limited to the minimal force step available when activating muscles, which is set by the number and size distribution of motor units (MUs) and muscle-specific force. Birdsong is an excellent model system for understanding acquisition and maintenance of complex fine motor skills, but we know surprisingly little about how the motor pool controlling the syrinx is organized and how MU recruitment drives changes in vocal output. Here we developed an experimental paradigm to measure MU size distribution using spatiotemporal imaging of intracellular calcium concentration in cross-sections of living intact syrinx muscles. We combined these measurements with muscle stress and an in vitro syrinx preparation to determine the control resolution of fundamental frequency (fo), a key vocal parameter, in zebra finches. We show that syringeal muscles have extremely small MUs, with 40%-50% innervating ≤3 and 13%-17% innervating a single muscle fiber. Combined with the lowest specific stress (5 mN/mm2) known to skeletal vertebrate muscle, small force steps by the major fo controlling muscle provide control of 50-mHz to 7.3-Hz steps per MU. We show that the song system has the highest motor control resolution possible in the vertebrate nervous system and suggest this evolved due to strong selection on fine gradation of vocal output. Furthermore, we propose that high-resolution motor control was a key feature contributing to the radiation of songbirds that allowed diversification of song and speciation by vocal space expansion.
Collapse
Affiliation(s)
- Iris Adam
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Alyssa Maxwell
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Helen Rößler
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Emil B Hansen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Michiel Vellema
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jonathan Brewer
- PhyLife, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
15
|
Jakobsen L, Christensen-Dalsgaard J, Juhl PM, Elemans CPH. How Loud Can you go? Physical and Physiological Constraints to Producing High Sound Pressures in Animal Vocalizations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sound is vital for communication and navigation across the animal kingdom and sound communication is unrivaled in accuracy and information richness over long distances both in air and water. The source level (SL) of the sound is a key factor in determining the range at which animals can communicate and the range at which echolocators can operate their biosonar. Here we compile, standardize and compare measurements of the loudest animals both in air and water. In air we find a remarkable similarity in the highest SLs produced across the different taxa. Within all taxa we find species that produce sound above 100 dBpeak re 20 μPa at 1 m, and a few bird and mammal species have SLs as high as 125 dBpeak re 20 μPa at 1 m. We next used pulsating sphere and piston models to estimate the maximum sound pressures generated in the radiated sound field. These data suggest that the loudest species within all taxa converge upon maximum pressures of 140–150 dBpeak re 20 μPa in air. In water, the toothed whales produce by far the loudest SLs up to 240 dBpeak re 1 μPa at 1 m. We discuss possible physical limitations to the production, radiation and propagation of high sound pressures. Furthermore, we discuss physiological limitations to the wide variety of sound generating mechanisms that have evolved in air and water of which many are still not well-understood or even unknown. We propose that in air, non-linear sound propagation forms a limit to producing louder sounds. While non-linear sound propagation may play a role in water as well, both sperm whale and pistol shrimp reach another physical limit of sound production, the cavitation limit in water. Taken together, our data suggests that both in air and water, animals evolved that produce sound so loud that they are pushing against physical rather than physiological limits of sound production, radiation and propagation.
Collapse
|
16
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
17
|
Syringeal vocal folds do not have a voice in zebra finch vocal development. Sci Rep 2021; 11:6469. [PMID: 33742101 PMCID: PMC7979720 DOI: 10.1038/s41598-021-85929-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Vocal behavior can be dramatically changed by both neural circuit development and postnatal maturation of the body. During song learning in songbirds, both the song system and syringeal muscles are functionally changing, but it is unknown if maturation of sound generators within the syrinx contributes to vocal development. Here we densely sample the respiratory pressure control space of the zebra finch syrinx in vitro. We show that the syrinx produces sound very efficiently and that key acoustic parameters, minimal fundamental frequency, entropy and source level, do not change over development in both sexes. Thus, our data suggest that the observed acoustic changes in vocal development must be attributed to changes in the motor control pathway, from song system circuitry to muscle force, and not by material property changes in the avian analog of the vocal folds. We propose that in songbirds, muscle use and training driven by the sexually dimorphic song system are the crucial drivers that lead to sexual dimorphism of the syringeal skeleton and musculature. The size and properties of the instrument are thus not changing, while its player is.
Collapse
|
18
|
Smith SK, Burkhard TT, Phelps SM. A comparative characterization of laryngeal anatomy in the singing mouse. J Anat 2021; 238:308-320. [PMID: 32996145 PMCID: PMC7812124 DOI: 10.1111/joa.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023] Open
Abstract
Sexual displays are some of the most dramatic and varied behaviors that have been documented. The elaboration of such behaviors often relies on the modification of existing morphology. To understand how display elaboration arises, we analyzed the laryngeal anatomy of three species of mice that vary in the presence and complexity of their vocal displays. Mice and rats have a specialized larynx that enables them to produce both low-frequency "audible" sounds, perhaps using vocal fold vibration, as well as distinct mechanisms that are thought to enable higher frequency sounds, such as vocal membrane vibration and intralaryngeal whistles. These mechanisms rely on different structures within the larynx. Using histology, we characterized laryngeal anatomy in Alston's singing mouse (Scotinomys teguina), the northern pygmy mouse (Baiomys taylori), and the laboratory mouse (Mus musculus), which produce different types of vocalizations. We found evidence of a vocal membrane in all species, as well as species differences in vocal fold and ventral pouch size. Presence of a vocal membrane in these three species, which are not known to use vocal membrane vibration, suggests that this structure may be widespread among muroid rodents. An expanded ventral pouch in singing and pygmy mice suggests that these mice may use an intralaryngeal whistle to produce their advertisement songs, and that an expanded ventral pouch may enable lower frequencies than laboratory mouse whistle-produced sounds. Variation in the laryngeal anatomy of rodents fits into a larger pattern across terrestrial vertebrates, where the development and modification of vocal membranes and pouches, or air sacs, are common mechanisms by which vocalizations diversify. Understanding variation in the functional anatomy of relevant organs is the first step in understanding how morphological changes enable novel displays.
Collapse
Affiliation(s)
- Samantha K. Smith
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| | - Tracy T. Burkhard
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| | - Steven M. Phelps
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
19
|
Griffin K, Pedersen H, Stauss K, Lungova V, Thibeault SL. Characterization of intrauterine growth, proliferation and biomechanical properties of the murine larynx. PLoS One 2021; 16:e0245073. [PMID: 33439907 PMCID: PMC7806159 DOI: 10.1371/journal.pone.0245073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Current research approaches employ traditional tissue engineering strategies to promote vocal fold (VF) tissue regeneration, whereas recent novel advances seek to use principles of developmental biology to guide tissue generation by mimicking native developmental cues, causing tissue or allogenic/autologous progenitor cells to undergo the regeneration process. To address the paucity of data to direct VF differentiation and subsequent new tissue formation, we characterize structure-proliferation relationships and tissue elastic moduli over embryonic development using a murine model. Growth, cell proliferation, and tissue biomechanics were taken at E13.5, E15.5, E16.5, E18.5, P0, and adult time points. Quadratic growth patterns were found in larynx length, maximum transverse diameter, outer dorsoventral diameter, and VF thickness; internal VF length was found to mature linearly. Cell proliferation measured with EdU in the coronal and transverse planes of the VFs was found to decrease with increasing age. Exploiting atomic force microscopy, we measured significant differences in tissue stiffness across all time points except between E13.5 and E15.5. Taken together, our results indicate that as the VF mature and develop quadratically, there is a concomitant tissue stiffness increase. Greater gains in biomechanical stiffness at later prenatal stages, correlated with reduced cell proliferation, suggest that extracellular matrix deposition may be responsible for VF thickening and increased biomechanical function, and that the onset of biomechanical loading (breathing) may also contribute to increased stiffness. These data provide a profile of VF biomechanical and growth properties that can guide the development of biomechanically-relevant scaffolds and progenitor cell differentiation for VF tissue regeneration.
Collapse
Affiliation(s)
- Kate Griffin
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hailey Pedersen
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kari Stauss
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vlasta Lungova
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fujii T. [Different Membrane Environments Generate Multiple Functions of P-type Ion Pumps]. YAKUGAKU ZASSHI 2021; 141:1217-1222. [PMID: 34719540 DOI: 10.1248/yakushi.21-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
21
|
Herbst CT, Nishimura T, Garcia M, Migimatsu K, Tokuda IT. Effect of Ventricular Folds on Vocalization Fundamental Frequency in Domestic Pigs (Sus scrofa domesticus). J Voice 2020; 35:805.e1-805.e15. [PMID: 33388229 DOI: 10.1016/j.jvoice.2020.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 10/22/2022]
Abstract
This study investigates the effect of the ventricular folds on fundamental frequency (fo) in the voice production of domestic pigs (Sus scrofa domesticus). The excised larynges of six subadult pigs were phonated in two preparation stages, with the ventricular folds present (PS1) and removed (PS2). Vocal fold resonances were tested with a laser vibrometer, and a four-mass computational model was created. Highly significant fo differences were found between PS1 and PS2 (means at 93.7 and 409.3 Hz, respectively). Two tissue resonances were found at 115 Hz and 250-290 Hz. The computational model had unique solutions for abducted and adducted ventricular folds at about 150 and 400 Hz, roughly matching the fo measured ex vivo for PS1 and PS2. The differing fo encountered across preparation stages PS1 and PS2 is explained by distinct activation of either a high or a low eigenfrequency mode, depending on the engagement of the ventricular folds. The inability of the investigated larynges to vibrate at frequencies below 250 Hz in PS2 suggests that in vivo low-frequency calls of domestic pigs (pre-eminently grunts) are likely produced with engaged ventricular folds. Allometric comparison suggests that the special, mechanically coupled "double oscillator" has evolved to prevent signaling disadvantages. Given these traits, the porcine larynx might - apart from special applications relating to the involvement of ventricular folds - not be an ideal candidate for emulating human voice production in excised larynx experimentation.
Collapse
Affiliation(s)
- Christian T Herbst
- Antonio Salieri Department of Vocal Studies and Vocal Research in Music Education, University of Music and Performing Arts Vienna, Vienna, Austria.
| | | | - Maxime Garcia
- ENES Lab, Université Lyon/Saint-Etienne, Neuro-PSI, CNRS UMR 9197, Saint-Etienne, France; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kishin Migimatsu
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
22
|
Domestication Phenotype Linked to Vocal Behavior in Marmoset Monkeys. Curr Biol 2020; 30:5026-5032.e3. [PMID: 33065007 DOI: 10.1016/j.cub.2020.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
The domestication syndrome refers to a set of traits that are the by-products of artificial selection for increased tolerance toward humans [1-3]. One hypothesis is that some species, like humans and bonobos, "self-domesticated" and have been under selection for that same suite of domesticated phenotypes [4-8]. However, the evidence for this has been largely circumstantial. Here, we provide evidence that, in marmoset monkeys, the size of a domestication phenotype-a white facial fur patch-is linked to their degree of affiliative vocal responding. During development, the amount of parental vocal feedback experienced influences the rate of growth of this facial white patch, and this suggests a mechanistic link between the two phenotypes, possibly via neural crest cells. Our study provides evidence for links between vocal behavior and the development of morphological phenotypes associated with domestication in a nonhuman primate.
Collapse
|
23
|
Adam I, Elemans CPH. Increasing Muscle Speed Drives Changes in the Neuromuscular Transform of Motor Commands during Postnatal Development in Songbirds. J Neurosci 2020; 40:6722-6731. [PMID: 32487696 PMCID: PMC7455216 DOI: 10.1523/jneurosci.0111-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Progressive changes in vocal behavior over the course of vocal imitation leaning are often attributed exclusively to developing neural circuits, but the effects of postnatal body changes remain unknown. In songbirds, the syrinx transforms song system motor commands into sound and exhibits changes during song learning. Here we test the hypothesis that the transformation from motor commands to force trajectories by syringeal muscles functionally changes over vocal development in zebra finches. Our data collected in both sexes show that, only in males, muscle speed significantly increases and that supralinear summation occurs and increases with muscle contraction speed. Furthermore, we show that previously reported submillisecond spike timing in the avian cortex can be resolved by superfast syringeal muscles and that the sensitivity to spike timing increases with speed. Because motor neuron and muscle properties are tightly linked, we make predictions on the boundaries of the yet unknown motor code that correspond well with cortical activity. Together, we show that syringeal muscles undergo essential transformations during song learning that drastically change how neural commands are translated into force profiles and thereby acoustic features. We propose that the song system motor code must compensate for these changes to achieve its acoustic targets. Our data thus support the hypothesis that the neuromuscular transformation changes over vocal development and emphasizes the need for an embodied view of song motor learning.SIGNIFICANCE STATEMENT Fine motor skill learning typically occurs in a postnatal period when the brain is learning to control a body that is changing dramatically due to growth and development. How the developing body influences motor code formation and vice versa remains largely unknown. Here we show that vocal muscles in songbirds undergo critical transformations during song learning that drastically change how neural commands are translated into force profiles and thereby acoustic features. We propose that the motor code must compensate for these changes to achieve its acoustic targets. Our data thus support the hypothesis that the neuromuscular transformation changes over vocal development and emphasizes the need for an embodied view of song motor learning.
Collapse
Affiliation(s)
- Iris Adam
- University of Southern Denmark, Department of Biology, 5230 Odense M, Denmark
| | - Coen P H Elemans
- University of Southern Denmark, Department of Biology, 5230 Odense M, Denmark
| |
Collapse
|
24
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
25
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|