1
|
Cogan G, Zaki MS, Issa M, Keren B, Guillaud-Bataille M, Renaldo F, Isapof A, Lallemant P, Stevanin G, Guillot-Noel L, Courtin T, Buratti J, Freihuber C, Gleeson JG, Howarth R, Durr A, de Sainte Agathe JM, Mignot C. Biallelic variants in ERLIN1: a series of 13 individuals with spastic paraparesis. Hum Genet 2024; 143:1353-1362. [PMID: 39367212 DOI: 10.1007/s00439-024-02702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Biallelic variants in the ERLIN1 gene were recently reported as the cause of two motor neuron degeneration diseases, SPG62 and a recessive form of amyotrophic lateral sclerosis. However, only 12 individuals from five pedigrees have been identified so far. Thus, the description of the disease remains limited. Following the discovery of a homozygous pathogenic variant in a girl with SPG62, presenting with intellectual disability, and epilepsy, we gathered the largest series of SPG62 cases reported so far (13 individuals) to better understand the phenotype associated with ERLIN1. We collected molecular and clinical data for 13 individuals from six families with ERLIN1 biallelic variants. We performed RNA-seq analyses to characterize intronic variants and used Alphafold and a transcripts database to characterize the molecular consequences of the variants. We identified three new variants suspected to alter the bell-shaped ring formed by the ERLIN1/ERLIN2 complex. Affected individuals had childhood-onset paraparesis with slow progression. Six individuals presented with gait ataxia and three had superficial sensory loss. Aside from our proband, none had intellectual disability or epilepsy. Biallelic pathogenic ERLIN1 variants induce a rare, predominantly pure, spastic paraparesis, with possible cerebellar and peripheral nerve involvement.
Collapse
Affiliation(s)
- Guillaume Cogan
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mahmoud Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Marine Guillaud-Bataille
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Florence Renaldo
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Arnaud Isapof
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Pauline Lallemant
- APHP Sorbonne Université, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Armand Trousseau, Paris, France
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Bordeaux University, INCIA, UMR5287, CNRS, EPHE, 33000, Bordeaux, France
| | - Lena Guillot-Noel
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Thomas Courtin
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Julien Buratti
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Cécile Freihuber
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92130, USA
| | - Robyn Howarth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92130, USA
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jean-Madeleine de Sainte Agathe
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France.
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
2
|
Cook SR, Schwarz C, Guevar J, Assenmacher CA, Sheehy M, Fanzone N, Church ME, Murgiano L, Casal ML, Jagannathan V, Gutierrez-Quintana R, Lowrie M, Steffen F, Leeb T, Ekenstedt KJ. Canine RNF170 Single Base Deletion in a Naturally Occurring Model for Human Neuroaxonal Dystrophy. Mov Disord 2024. [PMID: 39177409 DOI: 10.1002/mds.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Neuroaxonal dystrophy (NAD) is a group of inherited neurodegenerative disorders characterized primarily by the presence of spheroids (swollen axons) throughout the central nervous system. In humans, NAD is heterogeneous, both clinically and genetically. NAD has also been described to naturally occur in large animal models, such as dogs. A newly recognized disorder in Miniature American Shepherd dogs (MAS), consisting of a slowly progressive neurodegenerative syndrome, was diagnosed as NAD via histopathology. OBJECTIVES To describe the clinical and pathological phenotype together with the identification of the underlying genetic cause. METHODS Clinical and postmortem evaluations, together with a genome-wide association study and autozygosity mapping approach, followed by whole-genome sequencing. RESULTS Affected dogs were typically young adults and displayed an abnormal gait characterized by pelvic limb weakness and ataxia. The underlying genetic cause was identified as a 1-bp (base pair) deletion in RNF170 encoding ring finger protein 170, which perfectly segregates in an autosomal recessive pattern. This deletion is predicted to create a frameshift (XM_038559916.1:c.367delG) and early truncation of the RNF170 protein (XP_038415844.1:(p.Ala123Glnfs*11)). The age of this canine RNF170 variant was estimated at ~30 years, before the reproductive isolation of the MAS breed. CONCLUSIONS RNF170 variants were previously identified in human patients with autosomal recessive spastic paraplegia-85 (SPG85); this clinical phenotype shows similarities to the dogs described herein. We therefore propose that this novel MAS NAD could serve as an excellent large animal model for equivalent human diseases, particularly since affected dogs demonstrate a relatively long lifespan, which represents an opportunity for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shawna R Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Cleo Schwarz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julien Guevar
- AniCura Thun, Neurology Department, Burgerstrasse, Switzerland
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeve Sheehy
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Nathan Fanzone
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly E Church
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- Small Animal Hospital, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, UK
| | - Frank Steffen
- Neurology Service, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Veronese M, Kallabis S, Kaczmarek AT, Das A, Robers L, Schumacher S, Lofrano A, Brodesser S, Müller S, Hofmann K, Krüger M, Rugarli EI. ERLIN1/2 scaffolds bridge TMUB1 and RNF170 and restrict cholesterol esterification to regulate the secretory pathway. Life Sci Alliance 2024; 7:e202402620. [PMID: 38782601 PMCID: PMC11116810 DOI: 10.26508/lsa.202402620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction. Three-dimensional modelling shows that this conserved motif binds the stomatin/prohibitin/flotillin/HflKC domain of two adjacent ERLIN subunits at different interfaces. Protein variants that preclude these interactions have been previously linked to hereditary spastic paraplegia. Using omics-based approaches in combination with phenotypic characterization of HeLa cells lacking both ERLINs, we demonstrate a role of ERLIN scaffolds in limiting cholesterol esterification, thereby favouring cholesterol transport from the ER to the Golgi apparatus and regulating Golgi morphology and the secretory pathway.
Collapse
Affiliation(s)
- Matteo Veronese
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Sebastian Kallabis
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Tobias Kaczmarek
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anushka Das
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lennart Robers
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alessia Lofrano
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Kay Hofmann
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- https://ror.org/00rcxh774 Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- https://ror.org/00rcxh774 Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- https://ror.org/00rcxh774 Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Li R, Liu X, Ke C, Zeng F, Zeng Q, Xu X, Fan X, Zhang Y, Hou Q. ITPR1 variant-induced autosomal dominant hereditary spastic paraplegia in a Chinese family. Front Neurol 2024; 15:1365787. [PMID: 39011359 PMCID: PMC11247953 DOI: 10.3389/fneur.2024.1365787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease prominently characterized by slowly progressive lower limb weakness and spasticity. The significant genotypic and phenotypic heterogeneity of this disease makes its accurate diagnosis challenging. In this study, we identified the NM_001168272: c.2714A > G (chr3.hg19: g.4716912A > G, N905S) variant in the ITPR1 gene in a three-generation Chinese family with multiple individuals affected by HSP, which we believed to be associated with HSP pathogenesis. To confirm, we performed whole exome sequencing, copy number variant assays, dynamic mutation analysis of the entire family, and protein structure prediction. The variant identified in this study was in the coupling domain, and this is the first corroborated report assigning ITPR1 variants to HSP. These findings expand the clinical and genetic spectrum of HSP and provide important data for its genetic analysis and diagnosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenming Ke
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanli Zeng
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Zeng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xiaowei Xu
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ying Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
6
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
7
|
Lin X, Jiang JY, Hong DJ, Lin KJ, Li JJ, Chen YJ, Qiu YS, Wang Z, Liao YC, Yang K, Shi Y, Wang MW, Hsu SL, Hong S, Zeng YH, Chen XC, Wang N, Lee YC, Chen WJ. Biallelic COQ4 Variants in Hereditary Spastic Paraplegia: Clinical and Molecular Characterization. Mov Disord 2024; 39:152-163. [PMID: 38014483 DOI: 10.1002/mds.29664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jun-Yi Jiang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Dao-Jun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai-Jun Lin
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jin-Jing Li
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Jun Chen
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kang Yang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yan Shi
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Meng-Wen Wang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shunyan Hong
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Heng Zeng
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Jin Chen
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
9
|
Maurer C, Boleti O, Najarzadeh Torbati P, Norouzi F, Fowler ANR, Minaee S, Salih KH, Taherpour M, Birjandi H, Alizadeh B, Salih AF, Bijari M, Houlden H, Pittman AM, Maroofian R, Almashham YH, Karimiani EG, Kaski JP, Faqeih EA, Vakilian F, Jamshidi Y. Genetic Insights from Consanguineous Cardiomyopathy Families. Genes (Basel) 2023; 14:182. [PMID: 36672924 PMCID: PMC9858866 DOI: 10.3390/genes14010182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Inherited cardiomyopathies are a prevalent cause of heart failure and sudden cardiac death. Both hypertrophic (HCM) and dilated cardiomyopathy (DCM) are genetically heterogeneous and typically present with an autosomal dominant mode of transmission. Whole exome sequencing and autozygosity mapping was carried out in eight un-related probands from consanguineous Middle Eastern families presenting with HCM/DCM followed by bioinformatic and co-segregation analysis to predict the potential pathogenicity of candidate variants. We identified homozygous missense variants in TNNI3K, DSP, and RBCK1 linked with a dilated phenotype, in NRAP linked with a mixed phenotype of dilated/hypertrophic, and in KLHL24 linked with a mixed phenotype of dilated/hypertrophic and non-compaction features. Co-segregation analysis in family members confirmed autosomal recessive inheritance presenting in early childhood/early adulthood. Our findings add to the mutational spectrum of recessive cardiomyopathies, supporting inclusion of KLHL24, NRAP and RBCK1 as disease-causing genes. We also provide evidence for novel (recessive) modes of inheritance of a well-established gene TNNI3K and expand our knowledge of the clinical heterogeneity of cardiomyopathies. A greater understanding of the genetic causes of recessive cardiomyopathies has major implications for diagnosis and screening, particularly in underrepresented populations, such as those of the Middle East.
Collapse
Affiliation(s)
- Constance Maurer
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Olga Boleti
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, University College London and Great Ormond Street Hospital, London WC1N 1DZ, UK
| | | | - Farzaneh Norouzi
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Anna Nicole Rebekah Fowler
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Shima Minaee
- Department of Cardiovascular Diseases, Razavi Hospital, Mashhad 9177948954, Iran
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah 46001, Iraq
| | - Mehdi Taherpour
- Department of Cardiovascular Diseases, Razavi Hospital, Mashhad 9177948954, Iran
| | - Hassan Birjandi
- Division of Congenital and Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Behzad Alizadeh
- Division of Congenital and Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Aso Faeq Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah 46001, Iraq
| | - Moniba Bijari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alan Michael Pittman
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yahya H. Almashham
- Pediatric Cardiology, King Salman Heart Center, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 009851, Iran
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, University College London and Great Ormond Street Hospital, London WC1N 1DZ, UK
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Farveh Vakilian
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
10
|
Fu JX, Wei Q, Chen YL, Li HF. Novel stop-gain RNF170 variation detected in a Chinese family with adolescent-onset hereditary spastic paraplegia. Clin Genet 2023; 103:87-92. [PMID: 36046950 DOI: 10.1111/cge.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disease characterized by progressive lower limb spasticity. Recent studies revealed that biallelic variants in RNF170 gene cause autosomal recessive complicated HSP with infancy onset. Here, we report an adolescent-onset HSP patient from a consanguineous Chinese family, with lower extremity stiffness, spastic gait, and unstable straight-line walking as the main manifestations. Whole-exome sequencing identifies a novel RNF170 mutation c.190C>T (p.R64*), which co-segregates with the disease in this pedigree. Functional analysis, including quantitative real-time PCR (RT-qPCR) and Western blot, indicates that both the mRNA and protein levels of mutant RNF170 are significantly reduced, which confirms the loss-of-function mechanism. Our study expands the spectrum of RNF170-associated HSP, while the RNF170 protein-involved degradation of the inositol 1,4,5-trisphosphate receptor in neurodegenerative motor neuron disorders deserves further investigation.
Collapse
Affiliation(s)
- Jing-Xin Fu
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Wei
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Lan Chen
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Rusilowicz-Jones EV, Brazel AJ, Frigenti F, Urbé S, Clague MJ. Membrane compartmentalisation of the ubiquitin system. Semin Cell Dev Biol 2022; 132:171-184. [PMID: 34895815 DOI: 10.1016/j.semcdb.2021.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
We now have a comprehensive inventory of ubiquitin system components. Understanding of any system also needs an appreciation of how components are organised together. Quantitative proteomics has provided us with a census of their relative populations in several model cell types. Here, by examining large scale unbiased data sets, we seek to identify and map those components, which principally reside on the major organelles of the endomembrane system. We present the consensus distribution of > 50 ubiquitin modifying enzymes, E2s, E3s and DUBs, that possess transmembrane domains. This analysis reveals that the ER and endosomal compartments have a diverse cast of resident E3s, whilst the Golgi and mitochondria operate with a more restricted palette. We describe key functions of ubiquitylation that are specific to each compartment and relate this to their signature complement of ubiquitin modifying components.
Collapse
Affiliation(s)
- Emma V Rusilowicz-Jones
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ailbhe J Brazel
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; Department of Biology, Maynooth University, Maynooth W23 F2K6, Ireland
| | - Francesca Frigenti
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Sylvie Urbé
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | - Michael J Clague
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
12
|
Zhu ZY, Li ZY, Zhang C, Liu XL, Tian WT, Cao L. A novel homozygous mutation in ERLIN1 gene causing spastic paraplegia 62 and literature review. Eur J Med Genet 2022; 65:104608. [PMID: 36100157 DOI: 10.1016/j.ejmg.2022.104608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative disorders, which is characterized by the presence of progressive spasticity and weakness in bilateral lower limbs. Spastic paraplegia 62 (SPG62) caused by the endoplasmic reticulum lipid raft associated 1 (ERLIN1) gene mutation is a rare subtype of HSP. Herein, we report the case of the first Chinese SPG62 patient, explore the potential pathogenic mechanism and review ERLIN1-related HSP patients. A 23-year-old man had progressive difficulty in walking and gait abnormalities for more than 11 years. Physical examination showed slightly reduced muscle strength (5-/5) and elevated muscle tone in the lower limbs and hyperreflexia in four limbs. Genetic analysis identified a novel splicing site mutation in ERLIN1 gene (c.504+1G > A), which was predicted to disturb the normal splicing process of mRNA by bioinformatic tools. Minigene experiment further confirmed the mutation c.504+1G > A could cause erroneous deletion of Exon 7 in the mRNA, which may change the conserved prohibitin (PHB) domain of erlin-1 and affect the function of erlin1/2 complex. Thus, we identified a pathogenic mutation of ERLIN1 splicing site causing delayed-onset pure HSP. This study widened the genetic and phenotypic spectrum of SPG62.
Collapse
Affiliation(s)
- Ze-Yu Zhu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zi-Yi Li
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Anhui, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Wo-Tu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
13
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
14
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
15
|
Fast Versus Slow Disease Progression in Amyotrophic Lateral Sclerosis – Clinical and Genetic Factors at the Edges of the Survival Spectrum. Neurobiol Aging 2022; 119:117-126. [DOI: 10.1016/j.neurobiolaging.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
16
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
17
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
18
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
19
|
A novel homozygous variant in RNF170 causes hereditary spastic paraplegia: a case report and review of the literature. Neurogenetics 2022; 23:85-90. [DOI: 10.1007/s10048-022-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
20
|
Mahungu AC, Monnakgotla N, Nel M, Heckmann JM. A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet J Rare Dis 2022; 17:133. [PMID: 35331287 PMCID: PMC8944057 DOI: 10.1186/s13023-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies (Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in Africans. Methods PubMed was searched for relevant articles and manual checking of references and review publications were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in population controls (including up to date frequencies from the gnomAD database). Results For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact SMN1-SMA prognosis. Conclusions Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa. Highlights Review of genetic variants reported in hereditary spastic paraplegia in Africans Review of genetic variants reported in genetic neuropathies in Africans Review of genetic underpinnings of spinal muscular atrophies in Africans Assessment of pathogenic evidence for candidate variants
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02280-2.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | | | - Melissa Nel
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Jeannine M Heckmann
- E8-74 Neurology, Department of Medicine, Groote Schuur Hospital and the University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases? Antioxidants (Basel) 2022; 11:antiox11010165. [PMID: 35052668 PMCID: PMC8773297 DOI: 10.3390/antiox11010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum-mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich's ataxia, and Charcot-Marie-Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Juan Antonio Navarro
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| |
Collapse
|
22
|
Votsi C, Ververis A, Nicolaou P, Christou YP, Christodoulou K, Zamba-Papanicolaou E. A Novel SPG7 Gene Pathogenic Variant in a Cypriot Family With Autosomal Recessive Spastic Ataxia. Front Genet 2022; 12:812640. [PMID: 35096021 PMCID: PMC8793673 DOI: 10.3389/fgene.2021.812640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The SPG7 gene encodes the paraplegin protein, an inner mitochondrial membrane—localized protease. It was initially linked to pure and complicated hereditary spastic paraplegia with cerebellar atrophy, and now represents a frequent cause of undiagnosed cerebellar ataxia and spastic ataxia. We hereby report the molecular characterization and the clinical features of a large Cypriot family with five affected individuals presenting with spastic ataxia in an autosomal recessive transmission mode, due to a novel SPG7 homozygous missense variant. Detailed clinical histories of the patients were obtained, followed by neurological and neurophysiological examinations. Whole exome sequencing (WES) of the proband, in silico gene panel analysis, variant filtering and family segregation analysis of the candidate variants with Sanger sequencing were performed. RNA and protein expression as well as in vitro protein localization studies and mitochondria morphology evaluation were carried out towards functional characterization of the identified variant. The patients presented with typical spastic ataxia features while some intrafamilial phenotypic variation was noted. WES analysis revealed a novel homozygous missense variant in the SPG7 gene (c.1763C > T, p. Thr588Met), characterized as pathogenic by more than 20 in silico prediction tools. Functional studies showed that the variant does not affect neither the RNA or protein expression, nor the protein localization. However, aberrant mitochondrial morphology has been observed thus indicating mitochondrial dysfunction and further demonstrating the pathogenicity of the identified variant. Our study is the first report of an SPG7 pathogenic variant in the Cypriot population and broadens the spectrum of SPG7 pathogenic variants.
Collapse
Affiliation(s)
- Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonis Ververis
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Kyproula Christodoulou,
| | | |
Collapse
|
23
|
TREX1 Deficiency Induces ER Stress-Mediated Neuronal Cell Death by Disrupting Ca 2+ Homeostasis. Mol Neurobiol 2022; 59:1398-1418. [PMID: 34997539 PMCID: PMC8882114 DOI: 10.1007/s12035-021-02631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
TREX1 is an exonuclease that degrades extranuclear DNA species in mammalian cells. Herein, we show a novel mechanism by which TREX1 interacts with the BiP/GRP78 and TREX1 deficiency triggers ER stress through the accumulation of single-stranded DNA and activates unfolded protein response (UPR) signaling via the disruption of the TREX1-BiP/GRP78 interaction. In TREX1 knockdown cells, the activation of ER stress signaling disrupted ER Ca2+ homeostasis via the ERO1α-IP3R1-CaMKII pathway, leading to neuronal cell death. Moreover, TREX1 knockdown dysregulated the Golgi-microtubule network through Golgi fragmentation and decreased Ac-α-tubulin levels, contributing to neuronal injury. These alterations were also observed in neuronal cells harboring a TREX1 mutation (V91M) that has been identified in hereditary spastic paraplegia (HSP) patients in Korea. Notably, this mutation leads to defects in the TREX1-BiP/GRP78 interaction and mislocalization of TREX1 from the ER and possible disruption of the Golgi-microtubule network. In summary, the current study reveals TREX1 as a novel regulator of the BiP/GRP78 interaction and shows that TREX1 deficiency promotes ER stress-mediated neuronal cell death, which indicates that TREX1 may hold promise as a therapeutic target for neurodegenerative diseases such as HSP.
Collapse
|
24
|
Chen S, Zou JL, He S, Li W, Zhang JW, Li SJ. More autosomal dominant SPG18 cases than recessive? The first AD-SPG18 pedigree in Chinese and literature review. Brain Behav 2021; 11:e32395. [PMID: 34734492 PMCID: PMC8671789 DOI: 10.1002/brb3.2395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia (HSP) due to ERLIN2 gene mutations was designated as spastic paraplegia 18 (SPG18). To date, SPG18 families/cases are still rarely reported. All early reported cases shared the autosomal recessive (AR) inheritance pattern. Over the past 3 years, autosomal dominant (AD) or sporadic SPG18 cases had been continuously reported. Here, we reported the clinical and genetic features of the first autosomal dominant SPG18 pedigree in Chinese. METHODS We conducted detailed medical history inquiry, neurological examinations of the proband and his family members, and charted the family tree. The proband underwent brain and cervical magnetic resonance imaging (MRI), electromyography (EMG), and whole exome sequencing. Sanger sequencing was performed to verify the genetic variation in the proband and some family members. A literature review of all reported SPG18 families/cases was carried out to summarize the clinical-genetic characteristics of SPG18 under different inheritance patterns. RESULTS Four patients were clinically diagnosed as chronic spastic paraplegia in three consecutive generations with the autosomal dominant inheritance model. All the patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Clinical phenotypes were consistent within the family. Whole exome sequencing in the proband identified a previously reported heterozygous c.502G > A (p.V168M) mutation in exon 8 of ERLIN2 gene. This mutation was cosegregated with the phenotype in the family and was classified as likely pathogenic according to American College of Medical Genetics and Genomics (ACMG) guidelines. To date, eight AR-SPG18 families, five AD-SPG18 families, and three sporadic cases had been reported. Clinical phenotype of AD-SPG18 was juvenile-adolescent onset pure HSP, while the phenotype of AR-SPG18 was mostly complicated HSP with earlier onset and more severe conditions. In rare cases, the initial spastic paraplegia could evolve to rapidly progressive amyotrophic lateral sclerosis (ALS). CONCLUSIONS We reported the first autosomal dominant SPG18 pedigree in Chinese Han population, which added more pathogenic evidence for V168M mutation. As more SPG18 cases reported, the essentials of SPG18 need to be updated in clinical practice. Special attentions should be given in gene test for upper motor neuron disorders in case of missing heterozygous mutations in ERLIN2.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jin-Long Zou
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Shuang He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Shu-Jian Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
26
|
Van Daele SH, Moisse M, Race V, Van Eesbeeck A, Keldermans L, Vermeer S, Van Esch H, Claeys KG, Van Damme P. RNF170 mutation causes autosomal dominant sensory ataxia with variable pyramidal involvement. Eur J Neurol 2021; 29:345-349. [PMID: 34469621 PMCID: PMC9290118 DOI: 10.1111/ene.15091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Background Although hereditary ataxias are a group of clinically and genetically heterogeneous disorders, specific clinical clues can sometimes incriminate certain genes. This can trigger genetic testing in sporadic patients or prompt dissecting certain genes more thoroughly when initial genetic testing is negative. Also for the assembly of gene panels and interpretation of the results, genotype−phenotype correlations remain important to establish. Methods We clinically evaluated a Belgian family with autosomal dominant inherited sensory ataxia and variable pyramidal involvement and performed targeted clinical exome sequencing. Secondly, we retrospectively screened sequencing data of an in‐house cohort of 404 patients with neuromuscular disorders for variants in the identified gene RNF170. Results All affected family members showed sensory ataxia on examination. Pyramidal involvement, and sometimes slow‐pursuit abnormalities and/or a sensory neuropathy, were more variable findings. We identified the heterozygous variant p.Arg199Cys in RNF170 in all three affected siblings of our family. We did not find additional pathogenic variants in RNF170 in our in‐house neuromuscular cohort. Conclusions We confirm the heterozygous variant p.Arg199Cys in RNF170 in a Belgian family with autosomal dominant sensory ataxia and variable pyramidal involvement. This constitutes a rare but clinically recognizable phenotype that warrants testing of RNF170. Unlike the distinctive bi‐allelic loss of function variants in RNF170 associated with hereditary spastic paraplegia (HSP), the p.Arg199Cys variant is the only one reported in sensory ataxia. It is important for neurologists to be aware of this characteristic phenotype and to include this gene in gene panels for ataxia and HSP.
Collapse
Affiliation(s)
- Sien H Van Daele
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Valérie Race
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Sascha Vermeer
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.,Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Darios F, Coarelli G, Durr A. Genetics in hereditary spastic paraplegias: Essential but not enough. Curr Opin Neurobiol 2021; 72:8-14. [PMID: 34403957 DOI: 10.1016/j.conb.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
Hereditary spastic paraplegias consist of a group of rare neurodegenerative diseases characterized by lower limb spasticity. These inherited Mendelian disorders show high genetic variability associated with wide clinical diversity. Pathophysiological investigations have suggested that mutations in genes affecting the same cellular pathway generally lead to similar clinical symptoms, highlighting the importance of genetic mutation in these diseases. However, phenotype-genotype correlations have failed to explain the observed large inter-individual variability linked to mutations in a single gene, suggesting that genetics alone is not sufficient to explain symptom diversity. The identification of biomarkers, such as neurofilament light chain, could fill the gap and predict disease evolution.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France.
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France.
| |
Collapse
|
28
|
Vavouraki N, Tomkins JE, Kara E, Houlden H, Hardy J, Tindall MJ, Lewis PA, Manzoni C. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. iScience 2021; 24:102484. [PMID: 34113825 PMCID: PMC8169945 DOI: 10.1016/j.isci.2021.102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.
Collapse
Affiliation(s)
- Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | | | - Eleanna Kara
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL IoN, UCL London, W1T 7NF UK
- Reta Lila Weston Institute, UCL IoN, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| |
Collapse
|
29
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
30
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
31
|
Quelle-Regaldie A, Sobrido-Cameán D, Barreiro-Iglesias A, Sobrido MJ, Sánchez L. Zebrafish Models of Autosomal Dominant Ataxias. Cells 2021; 10:421. [PMID: 33671313 PMCID: PMC7922657 DOI: 10.3390/cells10020421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary dominant ataxias are a heterogeneous group of neurodegenerative conditions causing cerebellar dysfunction and characterized by progressive motor incoordination. Despite many efforts put into the study of these diseases, there are no effective treatments yet. Zebrafish models are widely used to characterize neuronal disorders due to its conserved vertebrate genetics that easily support genetic edition and their optic transparency that allows observing the intact CNS and its connections. In addition, its small size and external fertilization help to develop high throughput assays of candidate drugs. Here, we discuss the contributions of zebrafish models to the study of dominant ataxias defining phenotypes, genetic function, behavior and possible treatments. In addition, we review the zebrafish models created for X-linked repeat expansion diseases X-fragile/fragile-X tremor ataxia. Most of the models reviewed here presented neuronal damage and locomotor deficits. However, there is a generalized lack of zebrafish adult heterozygous models and there are no knock-in zebrafish models available for these diseases. The models created for dominant ataxias helped to elucidate gene function and mechanisms that cause neuronal damage. In the future, the application of new genetic edition techniques would help to develop more accurate zebrafish models of dominant ataxias.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - María Jesús Sobrido
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde, 15006 Coruña, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
32
|
Li C, Beauregard-Lacroix E, Kondratev C, Rousseau J, Heo AJ, Neas K, Graham BH, Rosenfeld JA, Bacino CA, Wagner M, Wenzel M, Al Mutairi F, Al Deiab H, Gleeson JG, Stanley V, Zaki MS, Kwon YT, Leroux MR, Campeau PM. UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism. Am J Hum Genet 2021; 108:134-147. [PMID: 33340455 DOI: 10.1016/j.ajhg.2020.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eliane Beauregard-Lacroix
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Ah Jung Heo
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Katherine Neas
- Genetic Health Service New Zealand, Wellington South 6242, New Zealand
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77021, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University Munich and Institute of Neurogenomics, Helmholtz Zentrum Munchen, Neuherberg 85764, Germany
| | | | - Fuad Al Mutairi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Hamad Al Deiab
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Valentina Stanley
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Yong Tae Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
33
|
Wagner M, Lorenz G, Volk AE, Brunet T, Edbauer D, Berutti R, Zhao C, Anderl-Straub S, Bertram L, Danek A, Deschauer M, Dill V, Fassbender K, Fliessbach K, Götze KS, Jahn H, Kornhuber J, Landwehrmeyer B, Lauer M, Obrig H, Prudlo J, Schneider A, Schroeter ML, Uttner I, Vukovich R, Wiltfang J, Winkler AS, Zhou Q, Ludolph AC, Oexle K, Otto M, Diehl-Schmid J, Winkelmann J. Clinico-genetic findings in 509 frontotemporal dementia patients. Mol Psychiatry 2021; 26:5824-5832. [PMID: 34561610 PMCID: PMC8758482 DOI: 10.1038/s41380-021-01271-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families.
Collapse
Affiliation(s)
- Matias Wagner
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany ,grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany ,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Georg Lorenz
- grid.15474.330000 0004 0477 2438Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander E. Volk
- grid.13648.380000 0001 2180 3484Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresa Brunet
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany ,grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany
| | - Dieter Edbauer
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Riccardo Berutti
- grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany ,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Chen Zhao
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Sarah Anderl-Straub
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Lars Bertram
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XNeurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marcus Deschauer
- grid.6936.a0000000123222966Department of Neurology, Technische Universität München, School of Medicine, Munich, Germany
| | - Veronika Dill
- grid.6936.a0000000123222966Clinic and Policlinic for Internal Medicine III, Technical University Munich, School of Medicine, Munich, Germany
| | - Klaus Fassbender
- grid.411937.9Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katharina S. Götze
- grid.6936.a0000000123222966Clinic and Policlinic for Internal Medicine III, Technical University Munich, School of Medicine, Munich, Germany
| | - Holger Jahn
- grid.13648.380000 0001 2180 3484Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kornhuber
- grid.411668.c0000 0000 9935 6525Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Lauer
- grid.8379.50000 0001 1958 8658Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Hellmuth Obrig
- grid.419524.f0000 0001 0041 5028Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Prudlo
- grid.413108.f0000 0000 9737 0454Department of Neurology, Rostock University Medical Center, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias L. Schroeter
- grid.419524.f0000 0001 0041 5028Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Ingo Uttner
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Ruth Vukovich
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Jens Wiltfang
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7311.40000000123236065Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Andrea S. Winkler
- grid.6936.a0000000123222966Department of Neurology, Technische Universität München, School of Medicine, Munich, Germany ,grid.5510.10000 0004 1936 8921Centre for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Qihui Zhou
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Albert C. Ludolph
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm, Oberer Eselsberg, Ulm, Germany
| | | | - Konrad Oexle
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany. .,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Janine Diehl-Schmid
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany. .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany. .,Chair of Neurogenetics, Technical University of Munich, Munich, Germany.
| |
Collapse
|
34
|
Itai T, Hamanaka K, Sasaki K, Wagner M, Kotzaeridou U, Brösse I, Ries M, Kobayashi Y, Tohyama J, Kato M, Ong WP, Chew HB, Rethanavelu K, Ranza E, Blanc X, Uchiyama Y, Tsuchida N, Fujita A, Azuma Y, Koshimizu E, Mizuguchi T, Takata A, Miyake N, Takahashi H, Miyagi E, Tsurusaki Y, Doi H, Taguri M, Antonarakis SE, Nakashima M, Saitsu H, Miyatake S, Matsumoto N. De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy. Hum Mutat 2020; 42:66-76. [PMID: 33131106 DOI: 10.1002/humu.24130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022]
Abstract
We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ines Brösse
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Winnie P Ong
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Hui B Chew
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Kavitha Rethanavelu
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Emmanuelle Ranza
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland
| | - Xavier Blanc
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, Kanagawa, Japan
| | - Stylianos E Antonarakis
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland.,Department of Genetic Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
35
|
de Sainte Agathe JM, Mercier S, Mahé JY, Péréon Y, Buratti J, Tissier L, Kol B, Said SA, Leguern É, Banneau G, Stévanin G. RNF170-Related Hereditary Spastic Paraplegia: Confirmation by a Novel Mutation. Mov Disord 2020; 36:771-774. [PMID: 33165979 DOI: 10.1002/mds.28371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Spastic paraparesis and biallelic variants functionally characterized as deleterious in the RNF170 gene have recently been reported by Wagner et al. 2019, strongly supporting the involvement of this gene in hereditary spastic paraplegia. METHODS Exome sequencing was performed on 6 hereditary spastic paraplegia families previously tested on an hereditary spastic paraplegia-specific panel. RESULTS We describe here a novel hereditary spastic paraplegia family with 4 affected members carrying a homozygous p.(Tyr114*) stop gain variant in RNF170. CONCLUSIONS We confirm the involvement of biallelic truncating variants in RNF170 in a novel form of hereditary spastic paraplegia. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jean-Madeleine de Sainte Agathe
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,Centre de Référence des Maladies Neuromusculaires, AOC, Hôtel-Dieu, Nantes, France
| | - Jean-Yves Mahé
- Centre de Référence des Maladies Neuromusculaires, AOC, Hôtel-Dieu, Nantes, France.,Établissement de Santé pour Enfants et Adolescents de la région Nantaise, Nantes, France
| | - Yann Péréon
- Centre de Référence des Maladies Neuromusculaires, AOC, Hôtel-Dieu, Nantes, France.,Laboratoire d'Explorations Fonctionnelles, CHU de Nantes, Nantes, France
| | - Julien Buratti
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurène Tissier
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bophara Kol
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Samia Ait Said
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Éric Leguern
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France.,Institut du Cerveau, Sorbonne Université (INSERM 1127, CNRS 7225), Paris, France
| | - Guillaume Banneau
- Assistance Publique - Hôpitaux de Paris, GH Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Giovanni Stévanin
- Institut du Cerveau, Sorbonne Université (INSERM 1127, CNRS 7225), Paris, France.,Équipe de Neurogénétique, École Pratique des Hautes Etudes (EPHE), PSL Research University, Paris, France
| |
Collapse
|
36
|
Cortese A, Callegari I, Currò R, Vegezzi E, Colnaghi S, Versino M, Alfonsi E, Cosentino G, Valente E, Gana S, Tassorelli C, Pichiecchio A, Rossor AM, Bugiardini E, Biroli A, Di Capua D, Houlden H, Reilly MM. Mutation in RNF170 causes sensory ataxic neuropathy with vestibular areflexia: a CANVAS mimic. J Neurol Neurosurg Psychiatry 2020; 91:1237-1238. [PMID: 32943585 PMCID: PMC8311668 DOI: 10.1136/jnnp-2020-323719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy .,Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Ilaria Callegari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Riccardo Currò
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Maurizio Versino
- Neurology Unit, ASST Settelaghi-Insubria University-DMC, Varese, Italy
| | | | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Enzamaria Valente
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Alexander M Rossor
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Enrico Bugiardini
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Antonio Biroli
- Neurosurgery Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Daniela Di Capua
- Neurologia, Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
| | - Henry Houlden
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Mary M Reilly
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| |
Collapse
|
37
|
Radelfahr F, Riedhammer KM, Keidel LF, Gramer G, Meitinger T, Klopstock T, Wagner M. Biotinidase deficiency: A treatable cause of hereditary spastic paraparesis. NEUROLOGY-GENETICS 2020; 6:e525. [PMID: 33134520 PMCID: PMC7577526 DOI: 10.1212/nxg.0000000000000525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Objective To expand the genetic spectrum of hereditary spastic paraparesis by a treatable condition and to evaluate the therapeutic effects of biotin supplementation in an adult patient with biotinidase deficiency (BD). Methods We performed exome sequencing (ES) in a patient with the clinical diagnosis of complex hereditary spastic paraparesis. The patient was examined neurologically, including functional rating scales. We performed ophthalmologic examinations and metabolic testing. Results A 41-year-old patient presented with slowly progressive lower limb spasticity combined with optic atrophy. He was clinically diagnosed with complex hereditary spastic paraparesis. The initial panel diagnostics did not reveal the disease-causing variant; therefore, ES was performed. ES revealed biallelic pathogenic variants in the BTD gene leading to the genetic diagnosis of BD. BD is an autosomal recessive metabolic disorder causing a broad spectrum of neurologic symptoms, optic atrophy, and dermatologic abnormalities. When treatment is initiated in time, symptoms can be prevented or reversed by biotin supplementation. After diagnosis in our patient, biotin supplementation was started. One year after the onset of therapy, symptoms remained stable with slight improvement of sensory deficits. Conclusions These findings expand the genetic spectrum of the clinical diagnosis of complex hereditary spastic paraparesis by a treatable disease. Today, most children with BD should have been identified via newborn screening to start biotin supplementation before the onset of symptoms. However, adult patients and those born in countries without newborn screening programs for BD are at risk of being missed. Therapeutic success depends on early diagnosis and presymptomatic treatment.
Collapse
Affiliation(s)
- Florentine Radelfahr
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian M Riedhammer
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Leonie F Keidel
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Gwendolyn Gramer
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Matias Wagner
- Friedrich Baur Institute at the Department of Neurology (F.R., T.K.), University Hospital, LMU Munich; Institute of Human Genetics (K.M.R., T.M., M.W.), Klinikum rechts der Isar, Technical University of Munich; Department of Nephrology (K.M.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Ophthalmology (L.F.K.), Ludwig-Maximilians-University, Munich; Department of Pediatrics (G.G.), Division for Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg; Institute of Human Genetics (T.M., M.W.), Helmholtz Zentrum München, Neuherberg; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster of Systems Neurology (SyNergy) (T.K.), Munich; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
38
|
Rönkkö J, Molchanova S, Revah‐Politi A, Pereira EM, Auranen M, Toppila J, Kvist J, Ludwig A, Neumann J, Bultynck G, Humblet‐Baron S, Liston A, Paetau A, Rivera C, Harms MB, Tyynismaa H, Ylikallio E. Dominant mutations in ITPR3 cause Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2020; 7:1962-1972. [PMID: 32949214 PMCID: PMC7545616 DOI: 10.1002/acn3.51190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE ITPR3, encoding inositol 1,4,5-trisphosphate receptor type 3, was previously reported as a potential candidate disease gene for Charcot-Marie-Tooth neuropathy. Here, we present genetic and functional evidence that ITPR3 is a Charcot-Marie-Tooth disease gene. METHODS Whole-exome sequencing of four affected individuals in an autosomal dominant family and one individual who was the only affected individual in his family was used to identify disease-causing variants. Skin fibroblasts from two individuals of the autosomal dominant family were analyzed functionally by western blotting, quantitative reverse transcription PCR, and Ca2+ imaging. RESULTS Affected individuals in the autosomal dominant family had onset of symmetrical neuropathy with demyelinating and secondary axonal features at around age 30, showing signs of gradual progression with severe distal leg weakness and hand involvement in the proband at age 64. Exome sequencing identified a heterozygous ITPR3 p.Val615Met variant segregating with the disease. The individual who was the only affected in his family had disease onset at age 4 with demyelinating neuropathy. His condition was progressive, leading to severe muscle atrophy below knees and atrophy of proximal leg and hand muscles by age 16. Trio exome sequencing identified a de novo ITPR3 variant p.Arg2524Cys. Altered Ca2+ -transients in p.Val615Met patient fibroblasts suggested that the variant has a dominant-negative effect on inositol 1,4,5-trisphosphate receptor type 3 function. INTERPRETATION Together with two previously identified variants, our report adds further evidence that ITPR3 is a disease-causing gene for CMT and indicates altered Ca2+ homeostasis in disease pathogenesis.
Collapse
Affiliation(s)
- Julius Rönkkö
- Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Molchanova
- Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Molecular and Integrative Biosciences Research ProgramFaculty of Bio‐ and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Anya Revah‐Politi
- Institute for Genomic MedicineColumbia University Medical CenterNew YorkNew YorkUSA
- Precision Genomics LaboratoryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Elaine M. Pereira
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Mari Auranen
- Clinical NeurosciencesNeurologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Jussi Toppila
- Department of Clinical NeurophysiologyMedical Imaging CenterHelsinki University Central HospitalHelsinkiFinland
| | - Jouni Kvist
- Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Anastasia Ludwig
- Neuroscience CenterHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Julika Neumann
- Department of Microbiology and ImmunologyLaboratory of Adaptive ImmunityKU LeuvenLeuvenBelgium
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular SignalingDepartment of Cellular and Molecular Medicine & Leuven Kanker InstituutKU LeuvenLeuvenBelgium
| | | | - Adrian Liston
- Department of Microbiology and ImmunologyLaboratory of Adaptive ImmunityKU LeuvenLeuvenBelgium
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteCambridgeUnited Kingdom
| | - Anders Paetau
- Department of PathologyHUSLAB and University of HelsinkiHelsinkiFinland
| | - Claudio Rivera
- Neuroscience CenterHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institut de Neurobiologie de la Méditerranée INMED UMR901MarseilleFrance
| | | | - Henna Tyynismaa
- Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Neuroscience CenterHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Clinical NeurosciencesNeurologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
39
|
The emerging link between IP 3 receptor turnover and Hereditary Spastic Paraplegia. Cell Calcium 2019; 86:102142. [PMID: 31874412 DOI: 10.1016/j.ceca.2019.102142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
IP3 receptor turnover is mediated by the ubiquitin ligase RNF170, which is recruited to active IP3 receptors by the erlin1/2 complex. A new study by Wagner et al (Nat Commun, 2019) links four cases of Hereditary Spastic Paraplegia to inactivating mutations in RNF170. This increases the number of examples of mutations to the erlin1/2 complex-RNF170 module underlying neurodegenerative disorders.
Collapse
|