1
|
Zhang J, Chen A, Liu Z, Pan L, Gao H. Phosphoproteomic analysis uncovers phosphorylated proteins in response to salicylic acid and N-hydroxypipecolic acid in Arabidopsis. Mol Biol Rep 2024; 52:61. [PMID: 39692907 DOI: 10.1007/s11033-024-10145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The phytohormone salicylic acid (SA) serves as a crucial signaling molecule within the realm of plant immunity, playing an indispensable role in both local and systemic acquired resistance (SAR). N-hydroxypipecolic acid (NHP), a derivative of L-lysine, is integral to the induction of SAR. Recent investigations have illuminated the intricate manner in which NHP orchestrates the establishment of SAR in conjunction with the immune signal SA. METHODS AND RESULTS To further explore the mechanisms governing the synergistic regulation of SAR by SA and NHP, we conducted an extensive phosphoproteomic analysis aimed at identifying the phosphoproteins modulated either commonly or uniquely by SA and NHP, employing a phosphoproteomics platform built upon high-resolution mass spectrometry. Our study revealed a total of 133 phosphopeptides, derived from 115 distinct proteins, exhibiting exclusive responsiveness to NHP treatment. In contrast, 229 phosphopeptides sourced from 204 proteins demonstrated exclusive sensitivity to SA treatment. Additionally, the phosphorylation status of 215 proteins, including numerous kinases, phosphatases, transcription factors, and proteins implicated in membrane trafficking, was commonly modulated by both SA and NHP. CONCLUSION This investigation offers detailed insights into the key phosphoproteins influenced either collectively or specifically by SA and NHP, thereby enabling further exploration of the mechanisms underlying the synergistic regulation of immune responses orchestrated by these two potent molecules.
Collapse
Affiliation(s)
- Junsong Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zijia Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Hang Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
2
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
3
|
Xiong G, Cui D, Tian Y, Schwarzacher T, Heslop-Harrison JS, Liu Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. Int J Mol Sci 2024; 25:12754. [PMID: 39684466 DOI: 10.3390/ijms252312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptor genes found in many plant species. They are involved in perceiving stresses and responding to the environment. Oat (Avena sativa; 2n = 6x = 42) are an important food and forage crop with potential in drought, saline, or alkaline soils. Here, we present a comprehensive genome-wide analysis of the LecRLK gene family in A. sativa and the crop's wild relatives A. insularis (4x) and A. longiglumis (2x), unveiling a rich diversity with a total of 390 LecRLK genes identified, comprising 219 G-types, 168 L-types, and 3 C-types in oats. Genes were unevenly distributed across the oat chromosomes. GFP constructs show that family members were predominantly located in the plasma membrane. Expression under salt stress demonstrated functional redundancy and differential expression of LecRLK gene family members in oats: 173 members of this family were involved in the response to salt stress, and the expression levels of three C-type genes in the root and leaf were significantly increased under salt stress. The results show the diversity, evolutionary dynamics, and functional implications of the LecRLK gene family in A. sativa, setting a foundation for defining its roles in plant development and stress resilience, and suggesting its potential agricultural application for crop improvement.
Collapse
Affiliation(s)
- Gui Xiong
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongli Cui
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaqi Tian
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Trude Schwarzacher
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
4
|
Riseh RS, Fathi F, Vatankhah M, Kennedy JF. Catalase-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 280:135859. [PMID: 39307505 DOI: 10.1016/j.ijbiomac.2024.135859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Catalase, an enzyme central to maintaining redox balance and combating oxidative stress in plants, has emerged as a key player in plant defense mechanisms and interactions with microbes. This review article provides a comprehensive analysis of catalase-associated immune responses in plant-microbe interactions. It underscores the importance of catalase in plant defense mechanisms, highlights its influence on plant susceptibility to pathogens, and discusses its implications for understanding plant immunity and host-microbe dynamics. This review contributes to the growing body of knowledge on catalase-mediated immune responses and offers insights that can aid in the development of strategies for improved plant health and disease resistance.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
5
|
Tian L, Hossbach BM, Feussner I. Small size, big impact: Small molecules in plant systemic immune signaling. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102618. [PMID: 39153327 DOI: 10.1016/j.pbi.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.
Collapse
Affiliation(s)
- Lei Tian
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ben Moritz Hossbach
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany; Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany.
| |
Collapse
|
6
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
8
|
Chien CC, Chang CH, Ting HM. A novel lectin receptor kinase gene, AtG-LecRK-I.2, enhances bacterial pathogen resistance through regulation of stomatal immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112071. [PMID: 38508495 DOI: 10.1016/j.plantsci.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Zhang L, Zhu Q, Tan Y, Deng M, Zhang L, Cao Y, Guo X. Mitogen-activated protein kinases MPK3 and MPK6 phosphorylate receptor-like cytoplasmic kinase CDL1 to regulate soybean basal immunity. THE PLANT CELL 2024; 36:963-986. [PMID: 38301274 PMCID: PMC10980351 DOI: 10.1093/plcell/koae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe), one of the most devastating soybean (Glycine max) pathogens, causes significant yield loss in soybean production. Nematode infection triggers plant defense responses; however, the components involved in the upstream signaling cascade remain largely unknown. In this study, we established that a mitogen-activated protein kinase (MAPK) signaling module, activated by nematode infection or wounding, is crucial for soybeans to establish SCN resistance. GmMPK3 and GmMPK6 directly interact with CDG1-LIKE1 (GmCDL1), a member of the receptor-like cytoplasmic kinase (RLCK) subfamily VII. These kinases phosphorylate GmCDL1 at Thr-372 to prevent its proteasome-mediated degradation. Functional analysis demonstrated that GmCDL1 positively regulates immune responses and promotes SCN resistance in soybeans. GmMPK3-mediated and GmMPK6-mediated phosphorylation of GmCDL1 enhances GmMPK3 and GmMPK6 activation and soybean disease resistance, representing a positive feedback mechanism. Additionally, 2 L-type lectin receptor kinases, GmLecRK02g and GmLecRK08g, associate with GmCDL1 to initiate downstream immune signaling. Notably, our study also unveils the potential involvement of GmLecRKs and GmCDL1 in countering other soybean pathogens beyond nematodes. Taken together, our findings reveal the pivotal role of the GmLecRKs-GmCDL1-MAPK regulatory module in triggering soybean basal immune responses.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qun Zhu
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhua Tan
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Miaomiao Deng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
11
|
Yang P, Yuan P, Liu W, Zhao Z, Bernier MC, Zhang C, Adhikari A, Opiyo SO, Zhao L, Banks F, Xia Y. Plant Growth Promotion and Plant Disease Suppression Induced by Bacillus amyloliquefaciens Strain GD4a. PLANTS (BASEL, SWITZERLAND) 2024; 13:672. [PMID: 38475518 DOI: 10.3390/plants13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Botrytis cinerea, the causative agent of gray mold disease (GMD), invades plants to obtain nutrients and disseminates through airborne conidia in nature. Bacillus amyloliquefaciens strain GD4a, a beneficial bacterium isolated from switchgrass, shows great potential in managing GMD in plants. However, the precise mechanism by which GD4a confers benefits to plants remains elusive. In this study, an A. thaliana-B. cinerea-B. amyloliquefaciens multiple-scale interaction model was used to explore how beneficial bacteria play essential roles in plant growth promotion, plant pathogen suppression, and plant immunity boosting. Arabidopsis Col-0 wild-type plants served as the testing ground to assess GD4a's efficacy. Additionally, bacterial enzyme activity and targeted metabolite tests were conducted to validate GD4a's potential for enhancing plant growth and suppressing plant pathogens and diseases. GD4a was subjected to co-incubation with various bacterial, fungal, and oomycete pathogens to evaluate its antagonistic effectiveness in vitro. In vivo pathogen inoculation assays were also carried out to investigate GD4a's role in regulating host plant immunity. Bacterial extracellular exudate (BEE) was extracted, purified, and subjected to untargeted metabolomics analysis. Benzocaine (BEN) from the untargeted metabolomics analysis was selected for further study of its function and related mechanisms in enhancing plant immunity through plant mutant analysis and qRT-PCR analysis. Finally, a comprehensive model was formulated to summarize the potential benefits of applying GD4a in agricultural systems. Our study demonstrates the efficacy of GD4a, isolated from switchgrass, in enhancing plant growth, suppressing plant pathogens and diseases, and bolstering host plant immunity. Importantly, GD4a produces a functional bacterial extracellular exudate (BEE) that significantly disrupts the pathogenicity of B. cinerea by inhibiting fungal conidium germination and hypha formation. Additionally, our study identifies benzocaine (BEN) as a novel small molecule that triggers basal defense, ISR, and SAR responses in Arabidopsis plants. Bacillus amyloliquefaciens strain GD4a can effectively promote plant growth, suppress plant disease, and boost plant immunity through functional BEE production and diverse gene expression.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fredrekis Banks
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
13
|
Yang P, Liu W, Yuan P, Zhao Z, Zhang C, Opiyo SO, Adhikari A, Zhao L, Harsh G, Xia Y. Plant Growth Promotion and Stress Tolerance Enhancement through Inoculation with Bacillus proteolyticus OSUB18. BIOLOGY 2023; 12:1495. [PMID: 38132321 PMCID: PMC10740446 DOI: 10.3390/biology12121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The isolation of B. proteolyticus OSUB18 from switchgrass unveiled its significant potential in both the enhancement of plant growth and the suppression of plant diseases in our previous study. The elucidation of the related mechanisms governing this intricate plant-microbe interaction involved the utilization of the model plant Arabidopsis thaliana. In our comprehensive study on Arabidopsis, OSUB18 treatment was found to significantly alter root architecture and enhance plant growth under various abiotic stresses. An RNA-seq analysis revealed that OSUB18 modified gene expression, notably upregulating the genes involved in glucosinolate biosynthesis and plant defense, while downregulating those related to flavonoid biosynthesis and wound response. Importantly, OSUB18 also induces systemic resistance in Arabidopsis against a spectrum of bacterial and fungal pathogens and exhibits antagonistic effects on phytopathogenic bacteria, fungi, and oomycetes, highlighting its potential as a beneficial agent in plant stress management and pathogen resistance. Overall, our findings substantiate that OSUB18 exerts a stimulatory influence on plant growth and health, potentially attributed to the remodeling of root architecture, defense signaling, and the comprehensive mitigation of various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Dr. #690, Lorman, MS 39096, USA;
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Garrett Harsh
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA; (P.Y.); (W.L.); (P.Y.); (Z.Z.); (S.O.O.); (A.A.); (L.Z.); (G.H.)
| |
Collapse
|
14
|
Xu J, Wang C, Wang F, Liu Y, Li M, Wang H, Zheng Y, Zhao K, Ji Z. PWL1, a G-type lectin receptor-like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2525-2545. [PMID: 37578160 PMCID: PMC10651159 DOI: 10.1111/pbi.14150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Plant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor-like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map-based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G-type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self-associate, mainly mediated by the plasminogen-apple-nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self-interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat-tolerance, and resistance to bacterial pathogens.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Rice Research, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yapei Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Man Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongjie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
15
|
Shu LJ, Kahlon PS, Ranf S. The power of patterns: new insights into pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 240:960-967. [PMID: 37525301 DOI: 10.1111/nph.19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
The plant immune system features numerous immune receptors localized on the cell surface to monitor the apoplastic space for danger signals from a broad range of plant colonizers. Recent discoveries shed light on the enormous complexity of molecular signals sensed by these receptors, how they are generated and removed to maintain cellular homeostasis and immunocompetence, and how they are shaped by host-imposed evolutionary constraints. Fine-tuning receptor sensing mechanisms at the molecular, cellular and physiological level is critical for maintaining a robust but adaptive host barrier to commensal, pathogenic, and symbiotic colonizers alike. These receptors are at the core of any plant-colonizer interaction and hold great potential for engineering disease resistance and harnessing beneficial microbiota to keep crops healthy.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
16
|
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Commun 2023; 14:6848. [PMID: 37891163 PMCID: PMC10611778 DOI: 10.1038/s41467-023-42629-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Mingxi Zhou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Jiang S, Pan L, Zhou Q, Xu W, He F, Zhang L, Gao H. Analysis of the apoplast fluid proteome during the induction of systemic acquired resistance in Arabidopsis thaliana. PeerJ 2023; 11:e16324. [PMID: 37876907 PMCID: PMC10592298 DOI: 10.7717/peerj.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Background Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.
Collapse
Affiliation(s)
- Shuna Jiang
- College of Survey and Planning, Shangqiu Normal University, Shangqiu, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lei Zhang
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
18
|
Zeiner A, Colina FJ, Citterico M, Wrzaczek M. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4910-4927. [PMID: 37345909 DOI: 10.1093/jxb/erad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are central components for sensing the extracellular microenvironment. CYSTEINE-RICH RLKs (CRKs) are members of one of the biggest RLK subgroups. Their physiological and molecular roles have only begun to be elucidated, but recent studies highlight the diverse types of proteins interacting with CRKs, as well as the localization of CRKs and their lateral organization within the plasma membrane. Originally the DOMAIN OF UNKNOWN FUNCTION 26 (DUF26)-containing extracellular region of the CRKs was proposed to act as a redox sensor, but the potential activating post-translational modification or ligands perceived remain elusive. Here, we summarize recent progress in the analysis of CRK evolution, molecular function, and role in plant development, abiotic stress responses, plant immunity, and symbiosis. The currently available information on CRKs and related proteins suggests that the CRKs are central regulators of plant signaling pathways. However, more research using classical methods and interdisciplinary approaches in various plant model species, as well as structural analyses, will not only enhance our understanding of the molecular function of CRKs, but also elucidate the contribution of other cellular components in CRK-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Zeiner
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Francisco J Colina
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Wilson SK, Pretorius T, Naidoo S. Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC PLANT BIOLOGY 2023; 23:404. [PMID: 37620815 PMCID: PMC10463331 DOI: 10.1186/s12870-023-04391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The complex systemic responses of tree species to fight pathogen infection necessitate attention due to the potential for yield protection in forestry. RESULTS In this paper, both the localized and systemic responses of model plants, such as Arabidopsis and tobacco, are reviewed. These responses were compared to information available that investigates similar responses in woody plant species and their key differences were highlighted. In addition, tree-specific responses that have been documented were summarised, with the critical responses still relying on certain systemic acquired resistance pathways. Importantly, coniferous species have been shown to utilise phenolic compounds in their immune responses. Here we also highlight the lack of focus on systemic induced susceptibility in trees, which can be important to forest health. CONCLUSIONS This review highlights the possible mechanisms of systemic response to infection in woody plant species, their potential applications, and where research may be best focused in future.
Collapse
Affiliation(s)
- S K Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - T Pretorius
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - S Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
20
|
Liu L, Liu J, Xu N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1201805. [PMID: 37396638 PMCID: PMC10311507 DOI: 10.3389/fpls.2023.1201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lectin receptor-like kinases (LecRKs) locate on the cell membrane and play diverse roles in perceiving environmental factors in higher plants. Studies have demonstrated that LecRKs are involved in plant development and response to abiotic and biotic stresses. In this review, we summarize the identified ligands of LecRKs in Arabidopsis, including extracellular purine (eATP), extracellular pyridine (eNAD+), extracellular NAD+ phosphate (eNADP+) and extracellular fatty acids (such as 3-hydroxydecanoic acid). We also discussed the posttranslational modification of these receptors in plant innate immunity and the perspectives of future research on plant LecRKs.
Collapse
|
21
|
Vega-Muñoz I, Herrera-Estrella A, Martínez-de la Vega O, Heil M. ATM and ATR, two central players of the DNA damage response, are involved in the induction of systemic acquired resistance by extracellular DNA, but not the plant wound response. Front Immunol 2023; 14:1175786. [PMID: 37256140 PMCID: PMC10225592 DOI: 10.3389/fimmu.2023.1175786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The plant immune response to DNA is highly self/nonself-specific. Self-DNA triggered stronger responses by early immune signals such as H2O2 formation than nonself-DNA from closely related plant species. Plants lack known DNA receptors. Therefore, we aimed to investigate whether a differential sensing of self-versus nonself DNA fragments as damage- versus pathogen-associated molecular patterns (DAMPs/PAMPs) or an activation of the DNA-damage response (DDR) represents the more promising framework to understand this phenomenon. Results We treated Arabidopsis thaliana Col-0 plants with sonicated self-DNA from other individuals of the same ecotype, nonself-DNA from another A. thaliana ecotype, or nonself-DNA from broccoli. We observed a highly self/nonself-DNA-specific induction of H2O2 formation and of jasmonic acid (JA, the hormone controlling the wound response to chewing herbivores) and salicylic acid (SA, the hormone controlling systemic acquired resistance, SAR, to biotrophic pathogens). Mutant lines lacking Ataxia Telangiectasia Mutated (ATM) or ATM AND RAD3-RELATED (ATR) - the two DDR master kinases - retained the differential induction of JA in response to DNA treatments but completely failed to induce H2O2 or SA. Moreover, we observed H2O2 formation in response to in situ-damaged self-DNA from plants that had been treated with bleomycin or SA or infected with virulent bacteria Pseudomonas syringae pv. tomato DC3000 or pv. glycinea carrying effector avrRpt2, but not to DNA from H2O2-treated plants or challenged with non-virulent P. syringae pv. glycinea lacking avrRpt2. Conclusion We conclude that both ATM and ATR are required for the complete activation of the plant immune response to extracellular DNA whereas an as-yet unknown mechanism allows for the self/nonself-differential activation of the JA-dependent wound response.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Octavio Martínez-de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| |
Collapse
|
22
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
23
|
Sun E, Yu H, Chen Z, Cai M, Mao X, Li Y, Zuo C. The enhanced Valsa canker resistance conferred by MdLecRK-S.4.3 in Pyrus betulifolia can be largely suppressed by PbePUB36. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad126. [PMID: 37013998 DOI: 10.1093/jxb/erad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/19/2023]
Abstract
L-type lectin receptor-like kinases (L-LecRKs) act as a sensor of extracellular signals and an initiator for plant immune responses. However, the function of LecRK-S.4 on plant immunity has not been extensively investigated. At present, in the apple (Malus domestica) genome, we identified that MdLecRK-S.4.3, a homologous gene of LecRK-S.4, was differentially expressed during the occursion of Valsa canker. Over-expression of MdLecRK-S.4.3 facilitated the induction of immune response and enhanced the Valsa canker resistance of apple and pear fruit, and 'Duli-G03' (Pyrus betulifolia) suspension cells. On the contrary, the expression of PbePUB36, RLCK XI subfamily member, was significantly repressed in the MdLecRK-S.4.3 overexpressed cell lines. Over-expression of PbePUB36 interfered with the Valsa canker resistance and immune response caused by up-regulation of MdLecRK-S.4.3. Furthermore, MdLecRK-S.4.3 interacted with BAK1 or PbePUB36 in vivo. In conclusion, MdLecRK-S.4.3 activated various immune responses and positively regulate Valsa canker resistance, which could be largely compromised by PbePUB36. MdLecRK-S.4.3 interacted with PbePUB36 and/or MdBAK1 to mediate the immune responses. This finding provides a reference for studying the molecular mechanism of resistance to Valsa canker and resistance breeding.
Collapse
Affiliation(s)
- E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou 510640, China
| | - Minrui Cai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
24
|
Huang Y, Liu Q, Jibrin M, Mou Z, Dufault N, Li Y, Zhang S. Evaluating Nicotinamide Adenine Dinucleotide for Its Effects on Halo Blight of Snap Bean. PLANT DISEASE 2023; 107:675-681. [PMID: 35881875 DOI: 10.1094/pdis-05-22-1126-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halo blight, caused by Pseudomonas syringae pv. phaseolicola, is one of the major bacterial diseases on snap bean in Florida, and the outbreaks of this disease have occurred more often in recent years. Current management of this disease primarily depends on application of fixed copper-based bactericides but climate change and resistance development in the pathogen populations still cause hardship for management of this disease, especially in south Florida. In this study, nicotinamide adenine dinucleotide (NAD+) was evaluated in the greenhouse for its potential to reduce halo blight on snap bean. When NAD+ at 5 mM was applied by soil drench, foliar spray, or leaf infiltration, NAD+ significantly (P < 0.05) reduced disease severity of halo blight on snap bean compared with the untreated control. When NAD+ was applied by leaf infiltration, among the tested concentrations, NAD+ at 0.5 to 1.0 mM was most effective in decreasing halo blight disease. NAD+ at 2.5 mM applied as a foliar spray in rotation with Kocide 3000 (copper hydroxide) at 0.5 mg/ml further reduced disease severity compared with Kocide 3000 alone. In the in vitro study, no inhibitory effects of NAD+ were detected on the bacterial pathogen P. syringae pv. phaseolicola. Results of real-time PCR showed that the defense-related genes PR1, AZI1, EDS1, SARD1, PDF1.2, and PAL1 were upregulated in the NAD+ treatment. Taken together, these data indicated that NAD+ significantly suppressed halo blight on snap bean, and application of NAD+ has the potential in management of this important disease.
Collapse
Affiliation(s)
- Yi Huang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Qingchun Liu
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Mustafa Jibrin
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL 32601
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Shouan Zhang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| |
Collapse
|
25
|
Yang P, Zhao Z, Fan J, Liang Y, Bernier MC, Gao Y, Zhao L, Opiyo SO, Xia Y. Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1078100. [PMID: 36755698 PMCID: PMC9900001 DOI: 10.3389/fpls.2023.1078100] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas syringae and Botrytis cinerea cause destructive bacterial speck and grey mold diseases in many plant species, leading to substantial economic losses in agricultural production. Our study discovered that the application of Bacillus proteolyticus strain OSUB18 as a root-drench enhanced the resistance of Arabidopsis plants against P. syringae and B. cinerea through activating Induced Systemic Resistance (ISR). The underlying mechanisms by which OSUB18 activates ISR were studied. Our results revealed that the Arabidopsis plants with OSUB18 root-drench showed the enhanced callose deposition and ROS production when inoculated with Pseudomonas syringae and Botrytis cinerea pathogens, respectively. Also, the increased salicylic acid (SA) levels were detected in the OSUB18 root-drenched plants compared with the water root-drenched plants after the P. syringae infection. In contrast, the OSUB18 root-drenched plants produced significantly higher levels of jasmonyl isoleucine (JA-Ile) than the water root-drenched control after the B. cinerea infection. The qRT-PCR analyses indicated that the ISR-responsive gene MYC2 and the ROS-responsive gene RBOHD were significantly upregulated in OSUB18 root-drenched plants upon both pathogen infections compared with the controls. Also, twenty-four hours after the bacterial or fungal inoculation, the OSUB18 root-drenched plants showed the upregulated expression levels of SA-related genes (PR1, PR2, PR5, EDS5, and SID2) or JA-related genes (PDF1.2, LOX3, JAR1 and COI1), respectively, which were consistent with the related hormone levels upon these two different pathogen infections. Moreover, OSUB18 can trigger ISR in jar1 or sid2 mutants but not in myc2 or npr1 mutants, depending on the pathogen's lifestyles. In addition, OSUB18 prompted the production of acetoin, which was reported as a novel rhizobacterial ISR elicitor. In summary, our studies discover that OSUB18 is a novel ISR inducer that primes plants' resistance against bacterial and fungal pathogens by enhancing the callose deposition and ROS accumulation, increasing the production of specific phytohormones and other metabolites involved in plant defense, and elevating the expression levels of multiple defense genes.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Jiangbo Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Liang
- College of Grassland Science, Shanxi Agriculture University, Taigu, China
| | - Matthew C. Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, United States
| | - Yu Gao
- Ohio State University (OSU) South Centers, Piketon, OH, United States
- Department of Extension, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Gondor OK, Pál M, Janda T, Szalai G. The role of methyl salicylate in plant growth under stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153809. [PMID: 36099699 DOI: 10.1016/j.jplph.2022.153809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Methyl salicylate is a volatile compound, the synthesis of which takes place via the salicylic acid pathway in plants. Both compounds can be involved in the development of systemic acquired resistance and they play their role partly independently. Salicylic acid transport has an important role in long-distance signalling, but methyl salicylate has also been suggested as a phloem-based mobile signal, which can be demethylated to form salicylic acid, inducing the de-novo synthesis of salicylic acid in distal tissue. Despite the fact that salicylic acid has a protective role in abiotic stress responses and tolerance, very few investigations have been reported on the similar effects of methyl salicylate. In addition, as salicylic acid and methyl salicylate are often treated simply as the volatile and non-volatile forms of the same compound, and in several cases they also act in the same way, it is hard to highlight the differences in their mode of action. The main aim of the present review is to reveal the individual role and action mechanism of methyl salicylate in systemic acquired resistance, plant-plant communication and various stress conditions in fruits and plants.
Collapse
Affiliation(s)
- Orsolya Kinga Gondor
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary.
| | - Magda Pál
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Gabriella Szalai
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| |
Collapse
|
27
|
Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays Biochem 2022; 66:673-681. [PMID: 35920211 DOI: 10.1042/ebc20210098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR.
Collapse
|
28
|
Zuo R, Xie M, Gao F, Liu J, Tang M, Cheng X, Liu Y, Bai Z, Liu S. Genome-wide identification and functional exploration of the legume lectin genes in Brassica napus and their roles in Sclerotinia disease resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:963263. [PMID: 35968144 PMCID: PMC9374194 DOI: 10.3389/fpls.2022.963263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As one of the largest classes of lectins, legume lectins have a variety of desirable features such as antibacterial and insecticidal activities as well as anti-abiotic stress ability. The Sclerotinia disease (SD) caused by the soil-borne fungus Sclerotinia sclerotiorum is a devastating disease affecting most oil crops such as Brassica napus. Here, we identified 130 legume lectin (LegLu) genes in B. napus, which could be phylogenetically classified into seven clusters. The BnLegLu gene family has been significantly expanded since the whole-genome duplication (WGD) or segmental duplication. Gene structure and conserved motif analysis suggested that the BnLegLu genes were well conserved in each cluster. Moreover, relative to those genes only containing the legume lectin domain in cluster VI-VII, the genes in cluster I-V harbored a transmembrane domain and a kinase domain linked to the legume lectin domain in the C terminus. The expression of most BnLegLu genes was relatively low in various tissues. Thirty-five BnLegLu genes were responsive to abiotic stress, and 40 BnLegLu genes were strongly induced by S. sclerotiorum, with a most significant up-regulation of 715-fold, indicating their functional roles in SD resistance. Four BnLegLu genes were located in the candidate regions of genome-wide association analysis (GWAS) results which resulted from a worldwide rapeseed population consisting of 324 accessions associated with SD. Among them, the positive role of BnLegLus-16 in SD resistance was validated by transient expression in tobacco leaves. This study provides important information on BnLegLu genes, particularly about their roles in SD resistance, which may help targeted functional research and genetic improvement in the breeding of B. napus.
Collapse
Affiliation(s)
- Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Gao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zetao Bai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
29
|
Shine MB, Zhang K, Liu H, Lim GH, Xia F, Yu K, Hunt AG, Kachroo A, Kachroo P. Phased small RNA-mediated systemic signaling in plants. SCIENCE ADVANCES 2022; 8:eabm8791. [PMID: 35749505 PMCID: PMC9232115 DOI: 10.1126/sciadv.abm8791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/18/2022] [Indexed: 05/29/2023]
Abstract
Systemic acquired resistance (SAR) involves the generation of systemically transported signal that arms distal plant parts against secondary infections. We show that two phased 21-nucleotide (nt) trans-acting small interfering RNA3a RNAs (tasi-RNA) derived from TAS3a and synthesized within 3 hours of pathogen infection are the early mobile signal in SAR. TAS3a undergoes alternate polyadenylation, resulting in the generation of 555- and 367-nt transcripts. The 555-nt transcripts likely serves as the sole precursor for tasi-RNAs D7 and D8, which cleave Auxin response factors (ARF) 2, 3, and 4 to induce SAR. Conversely, increased expression of ARF3 represses SAR. Knockout mutations in TAS3a or RNA silencing components required for tasi-RNA biogenesis compromise SAR without altering levels of known SAR-inducing chemicals. Both tasi-ARFs and the 367-nt transcripts are mobile and transported via plasmodesmata. Together, we show that tasi-ARFs are the early mobile signal in SAR.
Collapse
Affiliation(s)
- M. B. Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Kai Zhang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Gah-hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Fan Xia
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
30
|
Plant immunity by damage-associated molecular patterns (DAMPs). Essays Biochem 2022; 66:459-469. [PMID: 35612381 DOI: 10.1042/ebc20210087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Recognition by plant receptors of microbe-associated molecular patterns (MAMPs) and pathogenicity effectors activates immunity. However, before evolving the capacity of perceiving and responding to MAMPs and pathogenicity factors, plants, like animals, must have faced the necessity to protect and repair the mechanical wounds used by pathogens as an easy passage into their tissue. Consequently, plants evolved the capacity to react to damage-associated molecular patterns (DAMPs) with responses capable of functioning also in the absence of pathogens. DAMPs include not only primarily cell wall (CW) fragments but also extracellular peptides, nucleotides and amino acids that activate both local and long-distance systemic responses and, in some cases, prime the subsequent responses to MAMPs. It is conceivable that DAMPs and MAMPs act in synergy to activate a stronger plant immunity and that MAMPs exploit the mechanisms and transduction pathways traced by DAMPs. The interest for the biology and mechanism of action of DAMPs, either in the plant or animal kingdom, is expected to substantially increase in the next future. This review focuses on the most recent advances in DAMPs biology, particularly in the field of CW-derived DAMPs.
Collapse
|
31
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
32
|
Romero-Hernandez G, Martinez M. Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:824422. [PMID: 35599859 PMCID: PMC9116192 DOI: 10.3389/fpls.2022.824422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The success in the response of plants to environmental stressors depends on the regulatory networks that connect plant perception and plant response. In these networks, phosphorylation is a key mechanism to activate or deactivate the proteins involved. Protein kinases are responsible for phosphorylations and play a very relevant role in transmitting the signals. Here, we review the present knowledge on the contribution of protein kinases to herbivore-triggered responses in plants, with a focus on the information related to the regulated kinases accompanying herbivory in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance of several kinase groups directly involved in the perception of the attacker or typically associated with the transmission of stress-related signals. To highlight the importance of these protein kinase families in the response to arthropod herbivores, a compilation of previous knowledge on their members is offered. When available, this information is compared with previous findings on their role against pathogens. Besides, knowledge of their homologous counterparts in other plant-herbivore interactions is provided. Altogether, these observations resemble the complexity of the kinase-related mechanisms involved in the plant response. Understanding how kinase-based pathways coordinate in response to a specific threat remains a major challenge for future research.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
34
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
35
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
36
|
Ai G, Liu J, Fu X, Li T, Zhu H, Zhai Y, Xia C, Pan W, Li J, Jing M, Shen D, Xia A, Dou D. Making Use of Plant uORFs to Control Transgene Translation in Response to Pathogen Attack. BIODESIGN RESEARCH 2022; 2022:9820540. [PMID: 37850142 PMCID: PMC10521741 DOI: 10.34133/2022/9820540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2023] Open
Abstract
Reducing crop loss to diseases is urgently needed to meet increasing food production challenges caused by the expanding world population and the negative impact of climate change on crop productivity. Disease-resistant crops can be created by expressing endogenous or exogenous genes of interest through transgenic technology. Nevertheless, enhanced resistance by overexpressing resistance-produced genes often results in adverse developmental affects. Upstream open reading frames (uORFs) are translational control elements located in the 5' untranslated region (UTR) of eukaryotic mRNAs and may repress the translation of downstream genes. To investigate the function of three uORFs from the 5' -UTR of ACCELERATED CELL 11 (uORFsACD11), we develop a fluorescent reporter system and find uORFsACD11 function in repressing downstream gene translation. Individual or simultaneous mutations of the three uORFsACD11 lead to repression of downstream translation efficiency at different levels. Importantly, uORFsACD11-mediated translational inhibition is impaired upon recognition of pathogen attack of plant leaves. When coupled with the PATHOGENESIS-RELATED GENE 1 (PR1) promoter, the uORFsACD11 cassettes can upregulate accumulation of Arabidopsis thaliana LECTIN RECEPTOR KINASE-VI.2 (AtLecRK-VI.2) during pathogen attack and enhance plant resistance to Phytophthora capsici. These findings indicate that the uORFsACD11 cassettes can be a useful toolkit that enables a high level of protein expression during pathogen attack, while for ensuring lower levels of protein expression at normal conditions.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Liu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chuyan Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
37
|
Wang Z, Gou X. The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. Int J Mol Sci 2021; 23:ijms23010343. [PMID: 35008769 PMCID: PMC8745683 DOI: 10.3390/ijms23010343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.
Collapse
|
38
|
Zeng M, Wan B, Wang L, Chen Z, Lin Y, Ye W, Wang Y, Wang Y. Identification and characterization of L-type lectin receptor-like kinases involved in Glycine max-Phytophthora sojae interaction. PLANTA 2021; 254:128. [PMID: 34812941 DOI: 10.1007/s00425-021-03789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Soybean contains a group of 64 L-type lectin receptor-like kinases. Three LecRKs were involved in the interactions with Phytophthora sojae and Bradyrhizobium diazoefficiens. L-type lectin receptor-like kinases (LecRKs) comprise an important class of membrane-localized receptor-like kinases that are involved in plant adaptation. In this study, we performed an inventory analysis of LecRKs in Glycine max (soybean). In total, 64 GmLecRKs containing the canonical LecRK feature were identified. Phylogenetic analysis revealed that 48 GmLecRKs have close orthologs in Arabidopsis or Solanum lycopersicum, while 16 are likely present only in the leguminous plant species. Transcriptome analyses revealed that expressions of multiple GmLecRK genes are either induced or suppressed during infection by the soybean root rot pathogen Phytophthora sojae. In addition, overexpression of the three LecRKs (Glyma.17G085000, Glyma.05G041300 or Glyma.17G224600) in the soybean hairy roots enhanced resistance to P. sojae. Upon inoculation with Bradyrhizobium diazoefficiens, overexpression of Glyma.17G085000 in the soybean hairy roots does not significantly influence the nodulation, while overexpression of Glyma.05G041300 or Glyma.17G224600 slightly reduced the number and dry weight of nodules. This study highlights the importance of LecRKs in regulating plant-microbe interactions and provides new knowledge on the deployment of LecRKs to increase resistance in soybean.
Collapse
Affiliation(s)
- Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bowen Wan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
40
|
Kong L, Rodrigues B, Kim JH, He P, Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102051. [PMID: 34022608 DOI: 10.1016/j.pbi.2021.102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Sensing microbe-associated molecular patterns (MAMPs) by cell surface-resident pattern recognition receptors (PRRs) constitutes a core process in launching a successful immune response. Over the last decade, remarkable progress has been made in delineating the mechanisms of PRR-mediated plant immunity. As the frontline of defense, the homeostasis, activities, and subcellular dynamics of PRR and associated regulators are subjected to tight regulations. The layered protein post-translational modifications, particularly the intertwined phosphorylation and ubiquitylation of PRR complexes, play a central role in regulating PRR signaling outputs and plant immune responses. This review provides an update about the PRR complex regulation by various post-translational modifications and discusses how protein phosphorylation and ubiquitylation act in concert to ensure a rapid, proper, and robust immune response.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Barbara Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
41
|
Smith EN, Schwarzländer M, Ratcliffe RG, Kruger NJ. Shining a light on NAD- and NADP-based metabolism in plants. TRENDS IN PLANT SCIENCE 2021; 26:1072-1086. [PMID: 34281784 DOI: 10.1016/j.tplants.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/20/2023]
Abstract
The pyridine nucleotides nicotinamide adenine dinucleotide [NAD(H)] and nicotinamide adenine dinucleotide phosphate [NADP(H)] simultaneously act as energy transducers, signalling molecules, and redox couples. Recent research into photosynthetic optimisation, photorespiration, immunity, hypoxia/oxygen signalling, development, and post-harvest metabolism have all identified pyridine nucleotides as key metabolites. Further understanding will require accurate description of NAD(P)(H) metabolism, and genetically encoded fluorescent biosensors have recently become available for this purpose. Although these biosensors have begun to provide novel biological insights, their limitations must be considered and the information they provide appropriately interpreted. We provide a framework for understanding NAD(P)(H) metabolism and explore what fluorescent biosensors can, and cannot, tell us about plant biology, looking ahead to the pressing questions that could be answered with further development of these tools.
Collapse
Affiliation(s)
- Edward N Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Current address: Department of Molecular Systems Biology, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | | | - Nicholas J Kruger
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
42
|
Xiao W, Hu S, Zou X, Cai R, Liao R, Lin X, Yao R, Guo X. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. PLANT PHYSIOLOGY 2021; 187:303-320. [PMID: 34618128 PMCID: PMC8418426 DOI: 10.1093/plphys/kiab241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 05/13/2023]
Abstract
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source-sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source-sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.
Collapse
Affiliation(s)
- Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Rui Liao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Lin
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruifeng Yao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
43
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
44
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
45
|
Knockdown of Quinolinate Phosphoribosyltransferase Results in Decreased Salicylic Acid-Mediated Pathogen Resistance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22168484. [PMID: 34445186 PMCID: PMC8395217 DOI: 10.3390/ijms22168484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.
Collapse
|
46
|
Receptor kinases in plant responses to herbivory. Curr Opin Biotechnol 2021; 70:143-150. [PMID: 34023544 DOI: 10.1016/j.copbio.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
Plants have the ability to detect and respond to biotic stresses. They contain pattern recognition receptors (PRRs) that specifically recognize conserved molecules from their enemies and activate immune responses. In this review, I discuss recent efforts to discover PRRs for herbivory-associated cues that originate from oral secretions, eggs, damaged plant cells or secondary endogenous signals. Although several potential PRRs have been identified and shown to confer resistance to insects, proof of direct binding to a ligand is scarce and there are still many uncharacterized ligand-receptor pairs. However, several studies suggest that, like for microbial pathogens, plants use similar PRR complexes to detect herbivory.
Collapse
|
47
|
Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep 2021; 48:3747-3759. [PMID: 33893927 DOI: 10.1007/s11033-021-06344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and β-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Collapse
|
48
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
49
|
Ueda K, Nakajima Y, Inoue H, Kobayashi K, Nishiuchi T, Kimura M, Yaeno T. Nicotinamide Mononucleotide Potentiates Resistance to Biotrophic Invasion of Fungal Pathogens in Barley. Int J Mol Sci 2021; 22:ijms22052696. [PMID: 33800043 PMCID: PMC7962114 DOI: 10.3390/ijms22052696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.
Collapse
Affiliation(s)
- Kana Ueda
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Yuichi Nakajima
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Hiroshi Inoue
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Kappei Kobayashi
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Takumi Nishiuchi
- Institution for Gene Research, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan;
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Takashi Yaeno
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
- Correspondence:
| |
Collapse
|
50
|
Groux R, Stahl E, Gouhier-Darimont C, Kerdaffrec E, Jimenez-Sandoval P, Santiago J, Reymond P. Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1. PLANT PHYSIOLOGY 2021; 185:240-255. [PMID: 33631806 PMCID: PMC8133593 DOI: 10.1093/plphys/kiaa022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), a hypersensitive-like response (HR-like response) is triggered underneath the eggs of the large white butterfly Pieris brassicae (P. brassicae), and this response is dependent on salicylic acid (SA) accumulation and signaling. Previous reports indicate that the clade I L-type LECTIN RECEPTOR KINASE-I.8 (LecRK-I.8) is involved in early steps of egg recognition. A genome-wide association study was used to better characterize the genetic structure of the HR-like response and discover loci that contribute to this response. We report here the identification of LecRK-I.1, a close homolog of LecRK-I.8, and show that two main haplotypes that explain part of the variation in HR-like response segregate among natural Arabidopsis accessions. Besides, signatures of balancing selection at this locus suggest that it may be ecologically important. Disruption of LecRK-I.1 results in decreased HR-like response and SA signaling, indicating that this protein is important for the observed responses. Furthermore, we provide evidence that LecRK-I.1 functions in the same signaling pathway as LecRK-I.8. Altogether, our results show that the response to eggs of P. brassicae is controlled by multiple LecRKs.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Envel Kerdaffrec
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Author for communication:
| |
Collapse
|