1
|
Zarandi PK, Ghiasi M, Heiat M. The role and function of lncRNA in ageing-associated liver diseases. RNA Biol 2025; 22:1-8. [PMID: 39697114 PMCID: PMC11660375 DOI: 10.1080/15476286.2024.2440678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Liver diseases are a significant global health issue, characterized by elevated levels of disorder and death. The substantial impact of ageing on liver diseases and their prognosis is evident. Multiple processes are involved in the ageing process, which ultimately leads to functional deterioration of this organ. The process of liver ageing not only renders the liver more susceptible to diseases but also compromises the integrity of other organs due to the liver's critical function in metabolism regulation. A growing body of research suggests that long non-coding RNAs (lncRNAs) play a significant role in the majority of pathophysiological pathways. They regulate gene expression through a variety of interactions with microRNAs (miRNAs), messenger RNAs (mRNAs), DNA, or proteins. LncRNAs exert a major influence on the progression of age-related liver diseases through the regulation of cell proliferation, necrosis, apoptosis, senescence, and metabolic reprogramming. A concise overview of the current understanding of lncRNAs and their potential impact on the development of age-related liver diseases will be provided in this mini-review.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jiang C, Li Z, Seok S, Li P, Ma Y, Podguski SK, Moturi S, Yoneda N, Kawai K, Uehara S, Ohnishi Y, Suemizu H, Zhang J, Cao H. Systemic Identification of Functionally Conserved Long Noncoding RNA Metabolic Regulators in Human and Mouse Livers. Gastroenterology 2025:S0016-5085(25)00536-0. [PMID: 40127783 DOI: 10.1053/j.gastro.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/29/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND & AIMS Unlike protein-coding genes, most human long noncoding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that nonconserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs). METHODS We developed a sequence-independent strategy to select putative fcLMRs and performed extensive analysis to determine the functional similarities of putative human and mouse (h/m)LMR pairs. RESULTS We found that several pairs of putative fcLMRs share similar functions in regulating gene expression. We further demonstrated that a pair of fcLMRs, h/mLMR1, robustly regulated triglyceride levels by modulating the expression of a similar set of lipogenic genes. Mechanistically, h/mLMR1 binds to poly(A)-binding protein cytoplasmic 1 (PABPC1), a regulator of protein translation, via short motifs on either lncRNA with divergent sequences but similar structures. This interaction inhibits protein translation, activating an amino acid- mechanistic target of rapamycin-sterol regulatory element-binding transcription factor 1 axis to regulate lipogenic gene expression. Intriguingly, PABPC1-binding motifs on each lncRNA fully rescued the functions of their corresponding LMRs in the opposite species. Given the elevated expression of h/mLMR1 in humans and mice with hepatic steatosis, the PABPC1-binding motif on hLMR1 emerges as a potential nonconserved human drug target whose functions can be fully validated in a physiologically relevant setting before clinical studies. CONCLUSIONS Our study supports that fcLMRs represent a novel and prevalent biological phenomenon and that deep phenotyping of genetic mLMR mouse models constitutes a powerful approach to understand the pathophysiological role of lncRNAs in the human liver.
Collapse
Affiliation(s)
- Chengfei Jiang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhe Li
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sunmi Seok
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yonghe Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie K Podguski
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shria Moturi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Kenji Kawai
- Pathology Center, Translational Research Division, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Yasuyuki Ohnishi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Zhang Y, Chen A, Lu S, Liu D, Xuan X, Lei X, Zhong M, Gao F. Noncoding RNA profiling in omentum adipose tissue from obese patients and the identification of novel metabolic biomarkers. Front Genet 2025; 16:1533637. [PMID: 39981261 PMCID: PMC11839770 DOI: 10.3389/fgene.2025.1533637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background Obesity, a prevalent metabolic disorder, is linked to perturbations in the balance of gene expression regulation. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), play pivotal roles in regulating gene expression. The aim of this study was to identify additional ncRNA candidates that are implicated in obesity, elucidating their potential as key regulators of the pathogenesis of obesity. Methods We identified distinct ncRNA expression profiles in omental adipose tissue in obese and healthy subjects through comprehensive whole-transcriptome sequencing. Subsequent analyses included functional annotation with GO and KEGG pathway mapping, validation via real-time quantitative polymerase chain reaction (qRT‒PCR), the exploration of protein‒protein interactions (PPIs), and the identification of key regulatory genes through network analysis. Results The results indicated that, compared with those in healthy individuals, various lncRNAs, circRNAs, and miRNAs were significantly differentially expressed in obese subjects. Further verifications of top changed gene expressions proved the most genes' consistence with RNA-sequencing including 11 lncRNAs and 4 circRNAs. Gene network analysis highlighted the most significant features associated with metabolic pathways, specifically ENST00000605862, ENST00000558885, and ENST00000686149. Collectively, our findings suggest potential ncRNA therapeutic targets for obesity, including ENST00000605862, ENST00000558885, and ENST00000686149.
Collapse
Affiliation(s)
- Yongjiao Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaofei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fei Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| |
Collapse
|
4
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mishra SK, Liu T, Wang H. Thousands of oscillating LncRNAs in the mouse testis. Comput Struct Biotechnol J 2024; 23:330-346. [PMID: 38205156 PMCID: PMC10776378 DOI: 10.1016/j.csbj.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
The long noncoding RNAs (lncRNAs) are involved in numerous fundamental biological processes, including circadian regulation. Although recent studies have revealed insights into the functions of lncRNAs, how the lncRNAs regulate circadian rhythms still requires a deeper investigation. In this study, we generate two datasets of RNA-seq profiles of the mouse (Mus musculus) testis under light-dark (LD) cycle. The first dataset included 18,613 unannotated transcripts measured at 12 time points, each with duplicate samples, under LD conditions; while the second dataset included 21,414 unannotated transcripts measured at six time points, each with three replicates, under desynchronized and control conditions. We identified 5964 testicular lncRNAs in each dataset by BLASTing these transcripts against the known mouse lncRNAs from the NONCODE database. MetaCycle analyses were performed to identify 519, 475, and 494 rhythmically expressed mouse testicular lncRNAs in the 12-time-point dataset, the six-time-point control dataset, and the six-time-point desynchronized dataset, respectively. A comparison of the expression profiles of the lncRNAs under desynchronized and control conditions revealed that 427 rhythmically expressed lncRNAs from the control condition became arrhythmic under the desynchronized condition, suggesting a possible loss of rhythmicity. In contrast, 446 arrhythmic lncRNAs from the control condition became rhythmic under the desynchronized condition, suggesting a possible gain of rhythmicity. Interestingly, 48 lncRNAs were rhythmically expressed under both desynchronized and control conditions. These oscillating lncRNAs were divided into morning lncRNAs, evening lncRNAs, and night lncRNAs based on their time-course expression patterns. We interrogated the promoter regions of these rhythmically expressed mouse testicular lncRNAs to predict their possible regulation by the E-box, D-box, or RORE promoter motifs. GO and KEGG analyses were performed to identify the possible biological functions of these rhythmically expressed mouse testicular lncRNAs. Further, we conducted conservation analyses of the rhythmically expressed mouse testicular lncRNAs with lncRNAs from humans, rats, and zebrafish, and uncovered three mouse testicular lncRNAs conserved across these four species. Finally, we computationally predicted the conserved lncRNA-encoded peptides and their 3D structures from each of the four species. Taken together, our study revealed thousands of rhythmically expressed lncRNAs in the mouse testis, setting the stage for further computational and experimental validations.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
7
|
Jiang C, Li Z, Li P, Ma Y, Seok S, Podguski SK, Moturi S, Yoneda N, Kawai K, Uehara S, Ohnishi Y, Suemizu H, Zhang J, Cao H. Systemic identification of functionally conserved lncRNA metabolic regulators in human and mouse livers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607444. [PMID: 39372743 PMCID: PMC11451612 DOI: 10.1101/2024.08.10.607444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND & AIMS Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that non-conserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs). METHODS We developed a sequence-independent strategy to select putative fcLMRs, and performed extensive analysis to determine the functional similarities of putative human and mouse LMR pairs (h/mLMRs). RESULTS We found that several pairs of putative fcLMRs share similar functions in regulating gene expression. We further demonstrated that a pair of fcLMRs, h/mLMR1, robustly regulated triglyceride levels by modulating the expression of a similar set of lipogenic genes. Mechanistically, h/mLMR1 binds to PABPC1, a regulator of protein translation, via short motifs on either lncRNA with divergent sequences but similar structures. This interaction inhibits protein translation, activating an amino acid-mTOR-SREBP1 axis to regulate lipogenic gene expression. Intriguingly, PABPC1-binding motifs on each lncRNA fully rescued the functions of their corresponding LMRs in the opposite species. Given the elevated expression of h/mLMR1 in humans and mice with hepatic steatosis, the PABPC1-binding motif on hLMR1 emerges as a potential non-conserved human drug target whose functions can be fully validated in a physiologically relevant setting before clinical studies. CONCLUSIONS Our study supports that fcLMRs represent a novel and prevalent biological phenomenon, and deep phenotyping of genetic mLMR mouse models constitutes a powerful approach to understand the pathophysiological role of lncRNAs in the human liver.
Collapse
Affiliation(s)
- Chengfei Jiang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunmi Seok
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie K. Podguski
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shria Moturi
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kenji Kawai
- Pathology Center, Translational Research and Contract Research Service Division, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yasuyuki Ohnishi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Fu X, Li J, Chen X, Chen H, Wang Z, Qiu F, Xie D, Huang J, Yue S, Cao C, Liang Y, Lu A, Liang C. Repurposing AS1411 for constructing ANM-PROTACs. Cell Chem Biol 2024; 31:1290-1304.e7. [PMID: 38657608 DOI: 10.1016/j.chembiol.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/29/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for "undruggable" oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd, Shenzhen 518055, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
9
|
Chini A, Guha P, Rishi A, Obaid M, Udden SN, Mandal SS. Discovery and functional characterization of LncRNAs associated with inflammation and macrophage activation. Methods 2024; 227:1-16. [PMID: 38703879 DOI: 10.1016/j.ymeth.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Monira Obaid
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sm Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
10
|
Chong ZX, Ho WY, Yeap SK. Tumour-regulatory role of long non-coding RNA HOXA-AS3. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 189:13-25. [PMID: 38593905 DOI: 10.1016/j.pbiomolbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218-5p, miR-455-5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/β-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, in vitro, or in vivo studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
11
|
Jaso-Vera ME, Takaoka S, Patel I, Ruan X. Integrative regulation of hLMR1 by dietary and genetic factors in nonalcoholic fatty liver disease and hyperlipidemia. Hum Genet 2024; 143:897-906. [PMID: 38493444 DOI: 10.1007/s00439-024-02654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Long non-coding RNA (lncRNA) genes represent a large class of transcripts that are widely expressed across species. As most human lncRNAs are non-conserved, we recently employed a unique humanized liver mouse model to study lncRNAs expressed in human livers. We identified a human hepatocyte-specific lncRNA, hLMR1 (human lncRNA metabolic regulator 1), which is induced by feeding and promotes hepatic cholesterol synthesis. Recent genome-wide association studies (GWAS) found that several single-nucleotide polymorphisms (SNPs) from the hLMR1 gene locus are associated with blood lipids and markers of liver damage. These results suggest that dietary and genetic factors may regulate hLMR1 to affect disease progression. In this study, we first screened for nutritional/hormonal factors and found that hLMR1 was robustly induced by insulin/glucose in cultured human hepatocytes, and this induction is dependent on the transcription factor SREBP1. We then tested if GWAS SNPs genetically linked to hLMR1 could regulate hLMR1 expression. We found that DNA sequences flanking rs9653945, a SNP from the last exon of the hLMR1 gene, functions as an enhancer that can be robustly activated by SREBP1c depending on the presence of rs9653945 major allele (G). We further performed CRISPR base editing in human HepG2 cells and found that rs9653945 major (G) to minor (A) allele modification resulted in blunted insulin/glucose-induced expression of hLMR1. Finally, we performed genotyping and gene expression analyses using a published human NAFLD RNA-seq dataset and found that individuals homozygous for rs9653945-G have a higher expression of hLMR1 and risk of NAFLD. Taken together, our data support a model that rs9653945-G predisposes individuals to insulin/glucose-induced hLMR1, contributing to the development of hyperlipidemia and NAFLD.
Collapse
Affiliation(s)
- Marcos E Jaso-Vera
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Shohei Takaoka
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Ishika Patel
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
12
|
Ma Y, Harris J, Li P, Jiang C, Sun H, Cao H. An Integrative Transcriptome Subtraction Strategy to Identify Human lncRNAs That Specifically Play a Role in Activation of Human Hepatic Stellate Cells. Noncoding RNA 2024; 10:34. [PMID: 38921831 PMCID: PMC11206700 DOI: 10.3390/ncrna10030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from "activated" hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Lu R, Zhu J, Li X, Zeng C, Huang Y, Peng C, Zhou Y, Xue Q. ERβ-activated LINC01018 promotes endometriosis development by regulating the CDC25C/CDK1/CyclinB1 pathway. J Genet Genomics 2024; 51:617-629. [PMID: 38224945 DOI: 10.1016/j.jgg.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Endometriosis refers to as an estrogen-dependent disease. Estrogen receptor β (ERβ), the main estrogen receptor subtype which is encoded by the estrogen receptor 2 (ESR2) gene, can mediate the action of estrogen in endometriosis. Although selective estrogen receptor modulators can target the ERβ, they are not specific due to the wide distribution of ERβ. Recently, long noncoding RNAs have been implicated in endometriosis. Therefore, we aim to explore and validate the downstream regulatory mechanism of ERβ, and to investigate the potential role of long intergenic noncoding RNA 1018 (LINC01018) as a nonhormonal treatment for endometriosis. Our study demonstrates that the expression levels of ESR2 and LINC01018 are increased in ectopic endometrial tissues and reveals a significant positive correlation between the ESR2 and LINC01018 expression. Mechanistically, ERβ directly binds to an estrogen response element located in the LINC01018 promoter region and activates LINC01018 transcription. Functionally, ERβ can regulate the CDC25C/CDK1/CyclinB1 pathway and promote ectopic endometrial stromal cell proliferation via LINC01018 in vitro. Consistent with these findings, the knockdown of LINC01018 inhibits endometriotic lesion proliferation in vivo. In summary, our study demonstrates that the ERβ/LINC01018/CDC25C/CDK1/CyclinB1 signaling axis regulates endometriosis progression.
Collapse
Affiliation(s)
- Ruihui Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
14
|
Jiang C, Li P, Ma Y, Yoneda N, Kawai K, Uehara S, Ohnishi Y, Suemizu H, Cao H. Comprehensive gene profiling of the metabolic landscape of humanized livers in mice. J Hepatol 2024; 80:622-633. [PMID: 38049085 PMCID: PMC10947884 DOI: 10.1016/j.jhep.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND & AIMS The human liver transcriptome is complex and highly dynamic, e.g. one gene may produce multiple distinct transcripts, each with distinct posttranscriptional modifications. Direct knowledge of transcriptome dynamics, however, is largely obscured by the inaccessibility of the human liver to treatments and the insufficient annotation of the human liver transcriptome at transcript and RNA modification levels. METHODS We generated mice that carry humanized livers of identical genetic background and subjected them to representative metabolic treatments. We then analyzed the humanized livers with nanopore single-molecule direct RNA sequencing to determine the expression level, m6A modification and poly(A) tail length of all RNA transcript isoforms. Our system allows for the de novo annotation of human liver transcriptomes to reflect metabolic responses and for the study of transcriptome dynamics in parallel. RESULTS Our analysis uncovered a vast number of novel genes and transcripts. Our transcript-level analysis of human liver transcriptomes also identified a multitude of regulated metabolic pathways that were otherwise invisible using conventional short-read RNA sequencing. We revealed for the first time the dynamic changes in m6A and poly(A) tail length of human liver transcripts, many of which are transcribed from key metabolic genes. Furthermore, we performed comparative analyses of gene regulation between humans and mice, and between two individuals using the liver-specific humanized mice, revealing that transcriptome dynamics are highly species- and genetic background-dependent. CONCLUSION Our work revealed a complex metabolic response landscape of the human liver transcriptome and provides a novel resource to understand transcriptome dynamics of the human liver in response to physiologically relevant metabolic stimuli (https://caolab.shinyapps.io/human_hepatocyte_landscape/). IMPACT AND IMPLICATIONS Direct knowledge of the human liver transcriptome is currently very limited, hindering the overall understanding of human liver pathophysiology. We combined a liver-specific humanized mouse model and long-read direct RNA sequencing technology to establish a de novo annotation of the human liver transcriptome and identified a multitude of regulated metabolic pathways that were otherwise invisible using conventional technologies. The extensive regulatory information on human genes we provided could enable basic scientists to infer the pathological relevance of their genes of interest and physician scientists to better pinpoint the changes in metabolic networks underlying a specific pathophysiology.
Collapse
Affiliation(s)
- Chengfei Jiang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kenji Kawai
- Pathology Center, Translational Research and Contract Research Service Division, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yasuyuki Ohnishi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Xiao Y, Zhang C, Liu X, Yang Y, Landén NX, Zhang Z, Li D. Single-cell profiling and functional screening reveal crucial roles for lncRNAs in the epidermal re-epithelialization of human acute wounds. Front Surg 2024; 11:1349135. [PMID: 38468869 PMCID: PMC10925684 DOI: 10.3389/fsurg.2024.1349135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Objectives Re-epithelialization is an important physiological process for repairing skin barrier function during wound healing. It is primarily mediated by coordinated migration, proliferation, and differentiation of keratinocytes. Long noncoding RNAs (lncRNAs) are essential components of the noncoding genome and participate in various biological processes; however, their expression profiles and function in re-epithelialization during wound healing have not been established. Methods We investigated the distribution of lncRNAs during wound re-epithelialization by comparing the genomic profiles of uninjured skin and acute wound (AW) from healthy donors. We performed functional screening of differentially expressed lncRNAs to identify the important lncRNAs for re-epithelialization. Results The expression of multiple lncRNAs is changed during human wound re-epithelialization process. We identified VIM-AS1, SMAD5-AS1, and LINC02581 as critical regulators involved in keratinocyte migration, proliferation, and differentiation, respectively. Conclusion LncRNAs play crucial regulatory roles in wound re-epithelialization. We established lncRNA expression profile in human acute wounds compared with intact skin, offering valuable insights into the physiological mechanisms underlying wound healing and potential therapeutic targets.
Collapse
Affiliation(s)
- Yunting Xiao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Chenyang Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Yang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
17
|
Bonilauri B, Ribeiro AL, Spangenberg L, Dallagiovanna B. Unveiling Polysomal Long Non-Coding RNA Expression on the First Day of Adipogenesis and Osteogenesis in Human Adipose-Derived Stem Cells. Int J Mol Sci 2024; 25:2013. [PMID: 38396700 PMCID: PMC10888724 DOI: 10.3390/ijms25042013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annanda Lyra Ribeiro
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
| | - Bruno Dallagiovanna
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
18
|
Luo W, Li T, Song Q, Zhang L, Cao M. Prognostic value of lncRNA LINC01018 in prostate cancer by regulating miR-182-5p (The role of LINC01018 in prostate cancer). NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1077-1089. [PMID: 38147366 DOI: 10.1080/15257770.2023.2298408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
LncRNAs are abnormally expressed in a variety of cancers and play unique roles in therapy. Based on this, the prognostic value of lncRNA LINC01018 in prostate cancer was discussed in this study. LINC01018 was underexpressed in prostate cancer tissues and cells, while miR-182-5p was elevated (***p < 0.001). Overexpression of LINC01018 may inhibit the progression of prostate cancer by targeting miR-182-5p. This study revealed that upregulated LINC01018 may prolong the overall survival of patients with prostate cancer (log-rank p = 0.042), and LINC01018 may become a prognostic biomarker for patients with prostate cancer, which brings a new direction for the treatment of patients.
Collapse
Affiliation(s)
- Wentao Luo
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tingting Li
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiong Song
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lixiao Zhang
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min Cao
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
19
|
Barros Ferreira L, Ashander LM, Appukuttan B, Ma Y, Williams KA, Smith JR. Expression of Long Non-Coding RNAs in Activated Human Retinal Vascular Endothelial Cells. Ocul Immunol Inflamm 2023; 31:1813-1818. [PMID: 36194865 DOI: 10.1080/09273948.2022.2122512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/03/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE Retinal endothelial cell activation is a central event in non-infectious posterior uveitis. There is recent interest in long non-coding (lnc)RNA-targeted therapeutics for retinal diseases. We aimed to identify human retinal endothelial cell lncRNAs that might be involved in activation. METHODS Eleven candidate lncRNAs were identified: GAS5, KCNQ1OT1, LINC00294, MALAT1, MEG3, MIR155HG, NEAT1, NORAD, OIP5-AS1, SENCR, TUG1. Expression was assessed by RT-PCR in human retinal endothelial cells, at baseline and following activation with interleukin (IL)-1β and tumor necrosis factor (TNF)-α. RESULTS IL-1β significantly upregulated MEG3 and SENCR at 4 and 24 hours; LINC00294, NORAD, OIP5-AS1 and TUG1 at 24 hours; and MIR155HG at 4, 24 and 48 hours; but downregulated GAS5 at 24 and 48 hours. TNF-α significantly upregulated KCNQ1OT1, LINC00294, MEG3, NORAD and SENCR at 4 hours; SENCR and TUG1 at 24 hours; and MIR155HG at all time points. CONCLUSIONS Future studies involving manipulation of MIR155HG may be warranted to explore potential therapeutic applications for non-infectious posterior uveitis.
Collapse
Affiliation(s)
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Binoy Appukuttan
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keryn A Williams
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
20
|
Giroud M, Kotschi S, Kwon Y, Le Thuc O, Hoffmann A, Gil‐Lozano M, Karbiener M, Higareda‐Almaraz JC, Khani S, Tews D, Fischer‐Posovszky P, Sun W, Dong H, Ghosh A, Wolfrum C, Wabitsch M, Virtanen KA, Blüher M, Nielsen S, Zeigerer A, García‐Cáceres C, Scheideler M, Herzig S, Bartelt A. The obesity-linked human lncRNA AATBC stimulates mitochondrial function in adipocytes. EMBO Rep 2023; 24:e57600. [PMID: 37671834 PMCID: PMC10561178 DOI: 10.15252/embr.202357600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- Institute for Cardiovascular Prevention, Faculty of MedicineLudwig‐Maximilians‐UniversityMunichGermany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention, Faculty of MedicineLudwig‐Maximilians‐UniversityMunichGermany
| | - Yun Kwon
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
| | - Ophélia Le Thuc
- Institute for Diabetes and ObesityHelmholtz Center MunichNeuherbergGermany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Manuel Gil‐Lozano
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
| | | | - Juan Carlos Higareda‐Almaraz
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
| | - Sajjad Khani
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Institute for Cardiovascular Prevention, Faculty of MedicineLudwig‐Maximilians‐UniversityMunichGermany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Pamela Fischer‐Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Wenfei Sun
- Institute of Food, Nutrition and HealthETH ZürichSchwerzenbachSwitzerland
| | - Hua Dong
- Institute of Food, Nutrition and HealthETH ZürichSchwerzenbachSwitzerland
| | - Adhideb Ghosh
- Institute of Food, Nutrition and HealthETH ZürichSchwerzenbachSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZürichSchwerzenbachSwitzerland
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III – Endocrinology, Nephrology, RheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Anja Zeigerer
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
| | - Cristina García‐Cáceres
- German Center for Diabetes ResearchNeuherbergGermany
- Institute for Diabetes and ObesityHelmholtz Center MunichNeuherbergGermany
- Medizinische Klinik and Poliklinik IV, Klinikum der UniversitätLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Marcel Scheideler
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
| | - Stephan Herzig
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- Chair Molecular Metabolic ControlTechnical University MunichMunichGermany
| | - Alexander Bartelt
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Institute for Cardiovascular Prevention, Faculty of MedicineLudwig‐Maximilians‐UniversityMunichGermany
- German Center for Cardiovascular Research, Partner Site Munich Heart AllianceLudwig‐Maximilians‐UniversityMunichGermany
- Department of Molecular Metabolism & Sabri Ülker CenterHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
21
|
Mo ZW, Peng YM, Zhang YX, Li Y, Kang BA, Chen YT, Li L, Sorci-Thomas MG, Lin YJ, Cao Y, Chen S, Liu ZL, Gao JJ, Huang ZP, Zhou JG, Wang M, Chang GQ, Deng MJ, Liu YJ, Ma ZS, Hu ZJ, Dong YG, Ou ZJ, Ou JS. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct Target Ther 2023; 8:299. [PMID: 37574469 PMCID: PMC10423722 DOI: 10.1038/s41392-023-01558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Normal high-density lipoprotein (nHDL) can induce angiogenesis in healthy individuals. However, HDL from patients with coronary artery disease undergoes various modifications, becomes dysfunctional (dHDL), and loses its ability to promote angiogenesis. Here, we identified a long non-coding RNA, HDRACA, that is involved in the regulation of angiogenesis by HDL. In this study, we showed that nHDL downregulates the expression of HDRACA in endothelial cells by activating WW domain-containing E3 ubiquitin protein ligase 2, which catalyzes the ubiquitination and subsequent degradation of its transcription factor, Kruppel-like factor 5, via sphingosine 1-phosphate (S1P) receptor 1. In contrast, dHDL with lower levels of S1P than nHDL were much less effective in decreasing the expression of HDRACA. HDRACA was able to bind to Ras-interacting protein 1 (RAIN) to hinder the interaction between RAIN and vigilin, which led to an increase in the binding between the vigilin protein and proliferating cell nuclear antigen (PCNA) mRNA, resulting in a decrease in the expression of PCNA and inhibition of angiogenesis. The expression of human HDRACA in a hindlimb ischemia mouse model inhibited the recovery of angiogenesis. Taken together, these findings suggest that HDRACA is involved in the HDL regulation of angiogenesis, which nHDL inhibits the expression of HDRACA to induce angiogenesis, and that dHDL is much less effective in inhibiting HDRACA expression, which provides an explanation for the decreased ability of dHDL to stimulate angiogenesis.
Collapse
Affiliation(s)
- Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yi-Xin Zhang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | | | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Si Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhan-Peng Huang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Qi Chang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuo-Jun Hu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Gang Dong
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
22
|
Zheng Y, Wen S, Jiang S, He S, Qiao W, Liu Y, Yang W, Zhou J, Wang B, Li D, Lin J. CircRNA/lncRNA-miRNA-mRNA network and gene landscape in calcific aortic valve disease. BMC Genomics 2023; 24:419. [PMID: 37491214 PMCID: PMC10367311 DOI: 10.1186/s12864-023-09441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a common valve disease with an increasing incidence, but no effective drugs as of yet. With the development of sequencing technology, non-coding RNAs have been found to play roles in many diseases as well as CAVD, but no circRNA/lncRNA-miRNA-mRNA interaction axis has been established. Moreover, valve interstitial cells (VICs) and valvular endothelial cells (VECs) play important roles in CAVD, and CAVD differed between leaflet phenotypes and genders. This work aims to explore the mechanism of circRNA/lncRNA-miRNA-mRNA network in CAVD, and perform subgroup analysis on the important characteristics of CAVD, such as key cells, leaflet phenotypes and genders. RESULTS We identified 158 differentially expressed circRNAs (DEcircRNAs), 397 DElncRNAs, 45 DEmiRNAs and 167 DEmRNAs, and constructed a hsa-circ-0073813/hsa-circ-0027587-hsa-miR-525-5p-SPP1/HMOX1/CD28 network in CAVD after qRT-PCR verification. Additionally, 17 differentially expressed genes (DEGs) in VICs, 9 DEGs in VECs, 7 DEGs between different leaflet phenotypes and 24 DEGs between different genders were identified. Enrichment analysis suggested the potentially important pathways in inflammation and fibro-calcification during the pathogenesis of CAVD, and immune cell patterns in CAVD suggest that M0 macrophages and memory B cells memory were significantly increased, and many genes in immune cells were also differently expressed. CONCLUSIONS The circRNA/lncRNA-miRNA-mRNA interaction axis constructed in this work and the DEGs identified between different characteristics of CAVD provide a direction for a deeper understanding of CAVD and provide possible diagnostic markers and treatment targets for CAVD in the future.
Collapse
Affiliation(s)
- Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Ma Y, Cao H. 'Lnc-ing' T reg cells to the aging liver. NATURE AGING 2023; 3:760-761. [PMID: 37291220 DOI: 10.1038/s43587-023-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
25
|
Zhou Q, Jiang Y, Cai C, Li W, Leow MKS, Yang Y, Liu J, Xu D, Sun L. Multidimensional conservation analysis decodes the expression of conserved long noncoding RNAs. Life Sci Alliance 2023; 6:e202302002. [PMID: 37024123 PMCID: PMC10078953 DOI: 10.26508/lsa.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Although long noncoding RNAs (lncRNAs) experience weaker evolutionary constraints and exhibit lower sequence conservation than coding genes, they can still conserve their features in various aspects. Here, we used multiple approaches to systemically evaluate the conservation between human and mouse lncRNAs from various dimensions including sequences, promoter, global synteny, and local synteny, which led to the identification of 1,731 conserved lncRNAs with 427 high-confidence ones meeting multiple criteria. Conserved lncRNAs, compared with non-conserved ones, generally have longer gene bodies, more exons and transcripts, stronger connections with human diseases, and are more abundant and widespread across different tissues. Transcription factor (TF) profile analysis revealed a significant enrichment of TF types and numbers in the promoters of conserved lncRNAs. We further identified a set of TFs that preferentially bind to conserved lncRNAs and exert stronger regulation on conserved than non-conserved lncRNAs. Our study has reconciled some discrepant interpretations of lncRNA conservation and revealed a new set of transcriptional factors ruling the expression of conserved lncRNAs.
Collapse
Affiliation(s)
- Qiuzhong Zhou
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yuxi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaoqun Cai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Melvin Khee-Shing Leow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yi Yang
- Program in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jin Liu
- Program in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Sun
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
26
|
Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis 2023; 14:130. [PMID: 36792603 PMCID: PMC9932062 DOI: 10.1038/s41419-023-05658-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Dysfunction of podocytes has been regarded as an important early pathologic characteristic of diabetic kidney disease (DKD), but the regulatory role of long noncoding RNAs (lncRNAs) in this process remains largely unknown. Here, we performed RNA sequencing in kidney tissues isolated from DKD patients and nondiabetic renal cancer patients undergoing surgical resection and discovered that the novel lncRNA ENST00000436340 was upregulated in DKD patients and high glucose-induced podocytes, and we showed a significant correlation between ENST00000436340 and kidney injury. Gain- and loss-of-function experiments showed that silencing ENST00000436340 alleviated high glucose-induced podocyte injury and cytoskeleton rearrangement. Mechanistically, we showed that fat mass and obesity- associate gene (FTO)-mediated m6A induced the upregulation of ENST00000436340. ENST00000436340 interacted with polypyrimidine tract binding protein 1 (PTBP1) and augmented PTBP1 binding to RAB3B mRNA, promoted RAB3B mRNA degradation, and thereby caused cytoskeleton rearrangement and inhibition of GLUT4 translocation to the plasma membrane, leading to podocyte injury and DKD progression. Together, our results suggested that upregulation of ENST00000436340 could promote podocyte injury through PTBP1-dependent RAB3B regulation, thus suggesting a novel form of lncRNA-mediated epigenetic regulation of podocytes that contributes to the pathogenesis of DKD.
Collapse
|
27
|
Fang Z, Fan M, Yuan D, Jin L, Wang Y, Ding L, Xu S, Tu J, Zhang E, Wu X, Chen ZB, Huang W. Downregulation of hepatic lncRNA Gm19619 improves gluconeogenesis and lipogenesis following vertical sleeve gastrectomy in mice. Commun Biol 2023; 6:105. [PMID: 36707678 PMCID: PMC9883214 DOI: 10.1038/s42003-023-04483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.
Collapse
Affiliation(s)
- Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pediatric, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
28
|
Zhang W, Zhao J, Deng L, Ishimwe N, Pauli J, Wu W, Shan S, Kempf W, Ballantyne MD, Kim D, Lyu Q, Bennett M, Rodor J, Turner AW, Lu YW, Gao P, Choi M, Warthi G, Kim HW, Barroso MM, Bryant WB, Miller CL, Weintraub NL, Maegdefessel L, Miano JM, Baker AH, Long X. INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.522948. [PMID: 36711681 PMCID: PMC9881896 DOI: 10.1101/2023.01.07.522948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood. Methods Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation. Results INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIβ-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice. Conclusions These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.
Collapse
|
29
|
Yoon DS, Kim EJ, Cho S, Jung S, Lee KM, Park KH, Lee JW, Kim SH. RUNX2 stabilization by long non-coding RNAs contributes to hypertrophic changes in human chondrocytes. Int J Biol Sci 2023; 19:13-33. [PMID: 36594090 PMCID: PMC9760429 DOI: 10.7150/ijbs.74895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chondrocyte hypertrophy has been implicated in endochondral ossification and osteoarthritis (OA). In OA, hypertrophic chondrocytes contribute to the destruction and focal calcification of the joint cartilage. Although studies in this field have remarkably developed the modulation of joint inflammation using gene therapy and regeneration of damaged articular cartilage using cell therapy, studies that can modulate or prevent hypertrophic changes in articular chondrocytes are still lacking. Methods: In vitro hypertrophic differentiation and inflammation assays were conducted using human normal chondrocyte cell lines, TC28a2 cells. Human cartilage tissues and primary articular chondrocytes were obtained from OA patients undergoing total knee arthroplasty. Long non-coding RNAs (lncRNAs), LINC02035 and LOC100130207, were selected through RNA-sequencing analysis using RNAs extracted from TC28a2 cells cultured in hypertrophic medium. The regulatory mechanism was evaluated using western blotting, real-time quantitative polymerase chain reaction, osteocalcin reporter assay, RNA-immunoprecipitation (RNA-IP), RNA-in situ hybridization, and IP. Results: LncRNAs are crucial regulators of various biological processes. In this study, we identified two important lncRNAs, LINC02035 and LOC100130207, which play important roles in hypertrophic changes in normal chondrocytes, through RNA sequencing. Interestingly, the expression level of RUNX2, a master regulator of chondrocyte hypertrophy, was regulated at the post-translational level during hypertrophic differentiation of the normal human chondrocyte cell line, TC28a2. RNA-immunoprecipitation proved the potential interaction between RUNX2 protein and both lncRNAs. Knockdown (KD) of LINC02035 or LOC100130207 promoted ubiquitin-mediated proteasomal degradation of RUNX2 and prevented hypertrophic differentiation of normal chondrocyte cell lines, whereas overexpression of both lncRNAs stabilized RUNX2 protein and generated hypertrophic changes. Furthermore, the KD of the two lncRNAs mitigated the destruction of important cartilage matrix proteins, COL2A1 and ACAN, by hypertrophic differentiation or inflammatory conditions. We also confirmed that the phenotypic changes raised by the two lncRNAs could be rescued by modulating RUNX2 expression. In addition, the KD of these two lncRNAs suppressed hypertrophic changes during chondrogenic differentiation of mesenchymal stem cells. Conclusion: Therefore, this study suggests that LINC02035 and LOC100130207 contribute to hypertrophic changes in normal chondrocytes by regulating RUNX2, suggesting that these two novel lncRNAs could be potential therapeutic targets for delaying or preventing OA development, especially for preventing chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eun-Ji Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soyeong Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| | - Sung-Hwan Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| |
Collapse
|
30
|
Xu J, Wang J, Zhao M, Li C, Hong S, Zhang J. LncRNA LINC01018/miR-942-5p/KNG1 axis regulates the malignant development of glioma in vitro and in vivo. CNS Neurosci Ther 2022; 29:691-711. [PMID: 36550594 PMCID: PMC9873518 DOI: 10.1111/cns.14053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS Since the inhibitory effect of KNG1 on glioma has been proved, this study further explores the regulation of the lncRNA/miRNA axis on KNG1 in glioma. METHODS The miRNAs that target KNG1 and the lncRNA that targets miR-942-5p were predicted by bioinformatics analysis and verified by experiments. The correlations between miR-942-5p and the survival of patients and between KNG1 and miR-942-5p were analyzed. After transfection, cell migration, invasion, proliferation, and cell cycle were detected through wound healing, Transwell, colony formation, and flow cytometry assays. A mouse subcutaneous xenotransplanted tumor model was established. The expressions of miR-942-5p, KNG1, LINC01018, and related genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), Western blot, or immunohistochemistry. RESULTS MiR-942-5p targeted KNG1, and LINC01018 sponged miR-942-5p. The high survival rate of patients was related to low miR-942-5p level. MiR-942-5p was highly expressed, whereas KNG1 was lowly expressed in glioma. MiR-942-5p was negatively correlated with KNG1. Silent LINC01018 or KNG1 and miR-942-5p mimic enhanced the migration, invasion, and proliferation of glioma cells, and regulated the expressions of metastasis-related and proliferation-related genes. LINC01018 knockdown and miR-942-5p mimic promoted glioma tumor growth in mice. The levels of miR-942-5p and KNG1 were decreased by LINC01018 knockdown, and LINC01018 expression was suppressed by miR-942-5p mimic. MiR-942-5p inhibitor, KNG1, and LINC01018 had the opposite effect to miR-942-5p mimic. CONCLUSION LINC01018/miR-942-5p/KNG1 pathway regulates the development of glioma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jinfang Xu
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianli Wang
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Mingfei Zhao
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Chenguang Li
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Shen Hong
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianmin Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
31
|
Is Evolutionary Conservation a Useful Predictor for Cancer Long Noncoding RNAs? Insights from the Cancer LncRNA Census 3. Noncoding RNA 2022; 8:ncrna8060082. [PMID: 36548181 PMCID: PMC9785742 DOI: 10.3390/ncrna8060082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Evolutionary conservation is a measure of gene functionality that is widely used to prioritise long noncoding RNAs (lncRNA) in cancer research. Intriguingly, while updating our Cancer LncRNA Census (CLC), we observed an inverse relationship between year of discovery and evolutionary conservation. This observation is specific to cancer over other diseases, implying a sampling bias in the selection of lncRNA candidates and casting doubt on the value of evolutionary metrics for the prioritisation of cancer-related lncRNAs.
Collapse
|
32
|
Issler O, van der Zee YY, Ramakrishnan A, Xia S, Zinsmaier AK, Tan C, Li W, Browne CJ, Walker DM, Salery M, Torres-Berrío A, Futamura R, Duffy JE, Labonte B, Girgenti MJ, Tamminga CA, Dupree JL, Dong Y, Murrough JW, Shen L, Nestler EJ. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. SCIENCE ADVANCES 2022; 8:eabn9494. [PMID: 36449610 PMCID: PMC9710883 DOI: 10.1126/sciadv.abn9494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y. van der Zee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunhui Xia
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chunfeng Tan
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Wei Li
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M. Walker
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia E. Duffy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonte
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Girgenti
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeffrey L. Dupree
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - James W. Murrough
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Luo H, Jiang Q, Luo Y, Yang M, Yu Y, Yu C, Wang X. Comprehensive analysis of ESR1-related ceRNA axis as a novel prognostic biomarker in hepatocellular carcinoma. Epigenomics 2022; 14:1393-1409. [PMID: 36695093 DOI: 10.2217/epi-2022-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aims: To further understand, detect and treat hepatocellular carcinoma (HCC), it is urgent to conduct more in-depth research on the mechanism of sex-associated differences. Materials & methods: We established a ceRNA triple regulatory axis associated with ESR1 in HCC and performed expression, survival and nuclear-cytoplasmic localization analyses. In addition to this, we performed methylation analysis and immune infiltration analysis of the ceRNA axis. Results: We constructed the LINC01018/hsa-miR-197-3p/GNA14 (lncRNA/miRNA/mRNA) ceRNA axis to further explain the mechanism of sex-related prognosis in the development of HCC and to provide new insights into candidate biomarkers for targeted therapies. Conclusion: Our study is an innovative attempt at demonstrating the mechanism underlying the prognosis associated with sex differences in HCC by constructing a ceRNA axis (LINC01018/hsa-miR-197-3p/GNA14).
Collapse
Affiliation(s)
- Huiyan Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyin Jiang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuehua Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Miaolun Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yifan Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chengyang Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiongwen Wang
- Department of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
34
|
Selective RNA Labeling by RNA-Compatible Type II Restriction Endonuclease and RNA-Extending DNA Polymerase. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101674. [PMID: 36295109 PMCID: PMC9605241 DOI: 10.3390/life12101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
RNAs not only offer valuable information regarding our bodies but also regulate cellular functions, allowing for their specific manipulations to be extensively explored for many different biological and clinical applications. In particular, rather than temporary hybridization, permanent labeling is often required to introduce functional tags to target RNAs; however, direct RNA labeling has been revealed to be challenging, as native RNAs possess unmodifiable chemical moieties or indefinable dummy sequences at the ends of their strands. In this work, we demonstrate the combinatorial use of RNA-compatible restriction endonucleases (REs) and RNA-extending polymerases for sequence-specific RNA cleavage and subsequent RNA functionalization. Upon the introduction of complementary DNAs to target RNAs, Type II REs, such as AvrII and AvaII, could precisely cut the recognition site in the RNA-DNA heteroduplexes with exceptionally high efficiency. Subsequently, the 3′ ends of the cleaved RNAs were selectively and effectively modified when Therminator DNA polymerase template-dependently extended the RNA primers with a variety of modified nucleotides. Based on this two-step RNA labeling, only the target RNA could be chemically labeled with the desired moieties, such as bioconjugation tags or fluorophores, even in a mixture of various RNAs, demonstrating the potential for efficient and direct RNA modifications.
Collapse
|
35
|
Li Z, Zhou P, Kwon E, Fitzgerald KA, Weng Z, Zhou C. Flnc: Machine Learning Improves the Identification of Novel Long Noncoding RNAs from Stand-Alone RNA-Seq Data. Noncoding RNA 2022; 8:70. [PMID: 36287122 PMCID: PMC9607125 DOI: 10.3390/ncrna8050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/16/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical regulatory roles in human development and disease. Although there are over 100,000 samples with available RNA sequencing (RNA-seq) data, many lncRNAs have yet to be annotated. The conventional approach to identifying novel lncRNAs from RNA-seq data is to find transcripts without coding potential but this approach has a false discovery rate of 30-75%. Other existing methods either identify only multi-exon lncRNAs, missing single-exon lncRNAs, or require transcriptional initiation profiling data (such as H3K4me3 ChIP-seq data), which is unavailable for many samples with RNA-seq data. Because of these limitations, current methods cannot accurately identify novel lncRNAs from existing RNA-seq data. To address this problem, we have developed software, Flnc, to accurately identify both novel and annotated full-length lncRNAs, including single-exon lncRNAs, directly from RNA-seq data without requiring transcriptional initiation profiles. Flnc integrates machine learning models built by incorporating four types of features: transcript length, promoter signature, multiple exons, and genomic location. Flnc achieves state-of-the-art prediction power with an AUROC score over 0.92. Flnc significantly improves the prediction accuracy from less than 50% using the conventional approach to over 85%. Flnc is available via GitHub platform.
Collapse
Affiliation(s)
- Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peng Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Euijin Kwon
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- The RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
36
|
Pandey GK, Kanduri C. Long Non-Coding RNAs: Tools for Understanding and Targeting Cancer Pathways. Cancers (Basel) 2022; 14:cancers14194760. [PMID: 36230680 PMCID: PMC9564174 DOI: 10.3390/cancers14194760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The regulatory nature of long non-coding RNAs (lncRNAs) has been well established in various processes of cellular growth, development, and differentiation. Therefore, it is vital to examine their contribution to cancer development. There are ample examples of lncRNAs whose cellular levels are significantly associated with clinical outcomes. However, whether these non-coding molecules can work as either key drivers or barriers to cancer development remains unknown. The current review aims to discuss some well-characterised lncRNAs in the process of oncogenesis and extrapolate the extent of their decisive contribution to tumour development. We ask if these lncRNAs can independently initiate neoplastic lesions or they always need the modulation of well characterized oncogenes or tumour suppressors to exert their functional properties. Finally, we discuss the emerging genetic approaches and appropriate animal and humanised models that can significantly contribute to the functional dissection of lncRNAs in cancer development and progression.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: (G.K.P.); (C.K.)
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Correspondence: (G.K.P.); (C.K.)
| |
Collapse
|
37
|
Liu B, Tian Y, He J, Gu Q, Jin B, Shen H, Li W, Shi L, Yu H, Shan G, Cai X. The potential of mecciRNA in hepatic stellate cell to regulate progression of nonalcoholic hepatitis. J Transl Med 2022; 20:393. [PMID: 36058953 PMCID: PMC9441041 DOI: 10.1186/s12967-022-03595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) occupies a substantial proportion of chronic liver disease worldwide, of which pathogenesis needs further research. Recent studies have demonstrated the significant roles of circular RNAs (circRNAs) in NASH, while the function of a novel type of circRNAs, namely mitochondria-encoded circRNAs (mecciRNAs), remains elusive. Therefore, we aimed to investigate their potential to regulate the progression of NASH in this study. METHODS GSE134146 was used to screen for differentially expressed mecciRNAs in NASH, while GSE46300 was used to identify NASH-related genes. To establish the mecciRNA-miRNA-mRNA networks, circMINE and miRNet databases were used for predicting downstream targets. Then, consensus clustering analysis was used to determine immune subtypes of NASH. Finally, we successfully validated our findings in vitro (LPS-treated hepatic stellate cells [HSCs]) and in vivo (MCD-diet mice) NASH models. RESULTS We confirmed that circRNomics balance is disrupted in HSCs of NASH, while two mecciRNAs (hsa_circ_0089761 and hsa_circ_0089763) could function as competing for endogenous RNAs (ceRNAs) to regulate fibrosis-related signals. Furthermore, we constructed two ceRNA networks based on mecciRNAs for the first time. Cell and animal NASH models validated our findings that c-MYC and SMAD2/3 were upregulated in HSCs, while THBS1 and p-STAT3 were upregulated in hepatocytes. Moreover, we identified 21 core genes by overlapping the differentially expressed genes (NASH vs. Normal) with mecciRNA-targeted genes. According to their expression profiles, NASH patients could be divided in 2 different clusters, in which proinflammatory signals (TNF and IL-17 pathways) are significantly activated in Cluster 1. CONCLUSION We successfully established two novel mecciRNA-miRNA-mRNA networks in HSCs and hepatocytes, which were further confirmed by in vitro and in vivo models. Meanwhile, the novel immunotyping model revealed the heterogeneity of NASH, thereby might guiding treatment options. Altogether, our study brought a distinct perspective on the relationship between mecciRNAs and NASH.
Collapse
Affiliation(s)
- Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Yuanshi Tian
- Department of Diagnostic Ultrasound & Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Binghan Jin
- Department of Endocrinology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310053, China
| | - Hao Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Weiqi Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Ge Shan
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China. .,Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China. .,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China. .,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
38
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
39
|
Wanowska E, Samorowska K, Szcześniak MW. Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Front Cell Dev Biol 2022; 10:922351. [PMID: 35865634 PMCID: PMC9294602 DOI: 10.3389/fcell.2022.922351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinogenesis is a multistep process that involves both genetic and epigenetic changes. Epigenetics refers to reversible changes in gene expression that are not accompanied by changes in gene sequence. In breast cancer (BC), dysregulated epigenetic changes, such as DNA methylation and histone modifications, are accompanied by epitranscriptomic changes, in particular adenine to inosine modifications within RNA molecules. Factors that trigger these phenomena are largely unknown, but there is evidence for widespread participation of long noncoding RNAs (lncRNAs) that already have been linked to virtually any aspect of BC biology, making them promising biomarkers and therapeutic targets in BC patients. Here, we provide a systematic review of known and possible roles of lncRNAs in epigenetic and epitranscriptomic processes, along with methods and tools to study them, followed by a brief overview of current challenges regarding the use of lncRNAs in medical applications.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| | - Klaudia Samorowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Michał Wojciech Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| |
Collapse
|
40
|
Competing Endogenous RNAs" (ceRNAs) in Colorectal Cancer: a review article. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Pulido-Quetglas C, Johnson R. Designing libraries for pooled CRISPR functional screens of long noncoding RNAs. Mamm Genome 2022; 33:312-327. [PMID: 34533605 PMCID: PMC9114037 DOI: 10.1007/s00335-021-09918-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 02/01/2023]
Abstract
Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.
Collapse
Affiliation(s)
- Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
42
|
Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS. Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res 2022; 9:23. [PMID: 35614465 PMCID: PMC9134699 DOI: 10.1186/s40779-022-00385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LncRNA AK044604 (regulator of insulin sensitivity and autophagy, Risa) and autophagy-related factors Sirt1 and GSK3β play important roles in diabetic nephropathy (DN). In this study, we sought to explore the effect of Risa on Sirt1/GSK3β-induced podocyte injury. METHODS Diabetic db/db mice received Risa-inhibition adeno-associated virus (AAV) via tail vein injection, and intraperitoneal injection of lithium chloride (LiCl). Blood, urine, and kidney tissue samples were collected and analyzed at different time points. Immortalized mouse podocyte cells (MPCs) were cultured and treated with Risa-inhibition lentivirus (LV), EX-527, and LiCl. MPCs were collected under different stimulations as noted. The effects of Risa on podocyte autophagy were examined by qRT-PCR, Western blotting analysis, transmission electron microscopy, Periodic Acid-Schiff staining, and immunofluorescence staining. RESULTS Risa and activated GSK3β were overexpressed, but Sirt1 was downregulated in DN mice and high glucose-treated MPCs (P < 0.001, db/m vs. db/db, NG or HM vs. HG), which was correlated with poor prognosis. Risa overexpression attenuated Sirt1-mediated downstream autophagy levels and aggravated podocyte injury by inhibiting the expression of Sirt1 (P < 0.001, db/m vs. db/db, NG or HM vs. HG). In contrast, Risa suppression enhanced Sirt1-induced autophagy and attenuated podocyte injury, which could be abrogated by EX-527 (P < 0.001, db/db + Risa-AAV vs. db/db, HG + Risa-LV vs. HG). Furthermore, LiCl treatment could restore GSK3β-mediated autophagy of podocytes (P < 0.001, db/db + LiCl vs. db/db, HG + LiCl vs. HG), suggesting that Risa overexpression aggravated podocyte injury by decreasing autophagy. CONCLUSION Risa could inhibit autophagy by regulating the Sirt1/GSK3β axis, thereby aggravating podocyte injury in DN. Risa may serve as a therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Pei-Pei Su
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Dong-Wei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Si-Jie Zhou
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Hang Chen
- Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China
| | - Xian-Ming Wu
- Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China
| | - Zhang-Suo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China. .,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China.
| |
Collapse
|
43
|
Low WY, Rosen BD, Ren Y, Bickhart DM, To TH, Martin FJ, Billis K, Sonstegard TS, Sullivan ST, Hiendleder S, Williams JL, Heaton MP, Smith TPL. Gaur genome reveals expansion of sperm odorant receptors in domesticated cattle. BMC Genomics 2022; 23:344. [PMID: 35508966 PMCID: PMC9069736 DOI: 10.1186/s12864-022-08561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The gaur (Bos gaurus) is the largest extant wild bovine species, native to South and Southeast Asia, with unique traits, and is listed as vulnerable by the International Union for Conservation of Nature (IUCN). Results We report the first gaur reference genome and identify three biological pathways including lysozyme activity, proton transmembrane transporter activity, and oxygen transport with significant changes in gene copy number in gaur compared to other mammals. These may reflect adaptation to challenges related to climate and nutrition. Comparative analyses with domesticated indicine (Bos indicus) and taurine (Bos taurus) cattle revealed genomic signatures of artificial selection, including the expansion of sperm odorant receptor genes in domesticated cattle, which may have important implications for understanding selection for male fertility. Conclusions Apart from aiding dissection of economically important traits, the gaur genome will also provide the foundation to conserve the species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08561-1.
Collapse
Affiliation(s)
- Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| | - Benjamin D Rosen
- Animal Genomics and Improvement LaboratoryARS USDA, Beltsville, MD, USA
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430, Ås, Norway
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Shawn T Sullivan
- Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA, 98195, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Michael P Heaton
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| |
Collapse
|
44
|
Xu Y, Jiang Y, Wang Y, Jia B, Gao S, Yu H, Zhang H, Lv C, Li H, Li T. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: A detailed mechanistic study and validity evaluation. Bioeng Transl Med 2022; 7:e10275. [PMID: 35600648 PMCID: PMC9115691 DOI: 10.1002/btm2.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) involves a glucocorticoid-induced imbalance of osteogenic and adipogenic differentiation, and apoptosis of bone marrow mesenchymal stem cells (BMSCs). An increasing number of genes, especially noncoding RNAs, have been implicated in the function of BMSCs. Our previous studies have confirmed the key role of LINC00473 and miR-23a-3p on the osteogenic, adipogenic differentiation, and apoptosis of BMSCs. However, the underlying mechanism of this process is still unclear. Based on bioinformatics analysis, here we investigated the effects of LINC00473 on the LRP5/Wnt/β-catenin signaling pathway in the osteogenesis and adipogenesis of BMSCs, as well as the PEBP1/Akt/Bad/Bcl-2 signaling pathway in dexamethasone- (Dex-) induced apoptosis of BMSCs. Our data showed that LINC00473 could promote osteogenesis and suppress the adipogenesis of BMSCs through the activation of the miR-23a-3p/LRP5/Wnt/β-catenin signaling pathway axis, while rescuing BMSCs from Dex-induced apoptosis by activating the miR-23a-3p/PEBP1/Akt/Bad/Bcl-2 signaling pathway axis. Notably, we observed that LINC00473 interacted with miR-23a-3p in an Argonaute 2 (AGO2)-dependent manner based on dual-luciferase reporter assay, AGO2-related RNA immunoprecipitation, and RNA antisense purification assay. Furthermore, injectable thermosensitive polylactic-co-glycolic acid (PLGA) hydrogel loaded with rat-derived BMSCs (rBMSCs) modified by LINC00473 were used for the treatment of SONFH in a rat model. Our results demonstrated that PLGA hydrogels provided a suitable environment for harboring rBMSCs. Besides, transplantation of PLGA hydrogels loaded with rBMSCs modified by LINC00473 could significantly promote the bone repair and reconstruction of the necrotic area at the femoral head in our SONFH rat model. Surprisingly, compared with the transplantation of BMSCs alone, the transplanted rBMSCs encapsulated within the PLGA hydrogel could migrate from the medullary cavity to the femoral head. In summary, LINC00473 promoted osteogenesis, inhibited adipogenesis, and antagonized Dex-induced apoptosis of BMSCs. Therefore, LINC00473 could provide a new strategy for the treatment of SONFH.
Collapse
Affiliation(s)
- Yingxing Xu
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Yaping Jiang
- Department of MedicineQingdao UniversityQingdaoChina
- Department of Oral ImplantologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yingzhen Wang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Bin Jia
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Song Gao
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haiyang Yu
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haining Zhang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Chengyu Lv
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Haiyan Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
45
|
Peltier DC, Roberts A, Reddy P. LNCing RNA to immunity. Trends Immunol 2022; 43:478-495. [DOI: 10.1016/j.it.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
|
46
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
47
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
48
|
Luo Y, Lu H, Peng D, Ruan X, Chen YE, Guo Y. Liver-humanized mice: A translational strategy to study metabolic disorders. J Cell Physiol 2022; 237:489-506. [PMID: 34661916 PMCID: PMC9126562 DOI: 10.1002/jcp.30610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
The liver is the metabolic core of the whole body. Tools commonly used to study the human liver metabolism include hepatocyte cell lines, primary human hepatocytes, and pluripotent stem cells-derived hepatocytes in vitro, and liver genetically humanized mouse model in vivo. However, none of these systems can mimic the human liver in physiological and pathological states satisfactorily. Liver-humanized mice, which are established by reconstituting mouse liver with human hepatocytes, have emerged as an attractive animal model to study drug metabolism and evaluate the therapeutic effect in "human liver" in vivo because the humanized livers greatly replicate enzymatic features of human hepatocytes. The application of liver-humanized mice in studying metabolic disorders is relatively less common due to the largely uncertain replication of metabolic profiles compared to humans. Here, we summarize the metabolic characteristics and current application of liver-humanized mouse models in metabolic disorders that have been reported in the literature, trying to evaluate the pros and cons of using liver-humanized mice as novel mouse models to study metabolic disorders.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
50
|
Fu Y, Wei X, Han Q, Le J, Ma Y, Lin X, Xu Y, Liu N, Wang X, Kong X, Gu J, Tong Y, Wu H. Identification and characterization of a 25-lncRNA prognostic signature for early recurrence in hepatocellular carcinoma. BMC Cancer 2021; 21:1165. [PMID: 34717566 PMCID: PMC8556945 DOI: 10.1186/s12885-021-08827-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Background Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. Methods The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Results Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1” and “DNA REPAIR” pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. Conclusions Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08827-z.
Collapse
Affiliation(s)
- Yi Fu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xindong Wei
- Nanjing University of Traditional Chinese Medicine, Nanjing, 210000, China
| | - Qiuqin Han
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiamei Le
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yujie Ma
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinjie Lin
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yuhui Xu
- Graduate School of Art and Sciences, Columbia University, New York, NY, 10027, USA
| | - Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Xuan Wang
- Department of General Surgery, Nanjing General Hospital of Nanjing Military Command, Nanjing, 210000, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Hailong Wu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. .,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|