1
|
La Gioia D, Salviati E, Basilicata MG, Felici C, Botrugno OA, Tonon G, Sommella E, Campiglia P. Leveraging the potential of 1.0-mm i.d. columns in UHPLC-HRMS-based untargeted metabolomics. Anal Bioanal Chem 2024:10.1007/s00216-024-05588-z. [PMID: 39443364 DOI: 10.1007/s00216-024-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Untargeted metabolomics UHPLC-HRMS workflows typically employ narrowbore 2.1-mm inner diameter (i.d.) columns. However, the wide concentration range of the metabolome and the need to often analyze small sample amounts poses challenges to these approaches. Reducing the column diameter could be a potential solution. Herein, we evaluated the performance of a microbore 1.0-mm i.d. setup compared to the 2.1-mm i.d. benchmark for untargeted metabolomics. The 1.0-mm i.d. setup was implemented on a micro-UHPLC system, while the 2.1-mm i.d. on a standard UHPLC, both coupled to quadrupole-orbitrap HRMS. On polar standard metabolites, a sensitivity gain with an average 3.8-fold increase over the 2.1-mm i.d., along with lower LOD (LODavg 1.48 ng/mL vs. 6.18 ng/mL) and LOQ (LOQavg 4.94 ng/mL vs. 20.60 ng/mL), was observed. The microbore method detected and quantified all metabolites at LLOQ with respect to 2.1, also demonstrating good repeatability with lower CV% for retention times (0.29% vs. 0.63%) and peak areas (4.65% vs. 7.27%). The analysis of various samples, in both RP and HILIC modes, including different plasma volumes, dried blood spots (DBS), and colorectal cancer (CRC) patient-derived organoids (PDOs), in full scan-data dependent mode (FS-DDA) reported a significant increase in MS1 and MS2 features, as well as MS/MS spectral matches by 38.95%, 39.26%, and 18.23%, respectively. These findings demonstrate that 1.0-mm i.d. columns in UHPLC-HRMS could be a potential strategy to enhance coverage for low-amount samples while maintaining the same analytical throughput and robustness of 2.1-mm i.d. formats, with reduced solvent consumption.
Collapse
Affiliation(s)
- Danila La Gioia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudia Felici
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| |
Collapse
|
2
|
Roychaudhuri R, West T, Bhattacharya S, Saavedra HG, Lee H, Albacarys L, Gadalla MM, Amzel M, Yang P, Snyder SH. Mammalian D-Cysteine controls insulin secretion in the pancreas. Mol Metab 2024; 90:102043. [PMID: 39368613 DOI: 10.1016/j.molmet.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND D-amino acids are being recognized as important molecules in mammals with function. This is a first identification of endogenous D-cysteine in mammalian pancreas. METHODS Using a novel stereospecific bioluminescent assay, chiral chromatography, enzyme kinetics and a transgenic mouse model we identify endogenous D-cysteine. We elucidate its function in two mice models of type 1 diabetes (STZ and NOD), and in tests of Glucose Stimulated Insulin Secretion in isolated mouse and human islets and INS-1 832/13 cell line. RESULTS AND DISCUSSION D-cysteine is synthesized by serine racemase (SR) and SR-/- mice produce 6-10 fold higher levels of insulin in the pancreas and plasma including higher glycogen and ketone bodies in the liver. The excess insulin is stored as amyloid in secretory vesicles and exosomes. In glucose stimulated insulin secretion in mouse and human islets, equimolar amount of D-cysteine showed higher inhibition of insulin secretion compared to D-serine, another closely related stereoisomer synthesized by SR. In mouse models of diabetes (Streptozotocin (STZ) and Non Obese Diabetes (NOD) and human pancreas, the diabetic state showed increased expression of D-cysteine compared to D-serine followed by increased expression of SR. SR-/- mice show decreased cAMP in the pancreas, lower DNA methyltransferase enzymatic and promoter activities followed by reduced phosphorylation of CREB (S133), resulting in decreased methylation of the Ins1 promoter. D-cysteine is efficiently metabolized by D-amino acid oxidase and transported by ASCT2 and Asc1. Dietary supplementation with methyl donors restored the high insulin levels and low DNMT enzymatic activity in SR-/- mice. CONCLUSIONS Our data show that endogenous D-cysteine in the mammalian pancreas is a regulator of insulin secretion.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Timothy West
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Soumyaroop Bhattacharya
- Department of Neonatology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| | - Harry G Saavedra
- Centro de Investigacion en Bioingenieria, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru
| | - Hangnoh Lee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lauren Albacarys
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Moataz M Gadalla
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mario Amzel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Yang K, Paulo JA, Gygi SP, Yu Q. Enhanced Sample Multiplexing-Based Targeted Proteomics with Intelligent Data Acquisition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2420-2428. [PMID: 39254261 DOI: 10.1021/jasms.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Targeted proteomics has been playing an increasingly important role in hypothesis-driven protein research and clinical biomarker discovery. We previously created a workflow, Tomahto, to enable real-time targeted pathway proteomics assays using two-dimensional multiplexing technology. Coupled with the TMT 11-plex reagent, hundreds of proteins of interest from up to 11 samples can be targeted and accurately quantified in a single-shot experiment with remarkable sensitivity. However, room remains to further improve the sensitivity, accuracy, and throughput, especially for targeted studies demanding a high peptide-level success rate. Here, bearing in mind the goal to improve peptide-level targeting, we introduce several new functionalities in Tomahto, featuring the integration of gas-phase fractionation using the FAIMS device, an accompanying software program (TomahtoPrimer) to customize fragmentation for each peptide target, and support for higher multiplexing capacity with the latest TMTpro reagent. We demonstrate that adding these features to the Tomahto platform significantly improves overall success rate from 89% to 98% in a single 60 min targeted assay of 290 peptides across human cell lines, while boosting quantitative accuracy via reducing TMT reporter ion interference.
Collapse
Affiliation(s)
- Ka Yang
- Department of cell biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of cell biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of cell biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qing Yu
- Department of cell biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of biochemistry and molecular biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
4
|
Ouyang W, Huang Z, Wan K, Nie T, Chen H, Yao H. RNA ac 4C modification in cancer: Unraveling multifaceted roles and promising therapeutic horizons. Cancer Lett 2024; 601:217159. [PMID: 39128536 DOI: 10.1016/j.canlet.2024.217159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
RNA modifications play a crucial role in cancer development, profoundly influencing various stages of the RNA lifecycle. These stages encompass nuclear processing, nuclear export, splicing, and translation in the cytoplasm. Among RNA modifications, RNA ac4C modification, also known as N4-acetylcytidine, stands out for its unique role in acetylation processes. Specific proteins regulate RNA ac4C modification, maintaining the dynamic and reversible nature of these changes. This review explores the molecular mechanisms and biological functions of RNA ac4C modification. It examines the intricate ways in which RNA ac4C modification influences the pathogenesis and progression of cancer. Additionally, the review provides an integrated overview of the current methodologies for detecting RNA ac4C modification. Exploring the potential applications of manipulating this modification suggests avenues for novel therapeutic strategies, potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China
| | - Zhenjun Huang
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China
| | - Keyu Wan
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tiantian Nie
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Haizhu Chen
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China.
| | - Herui Yao
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Long Z, Zhao Z, Fan X, Luo X. Comparison of analytical-flow, micro-flow and nano-flow LC-MS/MS for sub-proteome analysis. J Pharm Biomed Anal 2024; 252:116484. [PMID: 39353257 DOI: 10.1016/j.jpba.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
The accurate and sensitive analysis of sub-proteomic samples, such as host cell proteins (HCPs) in recombinant products and stem cells in medical devices, is crucial for ensuring product safety and efficacy in the biopharmaceutical industry. However, current analytical techniques, such as conventional analytical-flow LC-MS/MS, face limitations in sensitivity due to the low concentrations of target proteins and the complexity of the sample matrix. In this study, a highly sensitive and repeatable micro-flow LC-MS/MS strategy was developed by replacing analytical-flow tubing with micro-flow tubing on an existing analytical-flow LC-MS system for sub-proteomic sample analysis. Method optimization and evaluation were first conducted with monoclonal antibody (mAb) digestion, focusing on enhancing sensitivity and repeatability. Over 8 days, relative standard deviations (RSDs) for retention time and mass area were less than 5 % and 10 %, respectively. Sensitivity improved by 2.91-4.14 times compared to the analytical-flow LC-MS/MS method. After confirming the reliability of the method, the micro-flow LC-MS/MS method was compared to the nano-flow LC-MS/MS method and the analytical-flow LC-MS/MS method in sub-proteomic sample analysis. For HCPs, the micro-flow LC-MS/MS method demonstrated superior qualitative and much better reproducibility than the nano-flow LC-MS/MS method, with more than 98 % of proteins showing intensity RSD values below 20 %. In the analysis of mesenchymal stem cells (MSCs), the micro-flow method demonstrated good reproducibility and better sensitivity than the analytical-flow method. Taking the analysis of the 20th generation of MSC products as an example, the sample analyzed by micro-flow LC-MS/MS resulted in the identification of 68 % and 8.5 % more peptides and proteins, respectively. Moreover, micro-flow maintained stable system pressure while analyzing umbilical cord stem cells, where nano-flow methods often encounter blockages. This micro-flow LC-MS/MS method is notable for its sensitivity, reproducibility, and straightforward operation, making it highly adaptable for diverse sub-proteomic analyses in biopharmaceutical laboratories.
Collapse
Affiliation(s)
- Zhen Long
- ThermoFisher scientific corporation, Beijing 100080, China
| | - Zixi Zhao
- National Institutes for Food and Drug Control, Institute for Medical Devices Control, Beijing 102629, China
| | - Xingliang Fan
- National Institutes for Food and Drug Control, Institute for Medical Devices Control, Beijing 102629, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
7
|
Starovoit MR, Jadeja S, Gazárková T, Lenčo J. Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals. Anal Chem 2024; 96:14531-14540. [PMID: 39196537 PMCID: PMC11391404 DOI: 10.1021/acs.analchem.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 °C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 °C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.
Collapse
Affiliation(s)
- Mykyta R Starovoit
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Du S, Wan H, Luo J, Duan X, Zou Z. Metabolic profiling of Citrus maxima L. seedlings in response to cadmium stress using UPLC-QTOF-MS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108920. [PMID: 38996714 DOI: 10.1016/j.plaphy.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) pollution significantly reduces agricultural crop yields. In our research, metabolomic changes in Citrus maxima L. subjected to Cd stress were investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) in tandem with multivariate analytical techniques. This integrative method, coupled with physiological evaluations, aimed to elucidate the core adaptive mechanisms to Cd stress. We found that under Cd stress, C. maxima seedlings exhibited elevated levels of reactive oxygen species, malondialdehyde, and electrolyte leakage. Furthermore, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) demonstrated distinct a separation of the metabolome among the different treatment groups under Cd stress, indicating dynamic metabolic changes. Metabolic analysis suggested that genes involved are initially induced by Cd treatment, followed by the activation of the flavonoid biosynthesis pathway. This investigation provides new insights into the complex metabolic responses of C. maxima seedlings to Cd exposure.
Collapse
Affiliation(s)
- Shangguang Du
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China; Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang, 330022, China
| | - Hao Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jun Luo
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaohua Duan
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China; Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang, 330022, China.
| |
Collapse
|
9
|
Böth A, Foshag D, Schulz C, Atwi B, Maier SE, Estes DP, Buchmeiser MR, de Goor TV, Tallarek U. Feed injection in liquid chromatography: Reducing the effect of large-volume injections from purely organic diluents in reversed-phase liquid chromatography. J Chromatogr A 2024; 1730:465165. [PMID: 39025026 DOI: 10.1016/j.chroma.2024.465165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
In liquid chromatography (LC), discrepancies in liquid properties such as elution strength and viscosity lead to a mismatch between the sample diluent and mobile phase. This mismatch can result in peak deformation, including peak splitting or even breakthrough, particularly when large sample volumes are injected. The formation of a T-junction between sample solution and mobile phase flow stream, a technique previously used in supercritical fluid chromatography, is the key enabler of feed injection in LC. This T-junction allows the injection needle to infuse the sample directly into the mobile phase. It ensures that the diluent is continuously mixed with the mobile phase before introduced onto the column, thereby reducing the initial solvent mismatch. The degree of dilution depends on the ratio between mobile phase flow rate (Qmp) and feed rate (Qfeed) at which the sample is infused. Our study examined the effect of several parameters on the feed injection of large sample volumes from purely organic diluents in reversed-phase LC. These parameters included the type of diluent, compound retention factor (k), injected sample volume (Vinj), and Qmp. With varied Qfeed, all compounds revealed a similar range of optimal values for Qr = (Qmp-Qfeed)/Qfeed between 2 and 5, a range unaffected by Vinj and Qmp. For Qr > 5, the slope of the plate height curves (H vs. Qr) decreases with increasing k, potentially extending the range of optimal Qr-values. However, the best Qr-value for a separation is determined by the compound with the smallest k, simplifying optimization. Using feed injection, we were able to reduce plate heights by up to a factor of 8 compared to classic flow-through injection of large sample volumes.
Collapse
Affiliation(s)
- André Böth
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Daniel Foshag
- Agilent Technologies R&D and Marketing GmbH & Co. KG, Hewlett Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Charlotte Schulz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Boshra Atwi
- Institute of Polymer Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sarah E Maier
- Institute of Technical Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Deven P Estes
- Institute of Technical Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tom van de Goor
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Agilent Technologies R&D and Marketing GmbH & Co. KG, Hewlett Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
10
|
Wang C, Zhang B. Proteomics Meets Dose Response: A New Paradigm for Deciphering Drug Effects. Cancer Res 2024; 84:2572-2574. [PMID: 38924463 DOI: 10.1158/0008-5472.can-24-2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
In a groundbreaking study, Eckert and colleagues introduce DecryptE, an innovative approach to dose-resolved proteomics that significantly advances our understanding of drug effects at the proteomic level. This method integrates cutting edge sample preparation and mass spectrometry technologies, establishing a robust platform for high-throughput proteome analysis. DecryptE enables the quantification of more than 7,000 proteins per hour and was employed to study 144 clinical drugs and research compounds, generating more than 1 million dose-response curves using Jurkat acute T-cell leukemia cells as a model system. The platform demonstrates outstanding reproducibility, ensuring reliable and consistent results across multiple experiments. By providing detailed information on drug potency and efficacy, DecryptE allows the identification of subtle changes in protein expression and facilitates the clustering of drugs based on their proteomic profiles. This study not only reveals novel drug mechanisms but also creates a comprehensive resource that can be utilized by the broader research community. Furthermore, it highlights the potential of integrating proteomics-and potentially other omics modalities in the future-with dose-response analysis to advance pharmacological research and improve therapeutic strategies.
Collapse
Affiliation(s)
- Chenwei Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Jiang Y, Meyer JG. Rapid Plasma Proteome Profiling via Nanoparticle Protein Corona and Direct Infusion Mass Spectrometry. J Proteome Res 2024; 23:3649-3658. [PMID: 39007500 DOI: 10.1021/acs.jproteome.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Noninvasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography-mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method that integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein corona enrichment for high-throughput and efficient plasma proteomic profiling. We realized over 280 protein identifications in 1.4 min collection time, which enables a potential throughput of approximately 1000 samples daily. The identified proteins are involved in valuable pathways, and 44 of the proteins are FDA-approved biomarkers. The robustness and quantitative accuracy of this method were evaluated across multiple NPs and concentrations with a mean coefficient of variation of 17%. Moreover, different protein corona profiles were observed among various NPs based on their distinct surface modifications, and all NP protein profiles exhibited deeper coverage and better quantification than neat plasma. Our streamlined workflow merges coverage and throughput with precise quantification, leveraging both DISPA and NP protein corona enrichment. This underscores the significant potential of DISPA when paired with NP sample preparation techniques for plasma proteome studies.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
12
|
Brunner S, Höring M, Liebisch G, Schweizer S, Scheiber J, Giansanti P, Hidrobo M, Hermeling S, Oeckl J, Prudente de Mello N, Perocchi F, Seeliger C, Strohmeyer A, Klingenspor M, Plagge J, Küster B, Burkhardt R, Janssen KP, Ecker J. Mitochondrial lipidomes are tissue specific - low cholesterol contents relate to UCP1 activity. Life Sci Alliance 2024; 7:e202402828. [PMID: 38843936 PMCID: PMC11157264 DOI: 10.26508/lsa.202402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.
Collapse
Affiliation(s)
- Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Schweizer
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | | | - Piero Giansanti
- https://ror.org/02kkvpp62 Bavarian Center for Biomolecular Mass Spectrometry at the University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Hidrobo
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Sven Hermeling
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Josef Oeckl
- https://ror.org/02kkvpp62 Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Natalia Prudente de Mello
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University, Munich, Germany
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, Germany
- https://ror.org/02kkvpp62 Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Claudine Seeliger
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Akim Strohmeyer
- https://ror.org/02kkvpp62 Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- https://ror.org/02kkvpp62 Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Plagge
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Bernhard Küster
- https://ror.org/02kkvpp62 Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- https://ror.org/02kkvpp62 Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Klaus-Peter Janssen
- https://ror.org/02kkvpp62 Department of Surgery, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich Germany
| | - Josef Ecker
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- https://ror.org/02kkvpp62 ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Idowu M, Taiwo G, Sidney T, Adewoye A, Ogunade IM. Plasma proteomic analysis reveals key pathways associated with divergent residual body weight gain phenotype in beef steers. Front Vet Sci 2024; 11:1415594. [PMID: 39104547 PMCID: PMC11298483 DOI: 10.3389/fvets.2024.1415594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
We utilized plasma proteomics profiling to explore metabolic pathways and key proteins associated with divergent residual body weight gain (RADG) phenotype in crossbred (Angus × Hereford) beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg; age = 253 ± 28 days) were fed a high-forage total mixed ration for 49 days in five dry lot pens (20-22 beef steers per pen), each equipped with two GrowSafe8000 intake nodes to determine their RADG phenotype. After RADG identification, blood samples were collected from the beef steers with the highest RADG (most efficient; n = 15; 0.76 kg/d) and lowest RADG (least efficient; n = 15; -0.65 kg/d). Plasma proteomics analysis was conducted on all plasma samples using a nano LC-MS/MS platform. Proteins with FC ≥ 1.2 and false-discovery rate-adjusted p-values (FDR) ≤ 0.05 were considered significantly differentially abundant. The analysis identified 435 proteins, with 59 differentially abundant proteins (DAPs) between positive and negative-RADG beef steers. Plasma abundance of 38 proteins, such as macrophage stimulating 1 and peptidase D was upregulated (FC ≥ 1.2, FDR ≤ 0.05) in positive-RADG beef steers, while 21 proteins, including fibronectin and ALB protein were greater (FC < 1.2, FDR ≤ 0.05) in negative-RADG beef steers. The results of the Gene Ontology (GO) analysis of all the DAPs showed enrichment of pathways such as metabolic processes, biological regulation, and catalytic activity in positive-RADG beef steers. Results of the EuKaryotic Orthologous Groups (KOG) analysis revealed increased abundance of DAPs involved in energy production and conversion, amino acid transport and metabolism, and lipid transport and metabolism in positive-RADG beef steers. The results of this study revealed key metabolic pathways and proteins associated with divergent RADG phenotype in beef cattle which give more insight into the biological basis of feed efficiency in crossbred beef cattle.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Anjola Adewoye
- Department of Chemistry, West Virginia University, Morgantown, WV, United States
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
14
|
Humphries EM, Xavier D, Ashman K, Hains PG, Robinson PJ. High-Throughput Proteomics and Phosphoproteomics of Rat Tissues Using Microflow Zeno SWATH. J Proteome Res 2024; 23:2355-2366. [PMID: 38819404 DOI: 10.1021/acs.jproteome.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 μg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Keith Ashman
- Sciex, 96 Ricketts Road,Mount Waverley, Victoria 3149, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
15
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38952056 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
16
|
Chen X, Wang Y, Pei C, Li R, Shu W, Qi Z, Zhao Y, Wang Y, Lin Y, Zhao L, Peng D, Wan J. Vacancy-Driven High-Performance Metabolic Assay for Diagnosis and Therapeutic Evaluation of Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312755. [PMID: 38692290 DOI: 10.1002/adma.202312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/31/2024] [Indexed: 05/03/2024]
Abstract
Depression is one of the most common mental illnesses and is a well-known risk factor for suicide, characterized by low overall efficacy (<50%) and high relapse rate (40%). A rapid and objective approach for screening and prognosis of depression is highly desirable but still awaits further development. Herein, a high-performance metabolite-based assay to aid the diagnosis and therapeutic evaluation of depression by developing a vacancy-engineered cobalt oxide (Vo-Co3O4) assisted laser desorption/ionization mass spectrometer platform is presented. The easy-prepared nanoparticles with optimal vacancy achieve a considerable signal enhancement, characterized by favorable charge transfer and increased photothermal conversion. The optimized Vo-Co3O4 allows for a direct and robust record of plasma metabolic fingerprints (PMFs). Through machine learning of PMFs, high-performance depression diagnosis is achieved, with the areas under the curve (AUC) of 0.941-0.980 and an accuracy of over 92%. Furthermore, a simplified diagnostic panel for depression is established, with a desirable AUC value of 0.933. Finally, proline levels are quantified in a follow-up cohort of depressive patients, highlighting the potential of metabolite quantification in the therapeutic evaluation of depression. This work promotes the progression of advanced matrixes and brings insights into the management of depression.
Collapse
Affiliation(s)
- Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yun Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Congcong Pei
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ziheng Qi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yinbing Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
17
|
Orsburn BC. Single cell proteomics by mass spectrometry reveals deep epigenetic insight into the actions of an orphan histone deacetylase inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574437. [PMID: 38260471 PMCID: PMC10802306 DOI: 10.1101/2024.01.05.574437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epigenetic programming has been shown to play a role in nearly every human system and disease where anyone has thought to look. However, the levels of heterogeneity at which epigenetic or epiproteomic modifications occur at single cell resolution across a population remains elusive. While recent advances in sequencing technology have allowed between 1 and 3 histone post-translational modifications to be analyzed in each single cell, over twenty separate chemical PTMs are known to exist, allowing thousands of possible combinations. Single cell proteomics by mass spectrometry (SCP) is an emerging technology in which hundreds or thousands of proteins can be directly quantified in typical human cells. As the proteins detected and quantified by SCP are heavily biased toward proteins of highest abundance, chromatin proteins are an attractive target for analysis. To this end, I applied SCP to the analysis of cancer cells treated with mocetinostat, a class specific histone deacetylase inhibitor. I find that 16 PTMs can be confidently identified and localized with high site specificity in single cells. In addition, the high abundance of histone proteins allows higher throughput methods to be utilized for SCP than previously described. While quantitative accuracy suffers when analyzing more than 700 cells per day, 9 histone proteins can be measured in single cells analyzed at even 3,500 cells per day, a throughput 10-fold greater than any previous report. In addition, the unbiased global approach utilized herein identifies a previously uncharacterized response to this drug through the S100-A8/S100-A9 protein complex partners. This response is observed in nearly every cell of the over 1,000 analyzed in this study, regardless of the relative throughput of the method utilized. While limitations exist in the methods described herein, current technologies can easily improve upon the results presented here to allow comprehensive analysis of histone PTMs to be performed in any mass spectrometry lab. All raw and processed data described in this study has been made publicly available through the ProteomeXchange/MASSIVE repository system as MSV000093434.
Collapse
|
18
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
19
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Serrano LR, Peters-Clarke TM, Arrey TN, Damoc E, Robinson ML, Lancaster NM, Shishkova E, Moss C, Pashkova A, Sinitcyn P, Brademan DR, Quarmby ST, Peterson AC, Zeller M, Hermanson D, Stewart H, Hock C, Makarov A, Zabrouskov V, Coon JJ. The One Hour Human Proteome. Mol Cell Proteomics 2024; 23:100760. [PMID: 38579929 PMCID: PMC11103439 DOI: 10.1016/j.mcpro.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.
Collapse
Affiliation(s)
- Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific GmbH, Bremen, Germany
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Corinne Moss
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Pavel Sinitcyn
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | - Scott T Quarmby
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA.
| |
Collapse
|
21
|
Lan Y, Zou Z, Yang Z. Single Cell mass spectrometry: Towards quantification of small molecules in individual cells. Trends Analyt Chem 2024; 174:117657. [PMID: 39391010 PMCID: PMC11465888 DOI: 10.1016/j.trac.2024.117657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Studying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis. In this review, the general development of single cell mass spectrometry (SCMS) field is covered. First, multiple existing SCMS techniques are described and compared. Next, the development of SCMS field is discussed in a chronological order. Last, the latest quantification studies on small molecules using SCMS have been described in detail.
Collapse
Affiliation(s)
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
22
|
Staes A, Boucher K, Dufour S, Maia TM, Timmerman E, Haver DV, Pauwels J, Demol H, Vandenbussche J, Gevaert K, Impens F, Devos S. High-Throughput Nanoflow Proteomics Using a Dual-Column Electrospray Source. Anal Chem 2024; 96:6534-6539. [PMID: 38647218 DOI: 10.1021/acs.analchem.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
With current trends in proteomics, especially regarding clinical and low input (to single cell) samples, it is increasingly important to both maximize the throughput of the analysis and maintain as much sensitivity as possible. The new generation of mass spectrometers (MS) are taking a huge leap in sensitivity, allowing analysis of samples with shorter liquid chromatography (LC) methods while digging as deep in the proteome. However, the throughput can be doubled by implementing a dual column nano-LC-MS configuration. For this purpose, we used a dual-column setup with a two-outlet electrospray source and compared it to a classic dual-column setup with a single-outlet source.
Collapse
Affiliation(s)
- An Staes
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Katie Boucher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Sara Dufour
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Teresa Mendes Maia
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Jarne Pauwels
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Hans Demol
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | | | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Simon Devos
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| |
Collapse
|
23
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
24
|
Wojtkiewicz M, Subramanian SP, Gundry RL. Multinozzle Emitter for Improved Negative Mode Analysis of Reduced Native N-Glycans by Microflow Porous Graphitized Carbon Liquid Chromatography Mass Spectrometry. Anal Chem 2024; 96:5746-5751. [PMID: 38556995 PMCID: PMC11024887 DOI: 10.1021/acs.analchem.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Microflow porous graphitized carbon liquid chromatography (PGC-LC) combined with negative mode ionization mass spectrometry (MS) provides high resolution separation and identification of reduced native N-glycan structural isomers. However, insufficient spray quality and low ionization efficiency of N-glycans present challenges for negative mode electrospray. Here, we evaluated the performance of a recently developed multinozzle electrospray source (MnESI) and accompanying M3 emitter for microflow PGC-LC-MS analysis of N-glycans in negative mode. In comparison to a standard electrospray ionization source, the MnESI with an M3 emitter improves signal intensity, identification, quantification, and resolution of structural isomers to accommodate low-input samples.
Collapse
Affiliation(s)
- Melinda Wojtkiewicz
- CardiOmics
Program, Center for Heart and Vascular Research, and Department of
Cellular and Integrative Physiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sabarinath Peruvemba Subramanian
- CardiOmics
Program, Center for Heart and Vascular Research, and Department of
Cellular and Integrative Physiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Rebekah L. Gundry
- CardiOmics
Program, Center for Heart and Vascular Research, and Department of
Cellular and Integrative Physiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
25
|
Jiang D, Wu S, Li Y, Qi R, Liu J. Enrichment of Phosphopeptides Based on Zirconium Phthalocyanine-Modified Magnetic Nanoparticles. ACS Biomater Sci Eng 2024; 10:2143-2150. [PMID: 38442336 DOI: 10.1021/acsbiomaterials.3c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Highly selective extraction of phosphopeptides is necessary before mass spectrometry (MS) analysis. Herein, zirconium phthalocyanine-modified magnetic nanoparticles were prepared through a simple method. The Fe-O groups on Fe3O4 and the zirconium ions on phthalocyanine had a strong affinity for phosphopeptides based on immobilized metal ion affinity chromatography (IMAC). The enrichment platform exhibited low detection limit (0.01 fmol), high selectivity (α-/β-casein/bovine serum albumin, 1/1/5000), good reusability (10 circles), and recovery (91.1 ± 1.1%) toward phosphopeptides. Nonfat milk, human serum, saliva, and A549 cell lysate were employed as actual samples to assess the applicability of the enrichment protocol. Metallo-phthalocyanine will be a competitive compound for designing highly efficient adsorbents and offers a new approach to phosphopeptide analysis.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| |
Collapse
|
26
|
Zeng J, Sun K, Chen S, Zhang X, Wang X, Zhang B. A Microfluidic-Fabricated Rod Sprayer for Nanoelectrospray Mass Spectrometry. Anal Chem 2024; 96:3989-3993. [PMID: 38315070 DOI: 10.1021/acs.analchem.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The nanoelectrosprayer is a key device in the hyphenation of nanoLC-ESI-MS, and its development plays a crucial role in pushing forward the mining depth of biological discovery and industrialization of omics science. In this work, a new type of nanoelectrospray emitter, a rod sprayer, was developed based on microfluidic manufacture. Due to its porous silica structure, the rod sprayer in effect worked as a multinozzle sprayer, which is composed of a bunch of micrometer sized spray channels. Without the need for sophisticated microfabrication equipment, a superclean environment, or a complicated assembling process, such sprayer rods can be facilely fabricated in a mass production style: 3,600 rods with excellent monodispersity have been fabricated in 1 h, and rod sprayers thus made have demonstrated excellent intraday, interday, and interbatch reproducibilities: RSD = 1.9, 4.9, and 6.1%, respectively. The rod sprayer can generate stable electrospray in a wide voltage range from 2.6 to 3.2 kV and flow rates from 50 to 1000 nL/min, covering typical flow rates of subnanoLC, nanoLC, to microLC, and work steadily even under complex matrix environments (e.g., Hank's balanced salt solution containing sodium, magnesium, and calcium ions) without clogging. Meanwhile, the rod sprayers exhibited 200-1800% ionization efficiency enhancement in comparison with commonly used tapered tip emitters, for small molecule drugs, peptides, and proteins, respectively, and provided a broadened linear dynamic range of 4 orders of magnitude. The excellent characteristics of the rod sprayer, together with its small size and mass production capacity, should provide a high quality, high durability, high consistency, and disposable use-supported nanoelectrospray solution for MS-based bioanalyses.
Collapse
Affiliation(s)
- Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Strauss MT, Bludau I, Zeng WF, Voytik E, Ammar C, Schessner JP, Ilango R, Gill M, Meier F, Willems S, Mann M. AlphaPept: a modern and open framework for MS-based proteomics. Nat Commun 2024; 15:2168. [PMID: 38461149 PMCID: PMC10924963 DOI: 10.1038/s41467-024-46485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
In common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry. To leverage these advances, we develop AlphaPept, a Python-based open-source framework for efficient processing of large high-resolution MS data sets. Numba for just-in-time compilation on CPU and GPU achieves hundred-fold speed improvements. AlphaPept uses the Python scientific stack of highly optimized packages, reducing the code base to domain-specific tasks while accessing the latest advances. We provide an easy on-ramp for community contributions through the concept of literate programming, implemented in Jupyter Notebooks. Large datasets can rapidly be processed as shown by the analysis of hundreds of proteomes in minutes per file, many-fold faster than acquisition. AlphaPept can be used to build automated processing pipelines with web-serving functionality and compatibility with downstream analysis tools. It provides easy access via one-click installation, a modular Python library for advanced users, and via an open GitHub repository for developers.
Collapse
Affiliation(s)
- Maximilian T Strauss
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wen-Feng Zeng
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eugenia Voytik
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Constantin Ammar
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julia P Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Qin X, Li X, Chen L, Gao T, Luo J, Guo L, Mollah S, Zhang Z, Zhou Y, Chen HX. Characterization of Adeno-Associated Virus Capsid Proteins by Microflow Liquid Chromatography Coupled with Mass Spectrometry. Appl Biochem Biotechnol 2024; 196:1623-1635. [PMID: 37436544 DOI: 10.1007/s12010-023-04656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated virus (AAV) has been widely used to treat various human diseases as an important delivery vector for gene therapy due to its low immunogenicity and safety. AAV capsids proteins are comprised of three capsid viral proteins (VP; VP1, VP2, VP3). The capsid proteins play a key role in viral vector infectivity and transduction efficiency. To ensure the safety and efficacy of AAV gene therapy products, the quality of AAV vector capsid proteins during development and production should be carefully monitored and controlled. Microflow liquid chromatography coupled with mass spectrometry provides superior sensitivity and fast analysis capability. It showed significant advantages in the analysis of low- concentration and large numbers of AAV samples. The intact mass of capsid protein can be accurately determined using high-resolution mass spectrometry (MS). And MS also provides highly confident confirmation of sequence coverage and post-translational modifications site identification and quantitation. In this study, we used microflow liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the characterization of AAV2 capsid protein. we obtained nearly 100% sequence coverage of low-concentration AAV2 capsid protein (8 × 1011 GC/mL). More than 30 post-translational modifications (PTMs) sites were identified, the PTMs types included deamidation, oxidation and acetylation. From this study, the proposed microflow LC-MS/MS method provides a sensitive and high throughput approach in the characterization of AAVs and other biological products with low abundance.
Collapse
Affiliation(s)
- Xi Qin
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, 100501, People's Republic of China
| | - Xiang Li
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, 100501, People's Republic of China
| | | | - Tie Gao
- SCIEX, Beijing, 100015, People's Republic of China
| | - Ji Luo
- SCIEX, Beijing, 100015, People's Republic of China
| | - Lihai Guo
- SCIEX, Beijing, 100015, People's Republic of China
| | | | | | - Yong Zhou
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, 100501, People's Republic of China.
| | - Hong-Xu Chen
- SCIEX, Beijing, 100015, People's Republic of China.
| |
Collapse
|
29
|
Liu L, Liu L, Wang Y, Fang Z, Bian Y, Zhang W, Wang Z, Gao X, Zhao C, Tian M, Liu X, Qin H, Guo Z, Liang X, Dong M, Nie Y, Ye M. Robust Glycoproteomics Platform Reveals a Tetra-Antennary Site-Specific Glycan Capping with Sialyl-Lewis Antigen for Early Detection of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306955. [PMID: 38084450 PMCID: PMC10916543 DOI: 10.1002/advs.202306955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Indexed: 03/07/2024]
Abstract
The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.
Collapse
Affiliation(s)
- Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Lei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Yangyang Bian
- The College of Life SciencesNorthwest UniversityXi'an710127China
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xianchun Gao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Changrui Zhao
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Mingming Dong
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Medical ProteomicsBeijing102206China
| |
Collapse
|
30
|
Wu X, Gong J, Zhang H, Wang Y, Tan F. Cellular uptake and cytotoxicity of PEGylated MXene nanomaterials mediated by protein corona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169227. [PMID: 38101623 DOI: 10.1016/j.scitotenv.2023.169227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
A stringent analysis of the biocompatibility of MXene is a necessary condition for assessing the biological risk of MXene. Owing to high surface free energy, MXene is capable of adsorbing a large amount of blood proteins to form MXene-protein corona complexes, however, a comprehensive understanding of the relationship between MXene and cellular physiological systems remains limited. Therefore, we investigated the cellular uptake and cytotoxicity effect of MXene Ti3C2Tx and PEGylation Ti3C2Tx mediated by human serum protein corona in THP-1 cells. It was found that PEGylation can alter the interaction between Ti3C2Tx and serum proteins, inducing a significant transformation in the fingerprint of the protein corona. Following protein corona formation, both Ti3C2Tx and PEGylated Ti3C2Tx predominantly accumulated at lysosomal sites within THP-1 cells. Further analysis revealed that clathrin-mediated endocytosis was the primary mechanism of Ti3C2Tx internalization by THP-1 cells. There was no significant effect on cell viability. However, we found that Ti3C2Tx plays a dual role as both a stimulus and scavenger of ROS within THP-1 cells, influenced by its PEGylation and the formation of a protein corona. This study provides important insights for biocompatibility evaluation and rational design of nanoproducts based on Ti3C2Tx in the future.
Collapse
Affiliation(s)
- Xuri Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jixiang Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
31
|
Jiang Y, Meyer JG. 1.4 min Plasma Proteome Profiling via Nanoparticle Protein Corona and Direct Infusion Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579213. [PMID: 38370692 PMCID: PMC10871276 DOI: 10.1101/2024.02.06.579213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Non-invasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method, which integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein coronas enrichment for high throughput and efficient plasma proteomic profiling. We realized over 280 protein identifications in 1.4 minutes collection time, which enables a potential throughput of approximately 1,000 samples daily. The identified proteins are involved in valuable pathways and 44 of the proteins are FDA approved biomarkers. The robustness and quantitative accuracy of this method were evaluated across multiple NPs and concentrations with a mean coefficient of variation at 17%. Moreover, different protein corona profiles were observed among various nanoparticles based on their distinct surface modifications, and all NP protein profiles exhibited deeper coverage and better quantification than neat plasma. Our streamlined workflow merges coverage and throughput with precise quantification, leveraging both DISPA and NP protein corona enrichments. This underscores the significant potential of DISPA when paired with NP sample preparation techniques for plasma proteome studies.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Zhao Y, Raidas S, Mao Y, Li N. High-Throughput Glycan Profiling of Human Serum IgG Subclasses Using Parallel Reaction Monitoring Peptide Bond Fragmentation of Glycopeptides and Microflow LC-MS. J Proteome Res 2024; 23:585-595. [PMID: 38231888 DOI: 10.1021/acs.jproteome.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
LC-MS-based N-glycosylation profiling in four human serum IgG subclasses (IgG1, IgG2, IgG3, and IgG4) often requires additional affinity-based enrichment of specific IgG subclasses, owing to the high amino acid sequence similarity of Fc glycopeptides among subclasses. Notably, for IgG4 and the major allotype of IgG3, the glycopeptide precursors share identical retention time and mass and therefore cannot be distinguished based on precursor or glycan fragmentation. Here, we developed a parallel reaction monitoring (PRM)-based method for quantifying Fc glycopeptides through combined transitions generated from both glycosidic and peptide bond fragmentation. The latter enables the subpopulation of IgG3 and IgG4 to be directly distinguished according to mass differences without requiring further enrichment of specific IgG subclasses. In addition, a multinozzle electrospray emitter coupled to a capillary flow liquid chromatograph was used to increase the robustness and detection sensitivity of the method for low-yield peptide backbone fragment ions. The gradient was optimized to decrease the overall run time and make the method compatible with high-throughput analysis. We demonstrated that this method can be used to effectively monitor the relative levels of 13 representative glycoforms, with a good limit of detection for individual IgG subclasses.
Collapse
Affiliation(s)
- Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Shivkumar Raidas
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
33
|
Gadara D, Berka V, Spacil Z. High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes. Anal Chem 2024; 96:59-66. [PMID: 38113351 PMCID: PMC10782415 DOI: 10.1021/acs.analchem.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
Collapse
Affiliation(s)
- Darshak Gadara
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Vratislav Berka
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zdenek Spacil
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
34
|
Kardell O, von Toerne C, Merl-Pham J, König AC, Blindert M, Barth TK, Mergner J, Ludwig C, Tüshaus J, Eckert S, Müller SA, Breimann S, Giesbertz P, Bernhardt AM, Schweizer L, Albrecht V, Teupser D, Imhof A, Kuster B, Lichtenthaler SF, Mann M, Cox J, Hauck SM. Multicenter Collaborative Study to Optimize Mass Spectrometry Workflows of Clinical Specimens. J Proteome Res 2024; 23:117-129. [PMID: 38015820 PMCID: PMC10775142 DOI: 10.1021/acs.jproteome.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.
Collapse
Affiliation(s)
- Oliver Kardell
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Christine von Toerne
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Juliane Merl-Pham
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Ann-Christine König
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Marcel Blindert
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Teresa K. Barth
- Clinical
Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty
of Medicine, Ludwig-Maximilians-University
(LMU) Munich, Großhaderner Straße 9, Martinsried 82152, Germany
| | - Julia Mergner
- Bavarian
Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar
(BayBioMS@MRI), Technical University of
Munich, Munich 80333, Germany
| | - Christina Ludwig
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of
Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Johanna Tüshaus
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stephan Eckert
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stephan A. Müller
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Stephan Breimann
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Pieter Giesbertz
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Alexander M. Bernhardt
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Department
of Neurology, Ludwig-Maximilians-Universität
München, Munich 80539, Germany
| | - Lisa Schweizer
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel Teupser
- Institute
of Laboratory Medicine, University Hospital,
LMU Munich, Munich 81377, Germany
| | - Axel Imhof
- Clinical
Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty
of Medicine, Ludwig-Maximilians-University
(LMU) Munich, Großhaderner Straße 9, Martinsried 82152, Germany
| | - Bernhard Kuster
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of
Life Sciences, Technical University of Munich, Freising 85354, Germany
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stefan F. Lichtenthaler
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Matthias Mann
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Computational Systems
Biochemistry Research Group, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| |
Collapse
|
35
|
Szyrwiel L, Gille C, Mülleder M, Demichev V, Ralser M. Fast proteomics with dia-PASEF and analytical flow-rate chromatography. Proteomics 2024; 24:e2300100. [PMID: 37287406 DOI: 10.1002/pmic.202300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Increased throughput in proteomic experiments can improve accessibility of proteomic platforms, reduce costs, and facilitate new approaches in systems biology and biomedical research. Here we propose combination of analytical flow rate chromatography with ion mobility separation of peptide ions, data-independent acquisition, and data analysis with the DIA-NN software suite, to achieve high-quality proteomic experiments from limited sample amounts, at a throughput of up to 400 samples per day. For instance, when benchmarking our workflow using a 500-μL/min flow rate and 3-min chromatographic gradients, we report the quantification of 5211 proteins from 2 μg of a mammalian cell-line standard at high quantitative accuracy and precision. We further used this platform to analyze blood plasma samples from a cohort of COVID-19 inpatients, using a 3-min chromatographic gradient and alternating column regeneration on a dual pump system. The method delivered a comprehensive view of the COVID-19 plasma proteome, allowing classification of the patients according to disease severity and revealing plasma biomarker candidates.
Collapse
Affiliation(s)
- Lukasz Szyrwiel
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Gille
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Demichev
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
36
|
Shi J, Zhao J, Zhang Y, Wang Y, Tan CP, Xu YJ, Liu Y. Windows Scanning Multiomics: Integrated Metabolomics and Proteomics. Anal Chem 2023; 95:18793-18802. [PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jialiang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Tüshaus J, Sakhteman A, Lechner S, The M, Mucha E, Krisp C, Schlegel J, Delbridge C, Kuster B. A region-resolved proteomic map of the human brain enabled by high-throughput proteomics. EMBO J 2023; 42:e114665. [PMID: 37916885 PMCID: PMC10690467 DOI: 10.15252/embj.2023114665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).
Collapse
Affiliation(s)
- Johanna Tüshaus
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Amirhossein Sakhteman
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Severin Lechner
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Matthew The
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Eike Mucha
- Bruker Daltonics GmbH & Co. KGBremenGermany
| | | | - Jürgen Schlegel
- Department of Neuropathology, Klinikum Rechts der ISAR, School of MedicineTechnical University MunichMunichGermany
| | - Claire Delbridge
- Department of Neuropathology, Klinikum Rechts der ISAR, School of MedicineTechnical University MunichMunichGermany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
- German Cancer Consortium (DKTK), Munich SiteHeidelbergGermany
| |
Collapse
|
38
|
Jiang D, Qi R, Lv S, Wu S, Li Y, Liu J. Preparation of high-efficiency titanium ion immobilized magnetic graphite nitride nanocomposite for phosphopeptide enrichment. Anal Chim Acta 2023; 1283:341974. [PMID: 37977792 DOI: 10.1016/j.aca.2023.341974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Protein phosphorylation has been implicated in life processes including molecular interaction, protein structure transformation, and malignant disease. An in-depth study of protein phosphorylation may provide vital information for the discovery of early biomarkers. Mass spectrometry (MS)-based techniques have become an important method for phosphopeptide identification. Nevertheless, direct detection remains challenging because of the low ionization efficiency of phosphopeptides and serious interference from non-phosphopeptides. There is a great need for an efficient enrichment strategy to analyze protein phosphorylation prior to MS analysis. RESULTS In this study, a novel nanocomposite was prepared by introducing titanium ions into two-dimensional magnetic graphite nitride. The nanocomposite was combined with immobilized metal ion affinity chromatography (IMAC) and anion-exchange chromatography mechanisms for phosphoproteome research. The nanocomposite had the advantages of a large specific surface (412.9 m2 g-1), positive electricity (175.44 mV), and excellent magnetic property (35.7 emu g-1). Moreover, it presented satisfactory selectivity (α-casein:β-casein:bovine serum albumin = 1:1:5000), a low detection limit (0.02 fmol), great recyclability (10 cycles), and high recovery (92.8%). The nanocomposite demonstrated great practicability for phosphopeptides from non-fat milk, human serum, and saliva. Further, the nanocomposite was applied to enrich phosphopeptides from a more complicated specimen, A549 cell lysate. A total of 890 phosphopeptides mapping to 564 phosphoproteins were successfully detected with nano LC-MS. SIGNIFICANCE We successfully designed and developed an efficient analysis platform for phosphopeptides, which includes protein digestion, phosphopeptide enrichment, and MS detection. The MS-based enrichment platform was further used to analyze phosphopeptides from complicated bio-samples. This work paves the way for the design and preparation of graphite nitride-based IMAC materials for phosphoproteome analysis.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China
| | - Siqi Lv
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, PR China
| |
Collapse
|
39
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
40
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
41
|
Juliano BR, Ruotolo BT. Collision Induced Unfolding Enables the Quantitation of Isomass Biotherapeutics in Complex Biological Matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2350-2357. [PMID: 37584234 PMCID: PMC11081006 DOI: 10.1021/jasms.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Quantitative mass spectrometry has been widely used to evaluate the concentrations of molecules within a variety of biological matrices. Typically, such quantitative mass spectrometry analyses are predicated upon the production of mass-resolved precursor or fragment ions, leading to challenges surrounding the quantification of isomeric or conformationally distinct analytes. As such, new approaches are required for the label-free quantification of isomass proteins. Native ion-mobility MS (nIM-MS) in combination with collision induced unfolding (CIU) is a potentially enabling approach for such quantitative mass spectrometry methods as the technique can rapidly separate and detect many biomacromolecule isoforms. CIU uses collisional activation to capture the unfolding trajectory of ions in the gas phase, producing different intermediate structures that can be leveraged to distinguish protein structures that exhibit identical sizes at lower energies. Here we describe the deployment of quantitative CIU methodology to measure the concentrations of isomass pairs of biotherapeutics and sequence homologues in both standard and biological matrices. Our results cover three antibody pairs and include examples of mixed therapies where multiple biologics are commonly provided to patients. In all cases, CIU enables the production of resolved features for each antibody mixture probed, producing calibration curves with correlation coefficients ranging from 0.92 to 0.99, limits of detection ranging from 300 to 5000 nM and sensitivities ranging from 8.7 × 10-5 nM-1 to 6 × 10-3 μM-1. We conclude our report by projecting the future utility of CIU-enabled quantitative MS methods.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Ahsan N, Fornelli L, Najar FZ, Gamagedara S, Hossan MR, Rao RSP, Punyamurtula U, Bauer A, Yang Z, Foster SB, Kane MA. Proteomics evaluation of five economical commercial abundant protein depletion kits for enrichment of diseases-specific biomarkers from blood serum. Proteomics 2023; 23:e2300150. [PMID: 37199141 PMCID: PMC11166006 DOI: 10.1002/pmic.202300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Blood serum is arguably the most analyzed biofluid for disease prediction and diagnosis. Herein, we benchmarked five different serum abundant protein depletion (SAPD) kits with regard to the identification of disease-specific biomarkers in human serum using bottom-up proteomics. As expected, the IgG removal efficiency among the SAPD kits is highly variable, ranging from 70% to 93%. A pairwise comparison of database search results showed a 10%-19% variation in protein identification among the kits. Immunocapturing-based SAPD kits against IgG and albumin outperformed the others in the removal of these two abundant proteins. Conversely, non-antibody-based methods (i.e., kits using ion exchange resins) and kits leveraging a multi-antibody approach were proven to be less efficient in depleting IgG/albumin from samples but led to the highest number of identified peptides. Notably, our results indicate that different cancer biomarkers could be enriched up to 10% depending on the utilized SAPD kit compared with the undepleted sample. Additionally, functional analysis of the bottom-up proteomic results revealed that different SAPD kits enrich distinct disease- and pathway-specific protein sets. Overall, our study emphasizes that a careful selection of the appropriate commercial SAPD kit is crucial for the analysis of disease biomarkers in serum by shotgun proteomics.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, USA
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Fares Z. Najar
- High-Performance Computing Center (HPCC), Oklahoma State University, Stillwater, OK, USA
| | | | | | | | - Ujwal Punyamurtula
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Bauer
- Department of Neurosurgery, University of Oklahoma-Health Science Center, Oklahoma City, OK, USA
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Steven B. Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
43
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
44
|
Vankeerberghen B, Op de Beeck J, Desmet G. On-Chip Comparison of the Performance of First- and Second-Generation Micropillar Array Columns. Anal Chem 2023; 95:13822-13828. [PMID: 37677150 DOI: 10.1021/acs.analchem.3c01829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Because of its dimensions, the recently introduced micropillar array columns are most suited for high-efficiency liquid chromatography separations in proteomics. Unlike the packed bed columns and capillary-based column formats, the micropillar array concept still has significant room to progress in terms of the reduction of its characteristic size (i.e., pillar diameter and interpillar distance) to open the road to even higher-efficiency separations and their applications. We report here on the on-chip comparison between first-generation (Gen 1) and second-generation (Gen 2) micropillar array columns wherein the pillar and interpillar size have been halved. Because of the on-chip measurements, the observed plate heights H represent the fundamental band broadening, devoid of any extra-column band-broadening effects. The observed reduction of H with a factor of 2 around the uopt-velocity and with a factor of 4 in the C-term dominated regime of the van Deemter-curve is in full agreement with the theoretically expected gain. This shows the pillar and interpillar size reduction could be effectuated without affecting the theoretical separation potential of the micropillar arrays. Compared to Gen 1, Gen 2 offers a 4-fold reduction of the required analysis time around the optimal velocity and about a 16-fold reduction in the C-term-dominated range.
Collapse
Affiliation(s)
- Bert Vankeerberghen
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeff Op de Beeck
- Thermo Fisher Scientific, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
45
|
Schweizer L, Schaller T, Zwiebel M, Karayel Ö, Müller‐Reif JB, Zeng W, Dintner S, Nordmann TM, Hirschbühl K, Märkl B, Claus R, Mann M. Quantitative multiorgan proteomics of fatal COVID-19 uncovers tissue-specific effects beyond inflammation. EMBO Mol Med 2023; 15:e17459. [PMID: 37519267 PMCID: PMC10493576 DOI: 10.15252/emmm.202317459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
SARS-CoV-2 may directly and indirectly damage lung tissue and other host organs, but there are few system-wide, untargeted studies of these effects on the human body. Here, we developed a parallelized mass spectrometry (MS) proteomics workflow enabling the rapid, quantitative analysis of hundreds of virus-infected FFPE tissues. The first layer of response to SARS-CoV-2 in all tissues was dominated by circulating inflammatory molecules. Beyond systemic inflammation, we differentiated between systemic and true tissue-specific effects to reflect distinct COVID-19-associated damage patterns. Proteomic changes in the lungs resembled those of diffuse alveolar damage (DAD) in non-COVID-19 patients. Extensive organ-specific changes were also evident in the kidneys, liver, and lymphatic and vascular systems. Secondary inflammatory effects in the brain were related to rearrangements in neurotransmitter receptors and myelin degradation. These MS-proteomics-derived results contribute substantially to our understanding of COVID-19 pathomechanisms and suggest strategies for organ-specific therapeutic interventions.
Collapse
Affiliation(s)
- Lisa Schweizer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Tina Schaller
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Department of Physiological ChemistryGenentechSouth San FranciscoUSA
| | | | - Wen‐Feng Zeng
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Thierry M Nordmann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Bruno Märkl
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Rainer Claus
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
46
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
47
|
Abele M, Doll E, Bayer FP, Meng C, Lomp N, Neuhaus K, Scherer S, Kuster B, Ludwig C. Unified Workflow for the Rapid and In-Depth Characterization of Bacterial Proteomes. Mol Cell Proteomics 2023; 22:100612. [PMID: 37391045 PMCID: PMC10407251 DOI: 10.1016/j.mcpro.2023.100612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Bacteria are the most abundant and diverse organisms among the kingdoms of life. Due to this excessive variance, finding a unified, comprehensive, and safe workflow for quantitative bacterial proteomics is challenging. In this study, we have systematically evaluated and optimized sample preparation, mass spectrometric data acquisition, and data analysis strategies in bacterial proteomics. We investigated workflow performances on six representative species with highly different physiologic properties to mimic bacterial diversity. The best sample preparation strategy was a cell lysis protocol in 100% trifluoroacetic acid followed by an in-solution digest. Peptides were separated on a 30-min linear microflow liquid chromatography gradient and analyzed in data-independent acquisition mode. Data analysis was performed with DIA-NN using a predicted spectral library. Performance was evaluated according to the number of identified proteins, quantitative precision, throughput, costs, and biological safety. With this rapid workflow, over 40% of all encoded genes were detected per bacterial species. We demonstrated the general applicability of our workflow on a set of 23 taxonomically and physiologically diverse bacterial species. We could confidently identify over 45,000 proteins in the combined dataset, of which 30,000 have not been experimentally validated before. Our work thereby provides a valuable resource for the microbial scientific community. Finally, we grew Escherichia coli and Bacillus cereus in replicates under 12 different cultivation conditions to demonstrate the high-throughput suitability of the workflow. The proteomic workflow we present in this manuscript does not require any specialized equipment or commercial software and can be easily applied by other laboratories to support and accelerate the proteomic exploration of the bacterial kingdom.
Collapse
Affiliation(s)
- Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Division of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Etienne Doll
- Division of Microbial Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Division of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nina Lomp
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Division of Microbial Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Core Facility Microbiome, ZIEL - Institute for Food & Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Division of Microbial Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Division of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
48
|
Chen Y, Xu W, Zhang W, Tong R, Yuan A, Li Z, Jiang H, Hu L, Huang L, Xu Y, Zhang Z, Sun M, Yan X, Chen AF, Qian K, Pu J. Plasma metabolic fingerprints for large-scale screening and personalized risk stratification of metabolic syndrome. Cell Rep Med 2023; 4:101109. [PMID: 37467725 PMCID: PMC10394172 DOI: 10.1016/j.xcrm.2023.101109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Direct diagnosis and accurate assessment of metabolic syndrome (MetS) allow for prompt clinical interventions. However, traditional diagnostic strategies overlook the complex heterogeneity of MetS. Here, we perform metabolomic analysis in 13,554 participants from the natural cohort and identify 26 hub plasma metabolic fingerprints (PMFs) associated with MetS and its early identification (pre-MetS). By leveraging machine-learning algorithms, we develop robust diagnostic models for pre-MetS and MetS with convincing performance through independent validation. We utilize these PMFs to assess the relative contributions of the four major MetS risk factors in the general population, ranked as follows: hyperglycemia, hypertension, dyslipidemia, and obesity. Furthermore, we devise a personalized three-dimensional plasma metabolic risk (PMR) stratification, revealing three distinct risk patterns. In summary, our study offers effective screening tools for identifying pre-MetS and MetS patients in the general community, while defining the heterogeneous risk stratification of metabolic phenotypes in real-world settings.
Collapse
Affiliation(s)
- Yifan Chen
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Wei Xu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Wei Zhang
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Renyang Tong
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Ancai Yuan
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Zheng Li
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Huiru Jiang
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Liuhua Hu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Lin Huang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yudian Xu
- School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziyue Zhang
- School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingze Sun
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Kun Qian
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China; School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
49
|
Midha MK, Kapil C, Maes M, Baxter DH, Morrone SR, Prokop TJ, Moritz RL. Vacuum Insulated Probe Heated Electrospray Ionization Source Enhances Microflow Rate Chromatography Signals in the Bruker timsTOF Mass Spectrometer. J Proteome Res 2023; 22:2525-2537. [PMID: 37294184 PMCID: PMC11060334 DOI: 10.1021/acs.jproteome.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide molecular ions by the electrospray source. To maximize the transfer of peptides from the liquid to gaseous phase and allow molecular ions to enter the mass spectrometer at microspray flow rates, an efficient electrospray process is required. Here we describe the superior performance of newly design vacuum insulated probe heated electrospray ionization (VIP-HESI) source coupled to a Bruker timsTOF PRO mass spectrometer operated in microspray mode. VIP-HESI significantly improves chromatography signals in comparison to electrospray ionization (ESI) and nanospray ionization using the captivespray (CS) source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient of variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that the Slice-PASEF VIP-HESI mode is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with microflow rate chromatography achieves a higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications. Data and spectral libraries are available via ProteomeXchange (PXD040497).
Collapse
Affiliation(s)
- Mukul K Midha
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - Charu Kapil
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - David H Baxter
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - Seamus R Morrone
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - Timothy J Prokop
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| |
Collapse
|
50
|
Dsk P, Fodor PS, Kothapalli CR. A Flexible Kenics Mixer for Applications in Liquid Chromatography. MICROMACHINES 2023; 14:1373. [PMID: 37512684 PMCID: PMC10386428 DOI: 10.3390/mi14071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023]
Abstract
Miniaturization of liquid chromatography could help enhance sensitivity, reduce solvent usage, and detect small quantities of peptides. However, it demands better sample homogenization of the mobile phase. We here developed a mixer design based on the inline Kenics geometry, consisting of a periodic arrangement of twisted blades placed inside a cylindrical capillary that repeatedly cut and stack fluid elements to achieve rapid mixing in laminar flow regimes. The mixer design was optimized with respect to the twist angle and aspect ratio of the mixing units to achieve complete mixing at minimum pressure load cost. Results suggest that for optimal designs, for a mixer volume of ~70 μL, complete mixing is achieved within a distance smaller than 4 cm for a broad set of flow rate conditions ranging from 75 μL·min-1 to 7.5 mL·min-1. A salient feature that we introduce and test for the first time is the physical flexibility of the cylindrical capillary. The performance of the design remained robust when the mixing section was not rigid and bent in different topologies, as well as when changing the chemical composition of the mobile phase used.
Collapse
Affiliation(s)
- Prachet Dsk
- Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Petru S Fodor
- Department of Physics, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44236, USA
| | | |
Collapse
|