1
|
Davies-Bolorunduro OF, Jaemsai B, Ruangchai W, Noppanamas T, Boonbangyang M, Bodharamik T, Sawaengdee W, Mahasirimongkol S, Palittapongarnpim P. Analysis of complete genomes of Mycobacterium tuberculosis sublineage 2.1 (Proto-Beijing) revealed the presence of three pe_pgrs3-pe_pgrs4-like genes. Sci Rep 2024; 14:30702. [PMID: 39730410 DOI: 10.1038/s41598-024-79351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.1 isolate from Chiangrai, Northern Thailand, using second and third-generation sequencing technologies. Comparative genomic analysis with two additional L2.1 isolates and two L2.2.AA3 (Asia Ancestral 3 Beijing) isolates revealed significant pe-ppe gene variations. Notably, all L2.1 isolates harbored three copies of pe_pgrs3-pe_pgrs4-like genes (pe_pgrs3*, pe_pgrs4*, and pe_pgrs4), different from L2.2.AA3 and H37Rv strains. Additionally, ppe53 was duplicated in all but H37Rv, and ppe50 was deleted in L2.1 isolates, contrasting with an extended ppe50 in an L2.2 isolate (Mtb 18b), which contains an additional SVP motif. Complete deletion of ppe66 and loss of wag22 were observed in L2.1 isolates. These findings highlight the high structural variability of the pe-ppe gene family, emphasizing its complex roles in Mtb-host immune interactions. This genetic complexity offers potentially critical insights into mycobacterial pathogenesis, with significant implications for vaccine development and diagnostics.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Floret Center for Advanced Genomics and Bioinformatics Research, Lagos, Nigeria
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thanakron Noppanamas
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Manon Boonbangyang
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thavin Bodharamik
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Waritta Sawaengdee
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Worakitchanon W, Yanai H, Piboonsiri P, Miyahara R, Nedsuwan S, Imsanguan W, Chaiyasirinroje B, Sawaengdee W, Wattanapokayakit S, Wichukchinda N, Omae Y, Palittapongarnpim P, Tokunaga K, Mahasirimongkol S, Fujimoto A. Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence. Cell Host Microbe 2024; 32:1972-1987.e6. [PMID: 39471821 DOI: 10.1016/j.chom.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), is a significant health problem worldwide. Here, we developed a method to detect large insertions and deletions (indels), which have been generally understudied. Leveraging this framework, we performed a comprehensive analysis of single nucleotide variants and small and large indels across 1,960 Mtb clinical isolates. Comparing the distribution of variants demonstrated that gene disruptive variants are underrepresented in genes essential for bacterial survival. An evolutionary analysis revealed that Mtb genomes are enriched in partially deleterious mutations. Genome-wide association studies identified small and large deletions in eccB2 significantly associated with patient prognosis. Additionally, we unveil significant associations with antibiotic resistance in 23 non-canonical genes. Among these, large indels are primarily found in genetic regions of Rv1216c, Rv1217c, fadD11, and ctpD. This study provides a comprehensive catalog of genetic variations and highlights their potential impact for the future treatment and risk prediction of tuberculosis.
Collapse
Affiliation(s)
- Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis (RIT), Japan Anti-Tuberculosis Association, Kiyose 204-8522, Japan
| | - Pundharika Piboonsiri
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Reiko Miyahara
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | | | | | | | - Waritta Sawaengdee
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sukanya Wattanapokayakit
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Nuanjan Wichukchinda
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | - Prasit Palittapongarnpim
- Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Pyle CJ, Tobin DM. People who lack the immune protein TNF can still fight infection. Nature 2024; 633:293-294. [PMID: 39198607 DOI: 10.1038/d41586-024-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
|
4
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
5
|
Rotundo S, Tassone MT, Serapide F, Russo A, Trecarichi EM. Incipient tuberculosis: a comprehensive overview. Infection 2024; 52:1215-1222. [PMID: 38589748 PMCID: PMC11289152 DOI: 10.1007/s15010-024-02239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
In the context of the evolving global health landscape shaped by the COVID-19 pandemic, tuberculosis (TB) is gaining renewed attention as a reemerging threat even in low-endemic countries. Immunological tests such as the tuberculin skin test (TST) and interferon-gamma release assay (IGRA) are pivotal in identifying tuberculosis infection (TBI). However, their inability to distinguish between past and ongoing infection poses a diagnostic challenge, possibly leading to the unnecessary treatment of a significant portion of the population with potential side effects. This review delves into the concept of incipient tuberculosis (ITB), a dynamic, presymptomatic stage characterized by heightened Mycobacterium tuberculosis complex (MTC) metabolic activity and replication that result in minimal radiological changes, signifying a transitional state between TBI and TB. Key focus areas include epidemiological factors, underlying pathogenesis, imaging findings, and the ongoing challenges in the identification of individuals with ITB through the development of new biomarkers and the use of whole-genome sequencing-based analyses to implement early treatment strategies.
Collapse
Affiliation(s)
- Salvatore Rotundo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.
| | - Maria Teresa Tassone
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Francesca Serapide
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| |
Collapse
|
6
|
Marin MG, Wippel C, Quinones-Olvera N, Behruznia M, Jeffrey BM, Harris M, Mann BC, Rosenthal A, Jacobson KR, Warren RM, Li H, Meehan CJ, Farhat MR. Analysis of the limited M. tuberculosis accessory genome reveals potential pitfalls of pan-genome analysis approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586149. [PMID: 38585972 PMCID: PMC10996470 DOI: 10.1101/2024.03.21.586149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety of methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. To quantify sources of bias and error related to common pan-genome analysis approaches, we evaluated different approaches applied to curated collection of 151 Mycobacterium tuberculosis ( Mtb ) isolates. Mtb is characterized by its clonal evolution, absence of horizontal gene transfer, and limited accessory genome, making it an ideal test case for this study. Using a state-of-the-art graph-genome approach, we found that a majority of the structural variation observed in Mtb originates from rearrangement, deletion, and duplication of redundant nucleotide sequences. In contrast, we found that pan-genome analyses that focus on comparison of coding sequences (at the amino acid level) can yield surprisingly variable results, driven by differences in assembly quality and the softwares used. Upon closer inspection, we found that coding sequence annotation discrepancies were a major contributor to inflated Mtb accessory genome estimates. To address this, we developed panqc, a software that detects annotation discrepancies and collapses nucleotide redundancy in pan-genome estimates. When applied to Mtb and E. coli pan-genomes, panqc exposed distinct biases influenced by the genomic diversity of the population studied. Our findings underscore the need for careful methodological selection and quality control to accurately map the evolutionary dynamics of a bacterial species.
Collapse
|
7
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
8
|
Long R, Croxen M, Lee R, Doroshenko A, Lau A, Asadi L, Heffernan C, Paulsen C, Egedahl ML, Lloyd C, Li V, Tyrrell G. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: A retrospective 2-cohort study. J Infect 2024; 88:123-131. [PMID: 38104727 DOI: 10.1016/j.jinf.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Subclinical pulmonary tuberculosis (PTB) is an asymptomatic disease state between established TB infection and symptomatic (clinical) TB disease. It is present in 20-25% of PTB patients in high-income countries. Mycobacterium tuberculosis complex (MTBC) genetic heterogeneity, and differential host immunological responses, have been implicated in its pathogenesis. METHODS To determine the association between MTBC lineage and PTB disease phenotype, we used two retrospective cohorts of PTB patients in Canada and two independent lineage attribution methods (DNA fingerprinting and genome sequencing). The first cohort, Cohort 1, consisted of consecutively diagnosed PTB patients between 2014 and 2020. The second, Cohort 2, consisted of newly-arrived foreign-born PTB patients who either were or were not referred for post-landing medical surveillance between 2004 and 2017. Univariable and multivariable logistic regression models were sequentially fitted to both cohorts, adjusting for age, sex, disease type, drug resistance and HIV. Evolution of radiographic features was correlated to lineage in Cohort 2. FINDINGS Cohort 1 and 2 included 874 (209 subclinical) and 111 (44 subclinical) patients, respectively. In both cohorts, subclinical patients were more likely than clinical patients to have relapse/retreatment disease, be smear-negative, have longer times-to-culture positivity and to harbor an ancestral MTBC lineage (Indo-Oceanic or Mycobacterium africanum). Relapse/retreatment disease and ancestral MTBC lineage were independent predictors of subclinical disease (ORs and 95% CIs in Cohort 1, 1.85 [1.07,3.28], p < 0.029 and 2.30 [1.66,3.18], p < 0.001, respectively, and Cohort 2, 5.74 [1.37-24.06], p < 0.017 and 3.21 (1.29,7.97], p < 0.012, respectively). The geographic distribution of Indo-Oceanic strains causing subclinical disease was uneven. Non-progressive lung disease was more common in patients infected with ancestral than modern lineages in Cohort 2, 56.0% vs 25.4%, p < 0.005. INTERPRETATION MTBC lineage is a strong predictor of PTB disease phenotype. The genetic drivers of this association, and the relative contribution of other explanatory variables, are unknown.
Collapse
Affiliation(s)
- Richard Long
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Matthew Croxen
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn Lee
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Alexander Doroshenko
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Lau
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leyla Asadi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Heffernan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Paulsen
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Lou Egedahl
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin Lloyd
- Alberta Precision Laboratories, Edmonton, Alberta, Canada; Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Vincent Li
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Gregory Tyrrell
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Sun H, Sheng G, Xu Y, Chu H, Cao T, Dai G, Tian N, Duan H, Sun Z. Efflux pump Rv1258c activates novel functions of the oxidative stress and via the VII secretion system ESX-3-mediated iron metabolic pathway in Mycobacterium tuberculosis. Microbes Infect 2024; 26:105239. [PMID: 37863312 DOI: 10.1016/j.micinf.2023.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Oxidative stress and iron metabolism are essential for Mycobacterium tuberculosis (M.tb) survival in host cells. The efflux pump Rv1258c belongs to the major facilitator superfamily (MFS) and can actively pump drugs to promote certain drug resistance in M.tb. In this study, we compared H37RvΔRv1258c with wild-type (WT) M.tb H37Rv. The qRT-PCR results suggested that Rv1258c is potentially involved in the iron metabolic pathway by regulating the expression of ESX-3, which is required for iron uptake. Protein-Protein Affinity Predictor (PPA-Pred2) and the artificial intelligence program AlphaFold 2 were used for prediction and showed that Rv1258c has direct interactions with PPE4 and EccD3 but weak interactions with EccB3. This was further determined via protein-protein interaction analysis of the yeast two-hybrid expression system. By comparing mutant H37RvΔRv1258c strains with WT strains, we discovered that the absence of Rv1258c led to elevated intracellular H+ potential and NAD+/NADH ratios in M.tb, thereby resulting in oxidative stress. We hypothesize that the efflux pump Rv1258c not only has the function of regulating drug resistance in M.tb but also has a novel function in activating oxidative stress and regulating ESX-3-associated iron metabolism in M.tb.
Collapse
Affiliation(s)
- Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yuhui Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Tingming Cao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Guangming Dai
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| |
Collapse
|
10
|
Harrison LB, Kapur V, Behr MA. An imputed ancestral reference genome for the Mycobacterium tuberculosis complex better captures structural genomic diversity for reference-based alignment workflows. Microb Genom 2024; 10:001165. [PMID: 38175684 PMCID: PMC10868604 DOI: 10.1099/mgen.0.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Reference-based alignment of short-reads is a widely used technique in genomic analysis of the Mycobacterium tuberculosis complex (MTBC) and the choice of reference sequence impacts the interpretation of analyses. The most widely used reference genomes include the ATCC type strain (H37Rv) and the putative MTBC ancestral sequence of Comas et al. both of which are based on a lineage 4 sequence. As such, these reference sequences do not capture all of the structural variation known to be present in the ancestor of the MTBC. To better represent the base of the MTBC, we generated an imputed ancestral genomic sequence, termed MTBC0 from reference-free alignments of closed MTBC genomes. When used as a reference sequence in alignment workflows, MTBC0 mapped more short sequencing reads and called more pairwise SNPs relative to the Comas et al. sequence while exhibiting minimal impact on the overall phylogeny of MTBC. The results also show that MTBC0 provides greater fidelity in capturing genomic variation and allows for the inclusion of regions absent from H37Rv in standard MTBC workflows without additional steps. The use of MTBC0 as an ancestral reference sequence in standard workflows modestly improved read mapping, SNP calling and intuitively facilitates the study of structural variation and evolution in MTBC.
Collapse
Affiliation(s)
- Luke B. Harrison
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802-3500, USA
| | - Marcel A. Behr
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec H4A 3S5, Canada
| |
Collapse
|
11
|
Holloway-Kew KL, Henneberg M. Dynamics of tuberculosis infection in various populations during the 19th and 20th century: The impact of conservative and pharmaceutical treatments. Tuberculosis (Edinb) 2023; 143S:102389. [PMID: 38012934 DOI: 10.1016/j.tube.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 11/29/2023]
Abstract
Humans and Mycobacterium tuberculosis have co-evolved together for thousands of years. Many individuals are infected with the bacterium, but few show signs and symptoms of tuberculosis (TB). Pharmacotherapy to treat those who develop disease is useful, but drug resistance and non-adherence significantly impact the efficacy of these treatments. Prior to the introduction of antibiotic therapies, public health strategies were used to reduce TB mortality. This work shows how these strategies were able to reduce TB mortality in 19th and 20th century populations, compared with antibiotic treatments. Previously published mortality data from historical records for several populations (Switzerland, Germany, England and Wales, Scotland, USA, Japan, Brazil and South Africa) were used. Curvilinear regression was used to examine the reduction in mortality before and after the introduction of antibiotic treatments (1946). A strong decline in TB mortality was already occurring in Switzerland, Germany, England and Wales, Scotland and the USA prior to the introduction of antibiotic treatment. This occurred following many public health interventions including improved sanitation, compulsory reporting of TB cases, diagnostic techniques and sanatoria treatments. Following the introduction of antibiotics, mortality rates declined further, however, this had a smaller effect than the previously employed strategies. In Japan, Brazil and South Africa, reductions in mortality rates were largely driven by antibiotic treatments that caused rapid decline of mortality, with a smaller contribution from public health strategies. For the development of active disease, immune status is important. Individuals infected with the bacterium are more likely to develop signs and symptoms if their immune function is reduced. Effective strategies against TB can therefore include enhancing immune function of the population by improving nutrition, as well as reducing transmission by improving living conditions and public health. This has been effective in the past. Improving immunity may be an important strategy against drug resistant TB.
Collapse
Affiliation(s)
- K L Holloway-Kew
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| | - M Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedicine, University of Adelaide, Australia; Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| |
Collapse
|
12
|
Hemeg HA, Albulushi HO, Ozbak HA, Ali HM, Alahmadi EK, Almutawif YA, Alhuofie ST, Alaeq RA, Alhazmi AA, Najim MA, Hanafy AM. Evaluating the Sensitivity of Different Molecular Techniques for Detecting Mycobacterium tuberculosis Complex in Patients with Pulmonary Infection. Pol J Microbiol 2023; 72:421-431. [PMID: 37934050 PMCID: PMC10725165 DOI: 10.33073/pjm-2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
Collapse
Affiliation(s)
- Hassan A. Hemeg
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamzah O. Albulushi
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hani A. Ozbak
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamza M. Ali
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Emad K. Alahmadi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Yahya A. Almutawif
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Sari T. Alhuofie
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Rana A. Alaeq
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Areej A. Alhazmi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mustafa A. Najim
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Ahmed M. Hanafy
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines 2023; 11:3110. [PMID: 38137331 PMCID: PMC10740695 DOI: 10.3390/biomedicines11123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.
Collapse
Affiliation(s)
- Juan C. Ocampo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Instituto de Investigaciones Médicas, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
| |
Collapse
|
14
|
Islam MR, Sharma MK, KhunKhun R, Shandro C, Sekirov I, Tyrrell GJ, Soualhine H. Whole genome sequencing-based identification of human tuberculosis caused by animal-lineage Mycobacterium orygis. J Clin Microbiol 2023; 61:e0026023. [PMID: 37877705 PMCID: PMC10662373 DOI: 10.1128/jcm.00260-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
A recently described member of the Mycobacterium tuberculosis complex (MTBC) is Mycobacterium orygis, which can cause disease primarily in animals but also in humans. Although M. orygis has been reported from different geographic regions around the world, due to a lack of proper identification techniques, the contribution of this emerging pathogen to the global burden of zoonotic tuberculosis is not fully understood. In the present work, we report single nucleotide polymorphism (SNP) analysis using whole genome sequencing (WGS) that can accurately identify M. orygis and differentiate it from other members of the MTBC species. WGS-based SNP analysis was performed for 61 isolates from different provinces in Canada that were identified as M. orygis. A total of 56 M. orygis sequences from the public databases were also included in the analysis. Several unique SNPs in the gyrB, PPE55, Rv2042c, leuS, mmpL6, and mmpS6 genes were used to determine their effectiveness as genetic markers for the identification of M. orygis. To the best of our knowledge, five of these SNPs, viz., gyrB 277 (A→G), gyrB 1478 (T→C), leuS 1064 (A→T), mmpL6 486 (T→C), and mmpS6 334 (C→G), are reported for the first time in this study. Our results also revealed several SNPs specific to other species within MTBC. The phylogenetic analysis shows that the studied genomes were genetically diverse and clustered with M. orygis sequences of human and animal origin reported from different geographic locations. Therefore, the present study provides a new insight into the high-confidence identification of M. orygis from MTBC species based on WGS data, which can be useful for reference and diagnostic laboratories.
Collapse
Affiliation(s)
- Md Rashedul Islam
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meenu K. Sharma
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rupinder KhunKhun
- BC Center for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Cary Shandro
- Provincial Laboratory for Public Health, Alberta Precision Labs, Edmonton, Alberta, Canada
| | - Inna Sekirov
- BC Center for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Gregory J. Tyrrell
- Provincial Laboratory for Public Health, Alberta Precision Labs, Edmonton, Alberta, Canada
| | - Hafid Soualhine
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Wasai-Hara S, Itakura M, Fernandes Siqueira A, Takemoto D, Sugawara M, Mitsui H, Sato S, Inagaki N, Yamazaki T, Imaizumi-Anraku H, Shimoda Y, Minamisawa K. Bradyrhizobium ottawaense efficiently reduces nitrous oxide through high nosZ gene expression. Sci Rep 2023; 13:18862. [PMID: 37914789 PMCID: PMC10620151 DOI: 10.1038/s41598-023-46019-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
N2O is an important greenhouse gas influencing global warming, and agricultural land is the predominant (anthropogenic) source of N2O emissions. Here, we report the high N2O-reducing activity of Bradyrhizobium ottawaense, suggesting the potential for efficiently mitigating N2O emission from agricultural lands. Among the 15 B. ottawaense isolates examined, the N2O-reducing activities of most (13) strains were approximately five-fold higher than that of Bradyrhizobium diazoefficiens USDA110T under anaerobic conditions. This robust N2O-reducing activity of B. ottawaense was confirmed by N2O reductase (NosZ) protein levels and by mitigation of N2O emitted by nodule decomposition in laboratory system. While the NosZ of B. ottawaense and B. diazoefficiens showed high homology, nosZ gene expression in B. ottawaense was over 150-fold higher than that in B. diazoefficiens USDA110T, suggesting the high N2O-reducing activity of B. ottawaense is achieved by high nos expression. Furthermore, we examined the nos operon transcription start sites and found that, unlike B. diazoefficiens, B. ottawaense has two transcription start sites under N2O-respiring conditions, which may contribute to the high nosZ expression. Our study indicates the potential of B. ottawaense for effective N2O reduction and unique regulation of nos gene expression towards the high performance of N2O mitigation in the soil.
Collapse
Affiliation(s)
- Sawa Wasai-Hara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | - Daisaku Takemoto
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
16
|
Koleske BN, Jacobs WR, Bishai WR. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J Clin Invest 2023; 133:e173156. [PMID: 37781921 PMCID: PMC10541200 DOI: 10.1172/jci173156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
First achieved in 1998 by Cole et al., the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. The increasing accessibility of whole-genome sequencing across research and clinical settings has improved our ability to predict antibacterial susceptibility, to track epidemics at the level of individual outbreaks and wider historical trends, to query the efficacy of the bacille Calmette-Guérin (BCG) vaccine, and to uncover targets for novel antitubercular therapeutics. Likewise, we discuss several recent efforts to extract further discoveries from this powerful resource.
Collapse
Affiliation(s)
- Benjamin N. Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Dlamini TC, Mkhize BT, Sydney C, Maningi NE, Malinga LA. Molecular investigations of Mycobacterium tuberculosis genotypes among baseline and follow-up strains circulating in four regions of Eswatini. BMC Infect Dis 2023; 23:566. [PMID: 37644382 PMCID: PMC10466871 DOI: 10.1186/s12879-023-08546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic remains a major global health problem and Eswatini is not excluded. Our study investigated the circulating genotypes in Eswatini and compared them at baseline (start of treatment) and follow-up during TB treatment. METHODS Three hundred and ninety (n = 390) participants were prospectively enrolled from referral clinics and patients who met the inclusion criteria, were included in the study. A total of 103 participants provided specimens at baseline and follow-up within six months. Mycobacterium tuberculosis (M.tb) strains were detected by GeneXpert® MTB/RIF assay (Cephied, USA) and Ziehl -Neelsen (ZN) microscopy respectively at baseline and follow-up time-points respectively. The 206 collected specimens were decontaminated and cultured on BACTEC™ MGIT™ 960 Mycobacteria Culture System (Becton Dickinson, USA). Drug sensitivity testing was performed at both baseline and follow-up time points. Spoligotyping was performed on both baseline and follow-up strains after DNA extraction. RESULTS Resistance to at least one first line drug was detected higher at baseline compared to follow-up specimens with most of them developing into multidrug-resistant (MDR)-TB. A total of four lineages and twenty genotypes were detected. The distribution of the lineages varied among the different regions in Eswatini. The Euro-American lineage was the most prevalent with 46.12% (95/206) followed by the East Asian with 24.27% (50/206); Indo-Oceanic at 9.71% (20/206) and Central Asian at 1.94% (4/206). Furthermore, a high proportion of the Beijing genotype at 24.27% (50/206) and S genotype at 16.50% (34/206) were detected. The Beijing genotype was predominant in follow-up specimens collected from the Manzini region with 48.9% (23/47) (p = 0.001). A significant proportion of follow-up specimens developed MDR-TB (p = 0.001) with Beijing being the major genotype in most follow-up specimens (p < 0.000). CONCLUSION Eswatini has a high M.tb genotypic diversity. A significant proportion of the TB infected participants had the Beijing genotype associated with MDR-TB in follow-up specimens and thus indicate community wide transmission.
Collapse
Affiliation(s)
- Talent C Dlamini
- Department of Medical Laboratory Sciences, Southern Africa Nazarene University, Manzini, Eswatini.
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa.
| | - Brenda T Mkhize
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | - Clive Sydney
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | | | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Liu Y, Kaffah N, Pandor S, Sartain MJ, Larrouy-Maumus G. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep 2023; 13:10390. [PMID: 37369807 DOI: 10.1038/s41598-023-37641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. The involvement of lipids is even more pronounced in mycobacteria, including the human pathogen Mycobacterium tuberculosis, which produces a highly complex and diverse set of lipids in the cell envelope. These lipids include mycolic acids, which are among the longest fatty acids in nature and can contain up to 90 carbon atoms. Mycolic acids are ubiquitously found in mycobacteria and are alpha branched and beta hydroxylated lipids. Discrete modifications, such as alpha, alpha', epoxy, methoxy, keto, and carboxy, characterize mycolic acids at the species level. Here, we used high precision ion mobility-mass spectrometry to build a database including 206 mass-resolved collision cross sections (CCSs) of mycolic acids originating from the strict human pathogen M. tuberculosis, the opportunistic strains M. abscessus, M. marinum and M. avium, and the nonpathogenic strain M. smegmatis. Primary differences between the mycolic acid profiles could be observed between mycobacterial species. Acyl tail length and modifications were the primary structural descriptors determining CCS magnitude. As a resource for researchers, this work provides a detailed catalogue of the mass-resolved collision cross sections for mycolic acids along with a workflow to generate and analyse the dataset generated.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadhira Kaffah
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
19
|
Dekhil N, Mardassi H. Genomic changes underpinning the emergence of a successful Mycobacterium tuberculosis Latin American and Mediterranean clonal complex. Front Microbiol 2023; 14:1159994. [PMID: 37425998 PMCID: PMC10325029 DOI: 10.3389/fmicb.2023.1159994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The Latin American and Mediterranean sublineage (L4.3/LAM) is the most common generalist sublineage of Mycobacterium tuberculosis lineage 4 (L4), yet certain L4.3/LAM genotypes appear to be confined to particular geographic regions. This is typically the case of a L4.3/LAM clonal complex (CC), TUN4.3_CC1, which is the most preponderant in Tunisia (61.5% of L4.3/LAM). Methods Here, we used whole-genome sequencing data of 346 globally distributed L4 clinical strains, including 278 L4.3/LAM isolates, to reconstruct the evolutionary history of TUN4.3_CC1 and delineate critical genomic changes underpinning its success. Results and Discussion Phylogenomic coupled to phylogeographic analyses indicated that TUN4.3_CC1 has evolved locally, being confined mainly to North Africa. Maximum likelihood analyses using the site and branch-site models of the PAML package disclosed strong evidence of positive selection in the gene category "cell wall and cell processes" of TUN4.3_CC1. Collectively, the data indicate that TUN4.3_CC1 has inherited several mutations, which could have potentially contributed to its evolutionary success. Of particular interest are amino acid replacements at the esxK and eccC2 genes of the ESX/Type VII secretion system, which were found to be specific to TUN4.3_CC1, being common to almost all isolates. Because of its homoplastic nature, the esxK mutation could potentially have endowed TUN4.3_CC1 with a selective advantage. Moreover, we noticed the occurrence of additional, previously described homoplasic nonsense mutations in ponA1 and Rv0197. The mutation in the latter gene, a putative oxido-reductase, has previously been shown to be correlated with enhanced transmissibility in vivo. In sum, our findings unveiled several features underpinning the success of a locally evolved L4.3/LAM clonal complex, lending further support to the critical role of genes encoded by the ESX/type VII secretion system.
Collapse
|
20
|
Negrete-Paz AM, Vázquez-Marrufo G, Gutiérrez-Moraga A, Vázquez-Garcidueñas MS. Pangenome Reconstruction of Mycobacterium tuberculosis as a Guide to Reveal Genomic Features Associated with Strain Clinical Phenotype. Microorganisms 2023; 11:1495. [PMID: 37374997 DOI: 10.3390/microorganisms11061495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) is one of the leading causes of human deaths worldwide caused by infectious diseases. TB infection by Mycobacterium tuberculosis can occur in the lungs, causing pulmonary tuberculosis (PTB), or in any other organ of the body, resulting in extrapulmonary tuberculosis (EPTB). There is no consensus on the genetic determinants of this pathogen that may contribute to EPTB. In this study, we constructed the M. tuberculosis pangenome and used it as a tool to seek genomic signatures associated with the clinical presentation of TB based on its accessory genome differences. The analysis carried out in the present study includes the raw reads of 490 M. tuberculosis genomes (PTB n = 245, EPTB n = 245) retrieved from public databases that were assembled, as well as ten genomes from Mexican strains (PTB n = 5, EPTB n = 5) that were sequenced and assembled. All genomes were annotated and then used to construct the pangenome with Roary and Panaroo. The pangenome obtained using Roary consisted of 2231 core genes and 3729 accessory genes. On the other hand, the pangenome resulting from Panaroo consisted of 2130 core genes and 5598 accessory genes. Associations between the distribution of accessory genes and the PTB/EPTB phenotypes were examined using the Scoary and Pyseer tools. Both tools found a significant association between the hspR, plcD, Rv2550c, pe_pgrs5, pe_pgrs25, and pe_pgrs57 genes and the PTB genotype. In contrast, the deletion of the aceA, esxR, plcA, and ppe50 genes was significantly associated with the EPTB phenotype. Rv1759c and Rv3740 were found to be associated with the PTB phenotype according to Scoary; however, these associations were not observed when using Pyseer. The robustness of the constructed pangenome and the gene-phenotype associations is supported by several factors, including the analysis of a large number of genomes, the inclusion of the same number of PTB/EPTB genomes, and the reproducibility of results thanks to the different bioinformatic tools used. Such characteristics surpass most of previous M. tuberculosis pangenomes. Thus, it can be inferred that the deletion of these genes can lead to changes in the processes involved in stress response and fatty acid metabolism, conferring phenotypic advantages associated with pulmonary or extrapulmonary presentation of TB. This study represents the first attempt to use the pangenome to seek gene-phenotype associations in M. tuberculosis.
Collapse
Affiliation(s)
- Andrea Monserrat Negrete-Paz
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico
| | - Ana Gutiérrez-Moraga
- Instituto de Ciencias Biomédicas, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| |
Collapse
|
21
|
Gorzynski M, De Ville K, Week T, Jaramillo T, Danelishvili L. Understanding the Phage-Host Interaction Mechanism toward Improving the Efficacy of Current Antibiotics in Mycobacterium abscessus. Biomedicines 2023; 11:biomedicines11051379. [PMID: 37239050 DOI: 10.3390/biomedicines11051379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary infections caused by Mycobacterium abscessus (MAB) have been increasing in incidence in recent years, leading to chronic and many times fatal infections due to MAB's natural resistance to most available antimicrobials. The use of bacteriophages (phages) in clinics is emerging as a novel treatment strategy to save the lives of patients suffering from drug-resistant, chronic, and disseminated infections. The substantial research indicates that phage-antibiotic combination therapy can display synergy and be clinically more effective than phage therapy alone. However, there is limited knowledge in the understanding of the molecular mechanisms in phage-mycobacteria interaction and the synergism of phage-antibiotic combinations. We generated the lytic mycobacteriophage library and studied phage specificity and the host range in MAB clinical isolates and characterized the phage's ability to lyse the pathogen under various environmental and mammalian host stress conditions. Our results indicate that phage lytic efficiency is altered by environmental conditions, especially in conditions of biofilm and intracellular states of MAB. By utilizing the MAB gene knockout mutants of the MAB_0937c/MmpL10 drug efflux pump and MAB_0939/pks polyketide synthase enzyme, we discovered the surface glycolipid diacyltrehalose/polyacyltrehalose (DAT/PAT) as one of the major primary phage receptors in mycobacteria. We also established a set of phages that alter the MmpL10 multidrug efflux pump function in MAB through an evolutionary trade-off mechanism. The combination of these phages with antibiotics significantly decreases the number of viable bacteria when compared to phage or antibiotic-alone treatments. This study deepens our understanding of phage-mycobacteria interaction mechanisms and identifies therapeutic phages that can lower bacterial fitness by impairing an antibiotic efflux function and attenuating the MAB intrinsic resistance mechanism via targeted therapy.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Katalla De Ville
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry & Molecular Biology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
22
|
Gonzalo X, Yrah S, Broda A, Laurenson I, Claxton P, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. Performance of lipid fingerprint by routine matrix-assisted laser desorption/ionization time of flight for the diagnosis of Mycobacterium tuberculosis complex species. Clin Microbiol Infect 2023; 29:387.e1-387.e6. [PMID: 36270589 DOI: 10.1016/j.cmi.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Rapid detection of bacterial pathogens at species and sub-species levels is crucial for appropriate treatment, infection control, and public health management. Currently, one of the challenges in clinical microbiology is the discrimination of mycobacterial sub-species within the M. tuberculosis complex (MTBC). Our objective was to evaluate the ability of a biosafe mycobacterial lipid-based approach to identify MTBC cultures and sub-species. METHODS A blinded study was conducted using 90 mycobacterial clinical isolate strains comprising MTBC strains sub-cultured in Middlebrook 7H11 medium supplemented with 10% oleic-acid, dextrose, catalase growth supplement and incubated for up to 6 weeks at 37°C and using the following seven reference strains (M. tuberculosis H37Rv, M canettii, M. africanum, M. pinnipedii, M. caprae, M. bovis, and M. bovis BCG) grown under the same conditions, to set the reference lipid database and test it against the 90 MTBC clinical isolates. Cultured mycobacteria were heat-inactivated and loaded onto the matrix-assisted laser desorption/ionization target followed by the addition of the matrix. Acquisition of the data was performed using the positive ion mode. RESULTS Based on the identification of clear and defined lipid signatures from the seven reference strains, the method that we developed was fast (<10 minutes) and produced interpretable profiles for all but four isolates, caused by poor ionization giving an n = 86 with interpretable spectra. The sensitivity and specificity of the matrix-assisted laser desorption/ionization time of flight were 94.4 (95% CI, 86.4-98.5) and 94.4 (95% CI, 72.7-99.9), respectively. CONCLUSIONS Mycobacterial lipid profiling provides a means of rapid, safe, and accurate discrimination of species within the MTBC.
Collapse
Affiliation(s)
- Ximena Gonzalo
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shih Yrah
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian Laurenson
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | - Pauline Claxton
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Jurcic Smith KL, Sisk DM, Hu DD, Cronin RM, Hughes EJ, Brewer WJ, Coers J, Champion MM, Champion PA, Lowe CB, Smith CM, Lee S, Stout JE, Tobin DM. An ancestral mycobacterial effector promotes dissemination of infection. Cell 2022; 185:4507-4525.e18. [PMID: 36356582 PMCID: PMC9691622 DOI: 10.1016/j.cell.2022.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Collapse
Affiliation(s)
- Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mollie I Sweeney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ana María Xet-Mull
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel M Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jason E Stout
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
25
|
Liu Z, Jiang Z, Wu W, Xu X, Ma Y, Guo X, Zhang S, Sun Q. Identification of region of difference and H37Rv-related deletion in Mycobacterium tuberculosis complex by structural variant detection and genome assembly. Front Microbiol 2022; 13:984582. [PMID: 36160240 PMCID: PMC9493256 DOI: 10.3389/fmicb.2022.984582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC), the main cause of TB in humans and animals, is an extreme example of genetic homogeneity, whereas it is still nevertheless separated into various lineages by numerous typing methods, which differ in phenotype, virulence, geographic distribution, and host preference. The large sequence polymorphism (LSP), incorporating region of difference (RD) and H37Rv-related deletion (RvD), is considered to be a powerful means of constructing phylogenetic relationships within MTBC. Although there have been many studies on LSP already, focusing on the distribution of RDs in MTBC and their impact on MTB phenotypes, a crumb of new lineages or sub-lineages have been excluded and RvDs have received less attention. We, therefore, sampled a dataset of 1,495 strains, containing 113 lineages from the laboratory collection, to screen for RDs and RvDs by structural variant detection and genome assembly, and examined the distribution of RvDs in MTBC, including RvD2, RvD5, and cobF region. Consistent with genealogical delineation by single nucleotide polymorphism (SNP), we identified 125 RDs and 5 RvDs at the species, lineage, or sub-lineage levels. The specificities of RDs and RvDs were further investigated in the remaining 10,218 strains, suggesting that most of them were highly specific to distinct phylogenetic groups, could be used as stable genetic markers in genotyping. More importantly, we identified 34 new lineage or evolutionary branch specific RDs and 2 RvDs, also demonstrated the distribution of known RDs and RvDs in MTBC. This study provides novel details about deletion events that have occurred in distinct phylogenetic groups and may help to understand the genealogical differentiation.
Collapse
Affiliation(s)
- Zhuochong Liu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhonghua Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei Wu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyi Xu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yudong Ma
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaomei Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Senlin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Qun Sun,
| |
Collapse
|
26
|
Menardo F. Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. eLife 2022; 11:76780. [PMID: 35762734 PMCID: PMC9239681 DOI: 10.7554/elife.76780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Detecting factors associated with transmission is important to understand disease epidemics, and to design effective public health measures. Clustering and terminal branch lengths (TBL) analyses are commonly applied to genomic data sets of Mycobacterium tuberculosis (MTB) to identify sub-populations with increased transmission. Here, I used a simulation-based approach to investigate what epidemiological processes influence the results of clustering and TBL analyses, and whether differences in transmission can be detected with these methods. I simulated MTB epidemics with different dynamics (latency, infectious period, transmission rate, basic reproductive number R0, sampling proportion, sampling period, and molecular clock), and found that all considered factors, except for the length of the infectious period, affect the results of clustering and TBL distributions. I show that standard interpretations of this type of analyses ignore two main caveats: (1) clustering results and TBL depend on many factors that have nothing to do with transmission, (2) clustering results and TBL do not tell anything about whether the epidemic is stable, growing, or shrinking, unless all the additional parameters that influence these metrics are known, or assumed identical between sub-populations. An important consequence is that the optimal SNP threshold for clustering depends on the epidemiological conditions, and that sub-populations with different epidemiological characteristics should not be analyzed with the same threshold. Finally, these results suggest that different clustering rates and TBL distributions, that are found consistently between different MTB lineages, are probably due to intrinsic bacterial factors, and do not indicate necessarily differences in transmission or evolutionary success.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Origin and Global Expansion of Mycobacterium tuberculosis Complex Lineage 3. Genes (Basel) 2022; 13:genes13060990. [PMID: 35741753 PMCID: PMC9222951 DOI: 10.3390/genes13060990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tuberculosis still causes 1.5 million deaths annually and is mainly caused by Mycobacterium tuberculosis complex strains belonging to three evolutionary modern lineages (Lineages 2–4). While Lineage 2 and Lineage 4 virtually conquered the world, Lineage 3 is particularly successful in Northern and Eastern Africa, as well as in Southern Asia, the suspected evolutionary origin of these strains. Here, we sought to understand how Lineage 3 strains came to the African continent. To this end, we performed routine genotyping to characterize over 2500 clinical isolates from 38 countries. We then selected a representative collection of 373 isolates for a whole-genome analysis and a modeling approach to infer the geographic origin of different sublineages. In fact, the origin of Lineage 3 could be located in India, and we found evidence for independent introductions of four distinct sublineages into North/East Africa, in line with known ancient exchanges and migrations between both world regions. Our study illustrates that the evolutionary history of humans and their pathogens are closely connected and further provides a systematic understanding of the genomic diversity of Lineage 3, which could be important for the development of new tuberculosis vaccines or new therapeutics. Abstract Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world regions with the highest tuberculosis burden. To investigate the population structure and the global diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains is located in Southern Asia and further revealed multiple independent introduction events into North-East and East Africa. This study provides a systematic understanding of the global diversity of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the effectivity of new drugs/regimens or vaccine candidates.
Collapse
|
28
|
Ma R, Farrell D, Gonzalez G, Browne JA, Nakajima C, Suzuki Y, Gordon SV. The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium bovis. Front Microbiol 2022; 13:817952. [PMID: 35495699 PMCID: PMC9048740 DOI: 10.3389/fmicb.2022.817952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) contains the causative agents of tuberculosis (TB) in mammals. The archetypal members of the MTBC, Mycobacterium tuberculosis and Mycobacterium bovis, cause human tuberculosis and bovine tuberculosis, respectively. Although M. tuberculosis and M. bovis share over 99.9% genome identity, they show distinct host adaptation for humans and animals; hence, while the molecular basis of host adaptation is encoded in their genomes, the mechanistic basis of host tropism is still unclear. Exploration of the in vitro phenotypic consequences of known genetic difference between M. bovis and M. tuberculosis offers one route to explore genotype–phenotype links that may play a role in host adaptation. The TbD1 (“Mycobacterium tuberculosis deletion 1 region”) locus encompasses the mmpS6 and mmpL6 genes. TbD1 is absent in M. tuberculosis “modern” lineages (Lineages 2, 3, and 4) but present in “ancestral” M. tuberculosis (Lineages 1 and 7), Mycobacterium africanum lineages (Lineages 5 and 6), newly identified M. tuberculosis lineages (Lineages 8 and 9), and animal adapted strains, such as M. bovis. The function of TbD1 has previously been investigated in M. tuberculosis, where conflicting data has emerged on the role of TbD1 in sensitivity to oxidative stress, while the underlying mechanistic basis of such a phenotype is unclear. In this study, we aimed to shed further light on the role of the TbD1 locus by exploring its function in M. bovis. Toward this, we constructed an M. bovis TbD1 knockout (ΔTbD1) strain and conducted comparative transcriptomics to define global gene expression profiles of M. bovis wild-type (WT) and the ΔTbD1 strains under in vitro culture conditions (rolling and standing cultures). This analysis revealed differential induction of a hypoxia-driven copper response in WT and ΔTbD1 strains. In vitro phenotypic assays demonstrated that the deletion of TbD1 sensitized M. bovis to H2O2 and hypoxia-specific copper toxicity. Our study provides new information on the function of the TbD1 locus in M. bovis and its role in stress responses in the MTBC.
Collapse
Affiliation(s)
- Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gabriel Gonzalez
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - John A. Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Chie Nakajima
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Stephen V. Gordon,
| |
Collapse
|
29
|
Robinne S, Saad J, Morsli M, Hamidou ZH, Tazerart F, Drancourt M, Baron SA. Rapid Identification of Mycobacterium tuberculosis Complex Using Mass Spectrometry: A Proof of Concept. Front Microbiol 2022; 13:753969. [PMID: 35432257 PMCID: PMC9008353 DOI: 10.3389/fmicb.2022.753969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria that form the Mycobacterium tuberculosis complex are responsible for deadly tuberculosis in animals and patients. Identification of these pathogens at the species level is of primary importance for treatment and source tracing and currently relies on DNA analysis, including whole genome sequencing (WGS), which requires a whole day. In this study, we report the unprecedented discrimination of M. tuberculosis complex species using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), with WGS as the comparative reference standard. In the first step, optimized peptide extraction applied to 36 isolates otherwise identified in five of the 11 M. tuberculosis complex variants by WGS yielded 139 MALDI-TOF spectra, which were used to identify biomarkers of interest that facilitate differentiation between variants. In a second step, 70/80 (88%) other isolates were correctly classified by an algorithm based on specific peaks. This study is the first to report a MALDI-TOF-MS method for discriminating M. tuberculosis complex mycobacteria that is easily implemented in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Simon Robinne
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Jamal Saad
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Madjid Morsli
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Zelika Harouna Hamidou
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Laboratoire National de Référence des IST/VIH et de la Tuberculose, Niamey, Niger
| | - Fatah Tazerart
- IHU Méditerranée Infection, Marseille, France
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida, Algeria
| | - Michel Drancourt
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix-Marseille-University, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- *Correspondence: Sophie Alexandra Baron,
| |
Collapse
|
30
|
Gisch N, Utpatel C, Gronbach LM, Kohl TA, Schombel U, Malm S, Dobos KM, Hesser DC, Diel R, Götsch U, Gerdes S, Shuaib YA, Ntinginya NE, Khosa C, Viegas S, Kerubo G, Ali S, Al-Hajoj SA, Ndung'u PW, Rachow A, Hoelscher M, Maurer FP, Schwudke D, Niemann S, Reiling N, Homolka S. Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Front Microbiol 2022; 13:832054. [PMID: 35350619 PMCID: PMC8957993 DOI: 10.3389/fmicb.2022.832054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
“Ancestral” Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) – known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.
Collapse
Affiliation(s)
- Nicolas Gisch
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lisa M Gronbach
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Danny C Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roland Diel
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Silke Gerdes
- Municipal Health Authority Hannover, Hanover, Germany
| | - Yassir A Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.,WHO-Supranational Reference Laboratory of Tuberculosis, Institute of Microbiology and Laboratory Medicine (IML Red), Gauting, Germany
| | - Nyanda E Ntinginya
- National Institute for Medical Research Tanzania - Mbeya Medical Research Center, Mbeya, Tanzania
| | - Celso Khosa
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Glennah Kerubo
- Department of Medical Microbiology and Parasitology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Solomon Ali
- Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sahal A Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Perpetual W Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian P Maurer
- National and WHO Supranational Reference Centre for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Microbial Interface Biology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
31
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
32
|
Reis AC, Cunha MV. Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis. Sci Rep 2021; 11:18789. [PMID: 34552144 PMCID: PMC8458382 DOI: 10.1038/s41598-021-98226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Genome sequencing has reinvigorated the infectious disease research field, shedding light on disease epidemiology, pathogenesis, host-pathogen interactions and also evolutionary processes exerted upon pathogens. Mycobacterium tuberculosis complex (MTBC), enclosing M. bovis as one of its animal-adapted members causing tuberculosis (TB) in terrestrial mammals, is a paradigmatic model of bacterial evolution. As other MTBC members, M. bovis is postulated as a strictly clonal, slowly evolving pathogen, with apparently no signs of recombination or horizontal gene transfer. In this work, we applied comparative genomics to a whole genome sequence (WGS) dataset composed by 70 M. bovis from different lineages (European and African) to gain insights into the evolutionary forces that shape genetic diversification in M. bovis. Three distinct approaches were used to estimate signs of recombination. Globally, a small number of recombinant events was identified and confirmed by two independent methods with solid support. Still, recombination reveals a weaker effect on M. bovis diversity compared with mutation (overall r/m = 0.037). The differential r/m average values obtained across the clonal complexes of M. bovis in our dataset are consistent with the general notion that the extent of recombination may vary widely among lineages assigned to the same taxonomical species. Based on this work, recombination in M. bovis cannot be excluded and should thus be a topic of further effort in future comparative genomics studies for which WGS of large datasets from different epidemiological scenarios across the world is crucial. A smaller M. bovis dataset (n = 42) from a multi-host TB endemic scenario was then subjected to additional analyses, with the identification of more than 1,800 sites wherein at least one strain showed a single nucleotide polymorphism (SNP). The majority (87.1%) was located in coding regions, with the global ratio of non-synonymous upon synonymous alterations (dN/dS) exceeding 1.5, suggesting that positive selection is an important evolutionary force exerted upon M. bovis. A higher percentage of SNPs was detected in genes enriched into "lipid metabolism", "cell wall and cell processes" and "intermediary metabolism and respiration" functional categories, revealing their underlying importance in M. bovis biology and evolution. A closer look on genes prone to horizontal gene transfer in the MTBC ancestor and included in the 3R (DNA repair, replication and recombination) system revealed a global average negative value for Taijima's D neutrality test, suggesting that past selective sweeps and population expansion after a recent bottleneck remain as major evolutionary drivers of the obligatory pathogen M. bovis in its struggle with the host.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
33
|
Osei-Wusu S, Otchere ID, Morgan P, Musah AB, Siam IM, Asandem D, Afum T, Asare P, Asante-Poku A, Kusi KA, Gagneux S, Yeboah-Manu D. Genotypic and phenotypic diversity of Mycobacterium tuberculosis complex genotypes prevalent in West Africa. PLoS One 2021; 16:e0255433. [PMID: 34437584 PMCID: PMC8389432 DOI: 10.1371/journal.pone.0255433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ishaque Mintah Siam
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Asandem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| |
Collapse
|
34
|
Sanoussi CN, Coscolla M, Ofori-Anyinam B, Otchere ID, Antonio M, Niemann S, Parkhill J, Harris S, Yeboah-Manu D, Gagneux S, Rigouts L, Affolabi D, de Jong BC, Meehan CJ. Mycobacterium tuberculosis complex lineage 5 exhibits high levels of within-lineage genomic diversity and differing gene content compared to the type strain H37Rv. Microb Genom 2021; 7:000437. [PMID: 34241588 PMCID: PMC8477398 DOI: 10.1099/mgen.0.000437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Pathogens of the Mycobacterium tuberculosis complex (MTBC) are considered to be monomorphic, with little gene content variation between strains. Nevertheless, several genotypic and phenotypic factors separate strains of the different MTBC lineages (L), especially L5 and L6 (traditionally termed Mycobacterium africanum) strains, from each other. However, this genome variability and gene content, especially of L5 strains, has not been fully explored and may be important for pathobiology and current approaches for genomic analysis of MTBC strains, including transmission studies. By comparing the genomes of 355 L5 clinical strains (including 3 complete genomes and 352 Illumina whole-genome sequenced isolates) to each other and to H37Rv, we identified multiple genes that were differentially present or absent between H37Rv and L5 strains. Additionally, considerable gene content variability was found across L5 strains, including a split in the L5.3 sub-lineage into L5.3.1 and L5.3.2. These gene content differences had a small knock-on effect on transmission cluster estimation, with clustering rates influenced by the selected reference genome, and with potential overestimation of recent transmission when using H37Rv as the reference genome. We conclude that full capture of the gene diversity, especially high-resolution outbreak analysis, requires a variation of the single H37Rv-centric reference genome mapping approach currently used in most whole-genome sequencing data analysis pipelines. Moreover, the high within-lineage gene content variability suggests that the pan-genome of M. tuberculosis is at least several kilobases larger than previously thought, implying that a concatenated or reference-free genome assembly (de novo) approach may be needed for particular questions.
Collapse
Affiliation(s)
- C. N'Dira Sanoussi
- Laboratoire de Référence des Mycobactéries, Cotonou, Benin
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mireia Coscolla
- I2SysBio, University of Valencia-FISABIO Joint Unit, Valencia, Spain
| | - Boatema Ofori-Anyinam
- Food and Drugs Authority, Accra, Ghana
- Rutgers New Jersey Medical School, Rutgers University, New Jersey, USA
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Martin Antonio
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Stefan Niemann
- German Center for Infection Research, partner site Borstel-Hamburg-Lübeck-Riems, Borstel, Germany
- Research Center Borstel, Molecular and Experimental Mycobacteriology, Borstel, Germany
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| |
Collapse
|
35
|
Mishra R, Yadav V, Guha M, Singh A. Heterogeneous Host-Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends Microbiol 2021; 29:606-620. [PMID: 33309526 PMCID: PMC7611257 DOI: 10.1016/j.tim.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Successful treatment of tuberculosis (TB) depends on the eradication of its causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the emergence of phenotypically drug-resistant Mtb in the host environment tempers the ability of antibiotics to cure disease. Host immunity produces diverse microenvironmental niches that are exploited by Mtb to mobilize adaptation programs. Such differential interactions amplify pre-existing heterogeneity in the host-pathogen milieu to influence disease pathology and therapy outcome. Therefore, comprehending the intricacies of phenotypic heterogeneity can be an empirical step forward in potentiating drug action. With this goal, we review the interconnectedness of the lesional, cellular, and bacterial heterogeneity underlying phenotypic drug resistance. Based on this information, we anticipate the development of new therapeutic strategies targeting host-pathogen heterogeneity to cure TB.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India.
| |
Collapse
|
36
|
Dubé JY, Fava VM, Schurr E, Behr MA. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to Mycobacterium tuberculosis. Front Immunol 2021; 12:714808. [PMID: 34276708 PMCID: PMC8278570 DOI: 10.3389/fimmu.2021.714808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human genetic control is thought to affect a considerable part of the outcome of infection with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by containment (associated with clinical "latency") or sterilization, but tragically millions each year do not. After decades of studies on host genetic susceptibility to Mtb infection, genetic variation has been discovered to play a role in tuberculous immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition receptors (PRRs) enable a consistent, molecularly direct interaction between humans and Mtb which suggests the potential for co-evolution. In this review, we explore the roles ascribed to PRRs during Mtb infection and ask whether such a longstanding and intimate interface between our immune system and this pathogen plays a critical role in determining the outcome of Mtb infection. The scientific evidence to date suggests that PRR variation is clearly implicated in altered immunity to Mtb but has a more subtle role in limiting the pathogen and pathogenesis. In contrast to 'effectors' like IFN-γ, IL-12, Nitric Oxide and TNF that are critical for Mtb control, 'sensors' like PRRs are less critical for the outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies investigating PRRs during Mtb infection should therefore be designed to investigate endophenotypes of infection - such as immunological or clinical variation - rather than just TB disease, if we hope to understand the molecular interface between innate immunity and Mtb.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 2021; 129:102092. [PMID: 34102584 DOI: 10.1016/j.tube.2021.102092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Multi-Drug-Resistant strains of Mycobacterium tuberculosis (MDR-TB) are a serious obstacle to global TB eradication. While most MDR-TB strains are infrequently transmitted, a few cause large transmission clusters that contribute substantially to local MDR-TB burdens. Here we examine whether the known mutations in these strains can explain their success. Drug resistance mutations differ in fitness costs and strains can also acquire compensatory mutations (CM) to restore fitness, but some highly transmitted MDR strains have no CM. The acquisition of resistance mutations that maintain high transmissibility seems to occur by chance and are more likely in strains that are intrinsically highly transmitted and cause many cases. Modern Beijing lineage strains have caused several large outbreaks, but MDR outbreaks are also caused by ancient Beijing and lineage 4 strains, suggesting the lineage is less important than the characteristics of the individual strain. The development of fluoroquinolone resistance appears to represent another level of selection, in which strains must surmount unknown fitness costs of gyrA mutations. The genetic determinants of high transmission are poorly defined but may involve genes encoding proteins involved in molybdenum acquisition and the Esx systems. In addition, strains eliciting lower cytokine responses and producing more caseating granulomas may have advantages for transmission. Successful MDR/XDR strains generally evolve from highly transmitted drug sensitive parent strains due to selection pressures from deficiencies in local TB control programs. Until TB incidence is considerably reduced, there will likely be highly transmitted strains that develop resistance to any new antibiotic.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; Laboratorio de Genética Molecular, CMBC, IVIC, Km. 11 Carr. Panamericana, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
38
|
Abstract
Current models of horizontal gene transfer (HGT) in mycobacteria are based on “distributive conjugal transfer” (DCT), an HGT type described in the fast-growing, saprophytic model organism Mycobacterium smegmatis, which creates genome mosaicism in resulting strains and depends on an ESX-1 type VII secretion system. In contrast, only few data on interstrain DNA transfer are available for tuberculosis-causing mycobacteria, for which chromosomal DNA transfer between two Mycobacterium canettii strains was reported, a process which, however, was not observed for Mycobacterium tuberculosis strains. Here, we have studied a wide range of human- and animal-adapted members of the Mycobacterium tuberculosis complex (MTBC) using an optimized filter-based mating assay together with three selected strains of M. canettii that acted as DNA recipients. Unlike in previous approaches, we obtained a high yield of thousands of recombinants containing transferred chromosomal DNA fragments from various MTBC donor strains, as confirmed by whole-genome sequence analysis of 38 randomly selected clones. While the genome organizations of the obtained recombinants showed mosaicisms of donor DNA fragments randomly integrated into a recipient genome backbone, reminiscent of those described as being the result of ESX-1-mediated DCT in M. smegmatis, we observed similar transfer efficiencies when ESX-1-deficient donor and/or recipient mutants were used, arguing that in tubercle bacilli, HGT is an ESX-1-independent process. These findings provide new insights into the genetic events driving the pathoevolution of M. tuberculosis and radically change our perception of HGT in mycobacteria, particularly for those species that show recombinogenic population structures despite the natural absence of ESX-1 secretion systems.
Collapse
|
39
|
Simeone R, Sayes F, Lawarée E, Brosch R. Breaching the phagosome, the case of the tuberculosis agent. Cell Microbiol 2021; 23:e13344. [PMID: 33860624 DOI: 10.1111/cmi.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples.
Collapse
Affiliation(s)
- Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Emeline Lawarée
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
40
|
Zakham F, Sironen T, Vapalahti O, Kant R. Pan and Core Genome Analysis of 183 Mycobacterium tuberculosis Strains Revealed a High Inter-Species Diversity among the Human Adapted Strains. Antibiotics (Basel) 2021; 10:antibiotics10050500. [PMID: 33924811 PMCID: PMC8145561 DOI: 10.3390/antibiotics10050500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is an airborne communicable disease with high morbidity and mortality rates, especially in developing countries. The causal agents of TB belong to the complex Mycobacterium tuberculosis (MTBc), which is composed of different human and animal TB associated species. Some animal associated species have zoonotic potential and add to the burden of TB management. The BCG ("Bacillus Calmette-Guérin") vaccine is widely used for the prevention against TB, but its use is limited in immunocompromised patients and animals due to the adverse effects and disseminated life-threatening complications. In this study, we aimed to carry out a comparative genome analysis between the human adapted species including BCG vaccine strains to identify and pinpoint the conserved genes related to the virulence across all the species, which could add a new value for vaccine development. For this purpose, the sequences of 183 Mycobacterium tuberculosis (MTB) strains were retrieved from the freely available WGS dataset at NCBI. The species included: 168 sensu stricto MTB species with other human MTB complex associated strains: M. tuberculosis var. africanum (3), M. tuberculosis var. bovis (2 draft genomes) and 10 BCG species, which enabled the analysis of core genome which contains the conserved genes and some virulence factor determinants. Further, a phylogenetic tree was constructed including the genomes of human (183); animals MTB adapted strains (6) and the environmental Mycobacterium strain "M. canettii". Our results showed that the core genome consists of 1166 conserved genes among these species, which represents a small portion of the pangenome (7036 genes). The remaining genes in the pangenome (5870) are accessory genes, adding a high inter-species diversity. Further, the core genome includes several virulence-associated genes and this could explain the rare infectiousness potential of some attenuated vaccine strains in some patients. This study reveals that low number of conserved genes in human adapted MTBc species and high inter-species diversity of the pan-genome could be considered for vaccine candidate development.
Collapse
Affiliation(s)
- Fathiah Zakham
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (F.Z.); (T.S.); (O.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (F.Z.); (T.S.); (O.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (F.Z.); (T.S.); (O.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- HUSLAB, Hospital District of Helsinki and Uusimaa, 00260 Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (F.Z.); (T.S.); (O.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
41
|
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It? Front Microbiol 2021; 12:638047. [PMID: 33935997 PMCID: PMC8081860 DOI: 10.3389/fmicb.2021.638047] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a severe public health problem; the current diagnostic tests have limitations that delay treatment onset. Lipoarabinomannan (LAM) is a glycolipid that is a component of the cell wall of the bacillus Mycobacterium tuberculosis, the etiologic agent of TB. This glycolipid is excreted as a soluble form in urine. The World Health Organization has established that the design of new TB diagnostic methods is one of the priorities within the EndTB Strategy. LAM has been suggested as a biomarker to develop diagnostic tests based on its identification in urine, and it is one of the most prominent candidates to develop point-of-care diagnostic test because urine samples can be easily collected. Moreover, LAM can regulate the immune response in the host and can be found in the serum of TB patients, where it probably affects a wide variety of host cell populations, consequently influencing the quality of both innate and adaptive immune responses during TB infection. Here, we revised the evidence that supports that LAM could be used as a tool for the development of new point-of-care tests for TB diagnosis, and we discussed the mechanisms that could contribute to the low sensitivity of diagnostic testing.
Collapse
Affiliation(s)
- Julio Flores
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Cancino
- Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
42
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
43
|
Ranaivomanana P, Rabodoarivelo MS, Ndiaye MDB, Rakotosamimanana N, Rasolofo V. Different PPD-stimulated cytokine responses from patients infected with genetically distinct Mycobacterium tuberculosis complex lineages. Int J Infect Dis 2021; 104:725-731. [PMID: 33556615 DOI: 10.1016/j.ijid.2021.01.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The genetic diversity of Mycobacterium tuberculosis complex (MTBC) influences the immune response of the host, which may affect the immunodiagnostic tests and biomarker assessment studies used for tuberculosis (TB). This study aimed to determine whether the mycobacterial-antigen-stimulated cytokine responses vary with the genotype of the MTBC infecting the patient. METHODS Eighty-one patients with confirmed active pulmonary TB were recruited, and MTBC clinical strains were isolated from their sputum for bacterial lineage single-nucleotide polymorphism typing. Whole blood was drawn from the patients to measure the purified protein derivative (PPD)-stimulated cytokine responses (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, TNF-α, IFN-α, IL-12, eotaxin, IL-13, IL-15, IL-17, MIP1-α, MIP1-β, MCP1, IL1RA, IP10, IL2R, MIG) with the Luminex multiplex immunoassay. RESULTS Of the 24 cytokines studied, three were produced differentially in whole blood dependent on the infecting lineage of MTBC. Decreased production of IL-17 was observed in patients infected with modern lineages compared with patients infected with ancestral lineages (P < 0.01), and production of IFN-γ and IL-2 was significantly decreased in patients infected with lineage 4 strains compared with patients infected with lineage 3 strains (P < 0.05). CONCLUSION MTBC strains belonging to lineage 4 induced a decreased whole-blood PPD-stimulated pro-inflammatory cytokine response.
Collapse
Affiliation(s)
- Paulo Ranaivomanana
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar
| | | | | | - Niaina Rakotosamimanana
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar.
| | - Voahangy Rasolofo
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar
| |
Collapse
|
44
|
Menardo F, Rutaihwa LK, Zwyer M, Borrell S, Comas I, Conceição EC, Coscolla M, Cox H, Joloba M, Dou HY, Feldmann J, Fenner L, Fyfe J, Gao Q, García de Viedma D, Garcia-Basteiro AL, Gygli SM, Hella J, Hiza H, Jugheli L, Kamwela L, Kato-Maeda M, Liu Q, Ley SD, Loiseau C, Mahasirimongkol S, Malla B, Palittapongarnpim P, Rakotosamimanana N, Rasolofo V, Reinhard M, Reither K, Sasamalo M, Silva Duarte R, Sola C, Suffys P, Batista Lima KV, Yeboah-Manu D, Beisel C, Brites D, Gagneux S. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000Res 2021; 10:60. [PMID: 33732436 PMCID: PMC7921886 DOI: 10.12688/f1000research.28318.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics. For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Michaela Zwyer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, Valencia, Spain
| | - Emilyn Costa Conceição
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Zhunan, Taiwan
| | - Julia Feldmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lukas Fenner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Qian Gao
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto L Garcia-Basteiro
- Barcelona Institute for Global Health, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sebastian M Gygli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jerry Hella
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hellen Hiza
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Qingyun Liu
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Serej D Ley
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Chloe Loiseau
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Surakameth Mahasirimongkol
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | - Bijaya Malla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Prasit Palittapongarnpim
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | | | | | - Miriam Reinhard
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Klaus Reither
- University of Basel, Basel, Switzerland.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Mohamed Sasamalo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rafael Silva Duarte
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christophe Sola
- Université Paris-Saclay, Paris, France.,INSERM-Université de Paris, Paris, France
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karla Valeria Batista Lima
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil.,Instituto Evandro Chagas, Ananindeua, Brazil
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Survival of hypoxia-induced dormancy is not a common feature of all strains of the Mycobacterium tuberculosis complex. Sci Rep 2021; 11:2628. [PMID: 33514768 PMCID: PMC7846770 DOI: 10.1038/s41598-021-81223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
While persistence in a dormant state is crucial for the life cycle of Mycobacterium tuberculosis, no investigation regarding dormancy survival of different strains across different lineages was performed so far. We analyzed responses to oxygen starvation and recovery in terms of growth, metabolism, and transcription. All different strains belonging to the Euro-American lineage (L4) showed similar survival and resuscitation characteristics. Different clinical isolates from the Beijing (L2), East African-Indian (L3), and Delhi/Central Asian (L1) lineage did not survive oxygen starvation. We show that dormancy survival is lineage-dependent. Recovery from O2 starvation was only observed in strains belonging to the Euro-American (L4) lineage but not in strains belonging to different lineages (L1, L2, L3). Thus, resuscitation from dormancy after oxygen starvation is not a general feature of all M. tuberculosis strains as thought before. Our findings are of key importance to understand infection dynamics of non-Euro-American vs Euro-American strains and to develop drugs targeting the dormant state.
Collapse
|
46
|
Nicholson KR, Mousseau CB, Champion MM, Champion PA. The genetic proteome: Using genetics to inform the proteome of mycobacterial pathogens. PLoS Pathog 2021; 17:e1009124. [PMID: 33411813 PMCID: PMC7790235 DOI: 10.1371/journal.ppat.1009124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the “genetic proteome,” how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| |
Collapse
|
47
|
Tuberculosis diagnostics: overcoming ancient challenges with modern solutions. Emerg Top Life Sci 2020; 4:423-436. [PMID: 33258943 PMCID: PMC7733669 DOI: 10.1042/etls20200335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
Rapid, sensitive, accurate and portable diagnostics are a mainstay of modern medicine. Tuberculosis is a disease that has been with us since time immemorial and, despite the fact that it can be treated and cured, it still remains the world's biggest infectious killer, taking the lives of millions annually. There have been important developments in the diagnostic devices for tuberculosis however, these are often prone to error, expensive, lack the necessary sensitivity or accuracy and, crucially, not sufficiently portable and thus not applicable in the remote, rural areas, where they are most needed. Modern solutions have been emerging in the past decade, seeking to overcome many of the inhibiting issues in this field by utilising recent advances in molecular biology, genetics and sequencing or even completely ‘reinventing the wheel’, by developing novel and unprecedented diagnostic techniques. In this mini review, the issues and challenges arising from the historical methods of diagnosing tuberculosis are discussed, followed by outlaying their particular lack of appropriateness for regions of the world where tuberculosis still remains endemic. Subsequently, more recent developments of new methods and technological advancements as ‘modern weapons’ in the battle to defeat this disease and associated challenges are reviewed, and finally an outlook is presented, highlighting the future of the modern solutions under development, which are envisioned to lay the platform for improvements in delivering timely intervention, reduce immense expense and burden on healthcare systems worldwide, while saving millions of lives and eventually, may enable the eradication of this ancient disease.
Collapse
|
48
|
Székely R, Rengifo-Gonzalez M, Singh V, Riabova O, Benjak A, Piton J, Cimino M, Kornobis E, Mizrahi V, Johnsson K, Manina G, Makarov V, Cole ST. 6,11-Dioxobenzo[ f]pyrido[1,2- a]indoles Kill Mycobacterium tuberculosis by Targeting Iron-Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infect Dis 2020; 6:3015-3025. [PMID: 32930569 DOI: 10.1021/acsinfecdis.0c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of a diversity-oriented compound library led to the identification of two 6,11-dioxobenzo[f]pyrido[1,2-a]indoles (DBPI) that displayed low micromolar bactericidal activity against the Erdman strain of Mycobacterium tuberculosis in vitro. The activity of these hit compounds was limited to tubercle bacilli, including the nonreplicating form, and to Mycobacterium marinum. On hit expansion and investigation of the structure activity relationship, selected modifications to the dioxo moiety of the DBPI scaffold were either neutral or led to reduction or abolition of antimycobacterial activity. To find the target, DBPI-resistant mutants of M. tuberculosis Erdman were raised and characterized first microbiologically and then by whole genome sequencing. Four different mutations, all affecting highly conserved residues, were uncovered in the essential gene rv0338c (ispQ) that encodes a membrane-bound protein, named IspQ, with 2Fe-2S and 4Fe-4S centers and putative iron-sulfur-binding reductase activity. With the help of a structural model, two of the mutations were localized close to the 2Fe-2S domain in IspQ and another in transmembrane segment 3. The mutant genes were recessive to the wild type in complementation experiments and further confirmation of the hit-target relationship was obtained using a conditional knockdown mutant of rv0338c in M. tuberculosis H37Rv. More mechanistic insight was obtained from transcriptome analysis, following exposure of M. tuberculosis to two different DBPI; this revealed strong upregulation of the redox-sensitive SigK regulon and genes induced by oxidative and thiol-stress. The findings of this investigation pharmacologically validate a novel target in tubercle bacilli and open a new vista for tuberculosis drug discovery.
Collapse
Affiliation(s)
- Rita Székely
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Rengifo-Gonzalez
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Olga Riabova
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mena Cimino
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75015 Paris, France
- Hub Bioinformatique et Biostatistique, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia Manina
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
49
|
Yimer SA, Kalayou S, Homberset H, Birhanu AG, Riaz T, Zegeye ED, Lutter T, Abebe M, Holm-Hansen C, Aseffa A, Tønjum T. Lineage-Specific Proteomic Signatures in the Mycobacterium tuberculosis Complex Reveal Differential Abundance of Proteins Involved in Virulence, DNA Repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism. Front Microbiol 2020; 11:550760. [PMID: 33072011 PMCID: PMC7536270 DOI: 10.3389/fmicb.2020.550760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.
Collapse
Affiliation(s)
- Solomon Abebe Yimer
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Shewit Kalayou
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alemayehu Godana Birhanu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tahira Riaz
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ephrem Debebe Zegeye
- NORCE Norwegian Research Centre AS, Centre for Applied Biotechnology, Bergen, Norway
| | - Timo Lutter
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Carol Holm-Hansen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
50
|
A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 2020; 11:2917. [PMID: 32518235 PMCID: PMC7283319 DOI: 10.1038/s41467-020-16626-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/13/2020] [Indexed: 02/03/2023] Open
Abstract
The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle. The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to be evolved from a common progenitor in Africa. Here, the authors identify two MTBC strains isolated from patients with multidrug-resistant tuberculosis, representing an as-yet-unknown lineage further supporting an East African origin for the MTBC.
Collapse
|