1
|
Han Z, Qiao X, Lin S, Wang J, Zhang C, von Gadow K. Biodiversity and anthropogenic disturbances predominantly drive carbon sequestration rates across temporal scales in temperate forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123243. [PMID: 39509983 DOI: 10.1016/j.jenvman.2024.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Addressing the escalating challenges of climate change necessitates a comprehensive understanding of the factors influencing carbon sequestration rates (CSRs) in forest ecosystems. Although the impact of various biotic factors, environmental, and anthropogenic factors on CSRs over different time scales is well recognized, their precise roles remain poorly defined. This study aims to clarify the mechanistic relationships between CSRs and these factors in large-scale natural temperate forests in northeastern China. We employed linear mixed-effects models and piecewise structural equation models were to analyze data from 310 vegetation plots, assessing the effects of biotic factors (including multidimensional diversity, structural diversity, and community-weighted mean (CWM) trait values) and abiotic factors (climate, topography, and anthropogenic disturbances) across different forest types and successional stages. Our analysis tested a series of hypotheses to identify the principal drivers of forest CSRs. The results indicate that while functional composition and standard environmental factors such as mean annual temperature and slope are significant, their influence is markedly less than that of biodiversity (encompassing multidimensional and structural diversity) and anthropogenic disturbance (as measured by the Human Modification Index). These findings support the dominance of the niche complementarity theory and the moderate disturbance hypothesis, with their importance increasing over time. Furthermore, this study advocates for forest management strategies that are specifically tailored to the unique characteristics of mixed and dense forests at different stages of succession. By elucidating the complex relationships between ecological variables and CSRs, our findings provide critical insights for the development of effective strategies aimed at optimizing forest carbon sequestration. This study underscores the necessity of integrating sustainable forest management with the conservation of ecological biodiversity.
Collapse
Affiliation(s)
- Zhuoxiu Han
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xuetao Qiao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Senxuan Lin
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
| | - Chunyu Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Klaus von Gadow
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany; Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
2
|
Velasco JA, Luna-Aranguré C, Calderón-Bustamante O, Mendoza-Ponce A, Estrada F, González-Salazar C. Drivers of urban biodiversity in Mexico and joint risks from future urban expansion, climate change, and urban heat island effect. PLoS One 2024; 19:e0308522. [PMID: 39365758 PMCID: PMC11451986 DOI: 10.1371/journal.pone.0308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024] Open
Abstract
Urbanization is a phenomenon where humans concentrate in high densities and consume more per capita energy than in rural areas, imposing high pressures on biodiversity and ecosystem services. Although Mexico is recognized as a megadiverse country and there is an understanding of ecological and evolutionary processes underlying this high diversity, only some efforts have been devoted to understanding how urban biodiversity has been shaped. Here, we compiled a set of socioeconomic and ecological variables to explore macroecological patterns in urban biodiversity across Mexican municipalities. Specifically, we tested the species-area relationships (SAR) between rural and urban areas across municipalities and evaluated the relative role of different socioeconomic and ecological variables driving urban species richness for terrestrial vertebrates. Finally, we explored the exposure of Mexican municipalities to future urban expansion, the urban heat island (UHI) effect, and climate change. Urban and rural settlements show differences in the shape of SAR models. We found that urban area, size of the network of urban protected areas, the number of ecoregions, and GDP explained the urban total species richness relatively well. Mexican cities in the northeast region may be at a higher risk than others. Based on our analyses, policymakers should identify priority urban conservation sites in cities with high species richness and low urbanization development. These actions would alleviate future urban biodiversity loss in these growing cities.
Collapse
Affiliation(s)
- Julián A. Velasco
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Luna-Aranguré
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Calderón-Bustamante
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alma Mendoza-Ponce
- PINCC-Programa de Investigación en Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Estrada
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PINCC-Programa de Investigación en Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute for Environmental Studies, VU Amsterdam, Amsterdam, the Netherlands
| | - Constantino González-Salazar
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Oliver KE, Harrison XA. Temperature and land use change are associated with Rana temporaria reproductive success and phenology. PeerJ 2024; 12:e17901. [PMID: 39224827 PMCID: PMC11368080 DOI: 10.7717/peerj.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemical pollution, land cover change, and climate change have all been established as important drivers of amphibian reproductive success and phenology. However, little is known about the relative impacts of these anthropogenic stressors, nor how they may interact to alter amphibian population dynamics. Addressing this gap in our knowledge is important, as it allows us to identify and prioritise the most needed conservation actions. Here, we use long-term datasets to investigate landscape-scale drivers of variation in the reproductive success and phenology of UK Common frog (Rana temporaria) populations. Consistent with predictions, we found that increasing mean temperatures resulted in earlier initialisation of spawning, and earlier hatching, but these relationships were not consistent across all sites. Lower temperatures were also linked to increased spawn mortality. However, temperature increases were also strongly correlated with increases in urban area, arable area, and nitrate levels in the vicinity of spawning grounds. As with spawning and hatching, there was marked spatial variation in spawn mortality trends, where some sites exhibited steady increases over time in the proportion of dead or diseased spawn. These findings support previous work linking warming temperatures to shifts in timing of amphibian breeding, but also highlight the importance of assessing the effect of land use change and pollution on wild amphibian populations. These results have implications for our understanding of the response of wild amphibian populations to climate change, and the management of human-dominated landscapes for declining wildlife populations.
Collapse
Affiliation(s)
- Kat E. Oliver
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| |
Collapse
|
4
|
Cui Y, Carmona CP, Wang Z. Identifying global conservation priorities for terrestrial vertebrates based on multiple dimensions of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14205. [PMID: 37855155 DOI: 10.1111/cobi.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework of the Convention on Biological Diversity calls for an expansion of the current protected areas (PAs) to cover at least 30% of global land and water areas by 2030 (i.e., the 30×30 target). Efficient spatial planning for PA expansion is an urgent need for global conservation practice. A spatial prioritization framework considering multiple dimensions of biodiversity is critical for improving the efficiency of the spatial planning of PAs, yet it remains a challenge. We developed an index for the identification of priority areas based on functionally rare, evolutionarily distinct, and globally endangered species (FREDGE) and applied it to 21,536 terrestrial vertebrates. We determined species distributions, conservation status (global endangerment), molecular phylogenies (evolutionary distinctiveness), and life-history traits (functional rarity). Madagascar, Central America, and the Andes were of high priority for the conservation of multiple dimensions of terrestrial vertebrate biodiversity. However, 68.8% of grid cells in these priority areas had <17% of their area covered by PAs, and these priority areas were under intense anthropogenic and climate change threats. These results highlight the difficulties of conserving multiple dimensions of biodiversity. Our global analyses of the geographical patterns of multiple dimensions of terrestrial vertebrate biodiversity demonstrate the insufficiency of the conservation of different biodiversity dimensions, and our index, based on multiple dimensions of biodiversity, provides a useful tool for guiding future spatial prioritization of PA expansion to achieve the 30×30 target under serious pressures.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Lewandrowski W, Tudor EP, Ajduk H, Tomlinson S, Stevens JC. Spatiotemporal variation in ecophysiological traits align with high resolution niche modelling in the short-range banded ironstone endemic Aluta quadrata. CONSERVATION PHYSIOLOGY 2024; 12:coae030. [PMID: 38798718 PMCID: PMC11127796 DOI: 10.1093/conphys/coae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Defining plant ecophysiological responses across natural distributions enables a greater understanding of the niche that plants occupy. Much of the foundational knowledge of species' ecology and responses to environmental change across their distribution is often lacking, particularly for rare and threatened species, exacerbating management and conservation challenges. Combining high-resolution species distribution models (SDMs) with ecophysiological monitoring characterized the spatiotemporal variation in both plant traits and their interactions with their surrounding environment for the range-restricted Aluta quadrata Rye & Trudgen, and a common, co-occurring generalist, Eremophila latrobei subsp. glabra (L.S.Sm.) Chinnock., from the semi-arid Pilbara and Gascoyne region in northwest Western Australia. The plants reflected differences in gas exchange, plant health and plant water relations at sites with contrasting suitability from the SDM, with higher performance measured in the SDM-predicted high-suitability site. Seasonal differences demonstrated the highest variation across ecophysiological traits in both species, with higher performance in the austral wet season across all levels of habitat suitability. The results of this study allow us to effectively describe how plant performance in A. quadrata is distributed across the landscape in contrast to a common, widespread co-occurring species and demonstrate a level of confidence in the habitat suitability modelling derived from the SDM in predicting plant function determined through intensive ecophysiology monitoring programmes. In addition, the findings also provide a baseline approach for future conservation actions, as well as to explore the mechanisms underpinning the short-range endemism arid zone systems.
Collapse
Affiliation(s)
- Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| | - Emily P Tudor
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| | - Hayden Ajduk
- Rio Tinto, Central Park, 152–158 St Georges Terrace, Perth, Western Australia 6000, Australia
| | - Sean Tomlinson
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- Geospatial Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jason C Stevens
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
| |
Collapse
|
6
|
Yue W, Zhou Q, Li M, van Vliet J. Relocating built-up land for biodiversity conservation in an uncertain future. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118706. [PMID: 37536125 DOI: 10.1016/j.jenvman.2023.118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Land use changes associated with habitat loss, fragmentation, and degradation exert profoundly detrimental impacts on biodiversity conservation. Urban development is one of the prevailing anthropogenic disturbances to wildlife habitat, because these developments are often considered permanent and irreversible. As a result, the potential benefits of built-up land relocation for biodiversity conservation have remained largely unexplored in environmental management practices. Here, we analyze recent built-up land relocation in Shanghai and explore how such restoration programs can affect future land change trajectories with regards to biodiversity conservation. Results show that 187.78 km2 built-up land in Shanghai was restored to natural habitat between 2017 and 2020. Further simulation analysis highlights that relocating built-up land can substantially promote conserve biodiversity. In particular, there would be less habitat loss, better natural habitat quality and more species habitat-suitable range under the scenarios with built-up land relocation. Species extinction assessment suggest that amphibians, mammals, and reptiles will all have an increasingly high extinction risk without built-up land relocation. However, there will even be a marginal decrease in extinction risk over time for mammals and reptiles if the relocation of built-up land is permitted, but still a moderate increase in extinction risk for amphibians. This study highlights the importance of incorporating rigorous conservation planning prior to development activities, thereby underpinning a sustainable approach to environmental management.
Collapse
Affiliation(s)
- Wenze Yue
- Department of Land Management, Zhejiang University, Hangzhou, China
| | - Qiushi Zhou
- Department of Land Management, Zhejiang University, Hangzhou, China
| | - Mengmeng Li
- Department of Land Management, Zhejiang University, Hangzhou, China; Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands; Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jasper van Vliet
- Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Mohanty S, Mishra BK, Dasgupta M, Acharya GC, Singh S, Naresh P, Bhue S, Dixit A, Sarkar A, Sahoo MR. Deciphering phenotyping, DNA barcoding, and RNA secondary structure predictions in eggplant wild relatives provide insights for their future breeding strategies. Sci Rep 2023; 13:13829. [PMID: 37620406 PMCID: PMC10449851 DOI: 10.1038/s41598-023-40797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Eggplant or aubergine (Solanum melongena L.) and its wild cousins, comprising 13 clades with 1500 species, have an unprecedented demand across the globe. Cultivated eggplant has a narrow molecular diversity that hinders eggplant breeding advancements. Wild eggplants need resurgent attention to broaden eggplant breeding resources. In this study, we emphasized phenotypic and genotypic discriminations among 13 eggplant species deploying chloroplast-plastid (Kim matK) and nuclear (ITS2) short gene sequences (400-800 bp) at DNA barcode region followed by ITS2 secondary structure predictions. The identification efficiency at the Kim matK region was higher (99-100%) than in the ITS2 region (80-90%). The eggplant species showed 13 unique secondary structures with a central ring with various helical orientations. Principal component analysis (PCoA) provides the descriptor-wise phenotypic clustering, which is essential for trait-specific breeding. Groups I and IV are categorized under scarlet complexes S. aethiopicum, S. trilobatum, and S. melongena (wild and cultivated). Group II represented the gboma clade (S. macrocarpon, S. wrightii, S. sisymbriifolium, and S. aculeatissimum), and group III includes S. mammosum, and S. torvum with unique fruit shape and size. The present study would be helpful in genetic discrimination, biodiversity conservation, and the safe utilization of wild eggplants.
Collapse
Affiliation(s)
- Sansuta Mohanty
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
- Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences (IAS), Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Bandana Kumari Mishra
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, 751024, India
| | - Madhumita Dasgupta
- ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Imphal, Manipur, 795004, India
- Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences (IAS), Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Gobinda Chandra Acharya
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
| | - Satyapriya Singh
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
| | - Ponnam Naresh
- ICAR-Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India
| | - Shyamlal Bhue
- Institute of Life Sciences, Bhubaneswar, Odisha, 751024, India
| | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar, Odisha, 751024, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, 751024, India
| | - Manas Ranjan Sahoo
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India.
| |
Collapse
|
8
|
Cant J, Capdevila P, Beger M, Salguero-Gómez R. Recent exposure to environmental stochasticity does not determine the demographic resilience of natural populations. Ecol Lett 2023. [PMID: 37158011 DOI: 10.1111/ele.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Escalating climatic and anthropogenic pressures expose ecosystems worldwide to increasingly stochastic environments. Yet, our ability to forecast the responses of natural populations to this increased environmental stochasticity is impeded by a limited understanding of how exposure to stochastic environments shapes demographic resilience. Here, we test the association between local environmental stochasticity and the resilience attributes (e.g. resistance, recovery) of 2242 natural populations across 369 animal and plant species. Contrary to the assumption that past exposure to frequent environmental shifts confers a greater ability to cope with current and future global change, we illustrate how recent environmental stochasticity regimes from the past 50 years do not predict the inherent resistance or recovery potential of natural populations. Instead, demographic resilience is strongly predicted by the phylogenetic relatedness among species, with survival and developmental investments shaping their responses to environmental stochasticity. Accordingly, our findings suggest that demographic resilience is a consequence of evolutionary processes and/or deep-time environmental regimes, rather than recent-past experiences.
Collapse
Affiliation(s)
- James Cant
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pol Capdevila
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
9
|
Kong X, Wang C, Wu Q, Wang Z, Han Y, Teng J, Qi X. Screening and identification of key biomarkers of depression using bioinformatics. Sci Rep 2023; 13:4180. [PMID: 36914737 PMCID: PMC10010653 DOI: 10.1038/s41598-023-31413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
We aimed to identify the molecular biomarkers of MDD disease progression to uncover potential mechanisms of major depressive disorder (MDD). In this study, three microarray data sets, GSE44593, GSE12654, and GSE54563, were cited from the Gene Expression Omnibus database for performance evaluation. To perform molecular functional enrichment analyses, differentially expressed genes (DEGs) were identified, and a protein-protein interaction network was configured using the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape. To assess multi-purpose functions and pathways, such as signal transduction, plasma membrane, protein binding, and cancer pathways, a total of 220 DEGs, including 143 upregulated and 77 downregulated genes, were selected. Additionally, six central genes were observed, including electron transport system variant transcription factor 6, FMS-related receptor tyrosine kinase 3, carnosine synthetase 1, solute carrier family 22 member 13, prostaglandin endoperoxide synthetase 2, and protein serine kinase H1, which had a significant impact on cell proliferation, extracellular exosome, protein binding, and hypoxia-inducible factor 1 signaling pathway. This study enhances our understanding of the molecular mechanism of the occurrence and progression of MDD and provides candidate targets for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xinru Kong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Chuang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qiaolan Wu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Ziyue Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yu Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jing Teng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
10
|
Lyngdoh AW, Kumara HN, Babu S, Karunakaran PV. Community Reserves: Their significance for the conservation of mammals in a mosaic of community-managed lands in Meghalaya, Northeast India. PLoS One 2023; 18:e0280994. [PMID: 36701278 PMCID: PMC9879402 DOI: 10.1371/journal.pone.0280994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Community Reserves (CRs) have been advocated for increasing the protected area coverage in northeast India where the land is primarily owned and managed by local indigenous institutions. To understand the significance of these reserves for the conservation of mammals, we investigated the diversity and abundance of mammals in five CRs in the Khasi Hills of Meghalaya as well as interviewed 75 local villagers to assess the hunting practices and perceptions of the Indigenous Khasis on mammals. We employed 60 camera traps in the CRs and undertook a recce survey (day-time and night-time) for capturing the diversity in the CRs. We used photo-capture rate and encounter rate as indices of relative abundance in the CRs. We used an exact multinomial test to test differences of opinion among the respondents of the five CRs. We found a relatively low abundance of mammals in the CRs, yet they persist. A total of 28 species were detected through camera trapping and recce survey and an additional 12 species were reported by respondents to also occur in the CRs. Among the respondents, it was believed that the decline in mammal populations was largely driven by habitat loss and degradation (82.67%) while only a few believed it was also driven by hunting (5.33%). Respondents also believed that the presence of the reserves and awareness programs taken under them had also led to a reduction in hunting (20%) in their area. Although, some attributed it to a general decline in wildlife populations and forest cover (21.33%). Thus, despite these CRs being small (<2 km2) and isolated, they still harbour mammal species and are important for retaining remnant forest patches in a landscape that is highly fragmented.
Collapse
Affiliation(s)
- Adrian Wansaindor Lyngdoh
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
- Forests & Environment Department, Shillong, Meghalaya, India
| | - Honnavalli N. Kumara
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
- * E-mail:
| | | | - P. V. Karunakaran
- Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China. Sci Rep 2022; 12:22418. [PMID: 36575208 PMCID: PMC9794706 DOI: 10.1038/s41598-022-26171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
A fundamental goal of ecologists is to determine the large-scale gradients in species richness. The threatened plants are the priority of such studies because of their narrow distribution and confinement to a specific habitat. Studying the distribution patterns of threatened plants is crucial for identifying global conservation prioritization. In this study, the richness pattern of threatened plant species along spatial and elevation gradients in Sichuan Province of China was investigated, considering climatic, habitat-heterogeneity (HHET), geometric constraint and human-induced factors. The species richness pattern was analyzed, and the predictor variables, including mean annual temperature (MAT), mean annual precipitation (MAP), potential evapotranspiration (PET), HHET, and disturbance (DIST), to species richness were linked using the geographical distribution data of threatened species compiled at a spatial resolution of 20 km × 20 km. Generalized linear models and structural equation modelling were used to determine the individual and combined effects of each variable on species richness patterns. Results showed a total of 137 threatened plant species were distributed between 200 and 4800 m.a.s.l. The central region of the province harbors the highest species diversity. MAP and PET profoundly explained the richness pattern. Moreover, the significant role of DIST in the richness patterns of threatened plants was elucidated. These findings could help determine the richness pattern of threatened plant species in other mountainous regions of the world, with consideration of the impact of climate change.
Collapse
|
12
|
Li X, Hu W, Bleisch WV, Li Q, Wang H, Ti B, Qin Z, Sun J, Zhang F, Jiang X. Disproportionate loss of threatened terrestrial mammals along anthropogenic disturbance gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158038. [PMID: 35981589 DOI: 10.1016/j.scitotenv.2022.158038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Tens of thousands of species are increasingly confronted with habitat degradation and threatened with local extirpation and global extinction as a result of human activities. Understanding the local processes that shape the regional distribution patterns of at-risk species is useful in safeguarding species against threats. However, there is only limited understanding of the processes that shape the regional distribution patterns of threatened species. We explored the drivers and patterns of species richness of threatened, non-threatened and total terrestrial mammals by employing multi-region multi-species occupancy models based on data from a broad camera trapping survey at 1096 stations stratified across different levels of human activities in 54 mountain forests in southwest China. We compared correlates between total and threatened species richness and examined relationships of human impact variables with the proportion of threatened species and the site's local contribution to β diversity (LCBD). We found that threatened species richness was negatively related to human modification and human presence. However, both non-threatened and total species richness increased as human modification increased. Predicted proportions of threatened species were strongly and positively related to LCBD but negatively related to human modification and human presence. Our results indicate that human impacts can lead to disproportionate loss of threatened terrestrial mammals and highlight the importance of considering threatened species diversity independently from total species richness for directing conservation resources. Our approach represents one of the highest-resolution analyses of different types of human impacts on regional diversity patterns of threatened terrestrial mammals available to inform conservation policy.
Collapse
Affiliation(s)
- Xueyou Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenqiang Hu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - William V Bleisch
- China Exploration and Research Society, 2707-08 SouthMark, Wong Chuk Hang, Hong Kong, China
| | - Quan Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Hongjiao Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Bu Ti
- Deqan Administrative Sub-Bureau of Baimaxueshan National Nature Reserve, Diqing 674500, China
| | - Zhongyi Qin
- Chuxiong Administrative Sub-Bureau of Ailaoshan National Nature Reserve, Chuxiong 675000, China
| | - Jun Sun
- Gongshan Administrative Sub-Bureau of Gaoligongshan National Nature Reserve, Nujiang 673500, China
| | - Fuyou Zhang
- Baoshan Administrative Bureau of Gaoligongshan National Nature Reserve, Baoshan 678000, China
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
13
|
Herzog SA, Latvis M. Community-level phylogenetic diversity does not differ between rare and common lineages across tallgrass prairies in the northern Great Plains. Ecol Evol 2022; 12:e9453. [PMID: 36340814 PMCID: PMC9627050 DOI: 10.1002/ece3.9453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Niche differentiation has served as one explanation for species coexistence, and phylogenetic relatedness provides a means to approximate how ecologically similar species are to each other. To explore the contribution of rare species to community phylogenetic diversity, we sampled 21 plant communities across the Prairie Coteau ecoregion, an area of high conservation concern. We used breakpoint analysis through the iterative addition of less abundant species to the phylogenetic tree for each community to assess the contribution of rare species to community phylogenetic diversity. We also quantify the phylogenetic signal of abundance using Blomberg's K statistic and calculated the phylogenetic similarity between rare and common species using a phylogenetic beta-diversity metric (D nn). To estimate the phylogenetic structuring of these prairie communities, we calculated two common metrics that capture evolutionary relatedness at different scales (MPD and MNTD). Additionally, we examine the correlation between Faith's PD, MPD, and MNTD and species richness. We found rare species do not generally contribute higher levels of phylogenetic diversity than common species. Eight communities had significant breakpoints, with only four communities having an increasing trend for the rarest species. The phylogenetic signal for abundance was low but significant in only four communities, and communities had lower phylogenetic diversity than expected from the regional species pool. Finally, the strength of the correlation between species richness and phylogenetic diversity was mixed. Our results indicate niche differentiation does not explain the persistence of rare species in tallgrass prairies, as they were more closely related than expected from random, suggesting high functional redundancy between rare and common species. This is promising for the long-term resilience of this ecosystem, but only insofar as enough species remain in the system. With ongoing biodiversity loss, it is essential that we understand the role rare species play in their communities.
Collapse
Affiliation(s)
- Sarah A. Herzog
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
- C.A. Taylor HerbariumSouth Dakota State UniversityBrookingsSouth DakotaUSA
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Maribeth Latvis
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
- C.A. Taylor HerbariumSouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
14
|
Hunting and persecution drive mammal declines in Iran. Sci Rep 2022; 12:17743. [PMID: 36273079 PMCID: PMC9588066 DOI: 10.1038/s41598-022-22238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2023] Open
Abstract
The negative impacts of human activities on biodiversity are well documented. However, extinction risk studies incorporating direct human threats particularly direct killing remain limited. Here, we evaluate the potential role that direct killing through hunting and persecution, indirect human threats via land-use change, and environmental and species traits such as reproductive rate and trophic level among others, may play in driving mammal species to extinction. Based on data for 156 mammal species from Iran, we applied generalized linear models to investigate correlates of extinction risk for: (1) all mammalian species, (2) large- and (3) small-bodied species. We show that hunting vulnerability is the most important predictor to affect extinction risk across all species. We also found that the small-bodied species are impacted by indirect human influence, whereas large species are highly affected by direct killing. Overall, the extrinsic environmental factors and intrinsic species traits had lower importance in our models. Our study gives insight into the dominant role of direct killing on mammal species decline and extinction, emphasizing the need to account for the different sources of threats when analysing the correlates of extinction risk.
Collapse
|
15
|
Rutschmann A, Santure AW, Brekke P, Ewen JG, Shanahan D, de Villemereuil P. Variation in shape and consistency of selection between populations of the threatened Hihi (Notiomystis cincta). J Evol Biol 2022; 35:1378-1386. [PMID: 36117411 DOI: 10.1111/jeb.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
The shape and intensity of natural selection can vary between years, potentially resulting in a chronic reduction of fitness as individuals need to track a continually changing optimum of fitness (i.e., a "lag load"). In endangered species, often characterized by small population size, the lack of genetic diversity is expected to limit the response to this constant need to adjust to fluctuating selection, increasing the fitness burden and thus the risk of extinction. Here, we use long-term monitoring data to assess whether the type of selection for a key fitness trait (i.e., lay date) differs between two reintroduced populations of a threatened passerine bird, the hihi (Notiomystis cincta). We apply recent statistical developments to test for the presence or absence of fluctuation in selection in both the Tiritiri Mātangi Island and the Kārori sanctuary populations. Our results support the presence of stabilizing selection in Tiritiri Mātangi with a potential moving optimum for lay date. In Kārori our results favour a regime of directional selection. Although the shape of selection may differ, for both populations an earlier lay date generally increases fitness in both environments. Further, the moving optimum models of lay date on Tiritiri Mātangi, suggesting that selection varies between years, imply a substantial lag load in addition to the fitness burden caused by the population laying too late. Our results highlight the importance of characterizing the form and temporal variation of selection for each population to predict the effects of environmental change and to inform management.
Collapse
Affiliation(s)
- Alexis Rutschmann
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
| |
Collapse
|
16
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
17
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
18
|
Cervellini M, Di Musciano M, Zannini P, Fattorini S, Jiménez‐Alfaro B, Agrillo E, Attorre F, Angelini P, Beierkuhnlein C, Casella L, Field R, Fischer J, Genovesi P, Hoffmann S, Irl SDH, Nascimbene J, Rocchini D, Steinbauer M, Vetaas OR, Chiarucci A. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol Evol 2021; 11:18111-18124. [PMID: 35003661 PMCID: PMC8717275 DOI: 10.1002/ece3.8409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/06/2022] Open
Abstract
Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.
Collapse
Affiliation(s)
- Marco Cervellini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Michele Di Musciano
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
- Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
| | - Piero Zannini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Simone Fattorini
- Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
| | | | - Emiliano Agrillo
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Fabio Attorre
- Department of Environmental BiologySapienza University of RomeRomaItaly
| | | | - Carl Beierkuhnlein
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
| | - Laura Casella
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Jan‐Christopher Fischer
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
- School of Earth SciencesUniversity of BristolBristolUK
| | - Piero Genovesi
- Institute for Environmental Protection and Research (ISPRA)RomeItaly
| | - Samuel Hoffmann
- Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER), Geographical Institute Bayreuth (GIB)University of BayreuthBayreuthGermany
| | - Severin D. H. Irl
- Biogeography and Biodiversity Lab, Institute of Physical GeographyGoethe‐UniversityFrankfurtGermany
| | - Juri Nascimbene
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
- Department of Spatial Sciences, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrahaCzech Republic
| | - Manuel Steinbauer
- Sport Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER) & Department of Sport ScienceUniversity of BayreuthBayreuthGermany
| | - Ole R. Vetaas
- Department of GeographyUniversity of BergenBergenNorway
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
| |
Collapse
|
19
|
Pouteau R, Brunel C, Dawson W, Essl F, Kreft H, Lenzner B, Meyer C, Pergl J, Pyšek P, Seebens H, Weigelt P, Winter M, Kleunen M. Environmental and socioeconomic correlates of extinction risk in endemic species. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robin Pouteau
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
- AMAP IRD CNRS CIRAD INRA Univ Montpellier Montpellier France
| | - Caroline Brunel
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Wayne Dawson
- Department of Biosciences Durham University Durham UK
| | - Franz Essl
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Bernd Lenzner
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
- Institute for Geosciences and Geography Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jan Pergl
- Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic
| | - Petr Pyšek
- Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Prague 2 Czech Republic
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Campus‐Institut Data Science Göttingen Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Mark Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
- Department of Biology University of Konstanz Konstanz Germany
| |
Collapse
|
20
|
Mikoláš M, Svitok M, Bače R, Meigs GW, Keeton WS, Keith H, Buechling A, Trotsiuk V, Kozák D, Bollmann K, Begovič K, Čada V, Chaskovskyy O, Ralhan D, Dušátko M, Ferenčík M, Frankovič M, Gloor R, Hofmeister J, Janda P, Kameniar O, Lábusová J, Majdanová L, Nagel TA, Pavlin J, Pettit JL, Rodrigo R, Roibu CC, Rydval M, Sabatini FM, Schurman J, Synek M, Vostarek O, Zemlerová V, Svoboda M. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc Biol Sci 2021; 288:20211631. [PMID: 34666524 PMCID: PMC8527197 DOI: 10.1098/rspb.2021.1631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.
Collapse
Affiliation(s)
- Martin Mikoláš
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Marek Svitok
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Masaryka 24, Zvolen 96001, Slovakia
| | - Radek Bače
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Garrett W. Meigs
- Department of Natural Resources, Washington State, 1111 Washington Street SE, Olympia, WA 98504, USA
| | - William S. Keeton
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Drive, Burlington, VT, USA
| | - Heather Keith
- Griffith Climate Change Response Program, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
| | - Arne Buechling
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Volodymyr Trotsiuk
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Daniel Kozák
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Krešimir Begovič
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Vojtěch Čada
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Oleh Chaskovskyy
- Faculty of Forestry, Ukrainian National Forestry University, Gen. Chuprynka 103, Lviv 790 57, Ukraine
| | - Dheeraj Ralhan
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Martin Dušátko
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Matej Ferenčík
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Michal Frankovič
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Rhiannon Gloor
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Jeňýk Hofmeister
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Pavel Janda
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Ondrej Kameniar
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Jana Lábusová
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Linda Majdanová
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Thomas A. Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, Ljubljana 1000, Slovenia
| | - Jakob Pavlin
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Joseph L. Pettit
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
- Department of Biology, Minot State University, Minot, ND, USA
| | - Ruffy Rodrigo
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
- Department of Forest Science, Biliran Province State University, Biliran Campus, Biliran 6549, Philippines
| | - Catalin-Constantin Roibu
- Forest Biometrics Laboratory–Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, Universitătii Street no. 13, Suceava 720229, Romania
| | - Miloš Rydval
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Francesco M. Sabatini
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Martin-Luther University Halle-Wittenberg, Institute of Biology, Am Kirchtor 1, Halle 06108, Germany
- Alma Mater Studiorum–University of Bologna, Department of Biological, Geological and Environmental Sciences, BIOME Laboratory, Via Irnerio 42, 40126 Bologna, Italy
| | - Jonathan Schurman
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Michal Synek
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Ondřej Vostarek
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Veronika Zemlerová
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| | - Miroslav Svoboda
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 Suchdol, 16521 Czech Republic
| |
Collapse
|
21
|
Conservation genetics of a wide-ranged temperate snake: same species, different locations, and different behaviour. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Toussaint A, Brosse S, Bueno CG, Pärtel M, Tamme R, Carmona CP. Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world. Nat Commun 2021; 12:5162. [PMID: 34453040 PMCID: PMC8397725 DOI: 10.1038/s41467-021-25293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world. Anthropogenic extinctions are driving functional shifts in biological communities, but these changes might differ considerably among taxa and biogeographic regions. Here the authors show that projected losses of functional diversity among land and freshwater vertebrates are unevenly distributed across the world.
Collapse
Affiliation(s)
- Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Sébastien Brosse
- Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique), Toulouse, France
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Lu J, Lu H, Brusseau ML, He L, Gorlier A, Yao T, Tian P, Feng S, Yu Q, Nie Q, Yang Y, Yin C, Tang M, Feng W, Xue Y, Yin F. Interaction of climate change, potentially toxic elements (PTEs), and topography on plant diversity and ecosystem functions in a high-altitude mountainous region of the Tibetan Plateau. CHEMOSPHERE 2021; 275:130099. [PMID: 33667772 DOI: 10.1016/j.chemosphere.2021.130099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Potentially toxic elements (PTEs) generated from mining activities have affected ecological diversity and ecosystem functions around the world. Accurately assessing the long-term effects of PTEs is critical to classifying recoverable areas and proposing management strategies. Mining activities that shape geographical patterns of biodiversity in individual regions are increasingly understood, but the complex interactions on broad scales and in changing environments are still unclear. In this study, we developed a series of empirical models that simulate the changes in biodiversity and ecosystem functions in mine-affected regions along elevation gradients (1500-3600 m a.s.l) in the metal-rich Qilian Mountains (∼800 km) on the northeastern Tibetan Plateau (China). Our results confirmed the crucial role of PTEs dispersal, topography, and climatic heterogeneity in the diversification of plant community composition. On average, 54% of the changes in ecosystem functions were explained by the interactions among topography, climate, and PTEs. However, merely 30% of the changes were correlated with a single driver. The changes in species composition (explained variables = 94.8%) in the PTE-polluted habitats located in the warm and humid low-elevation deserts and grasslands were greater than those occurring in the dry alpine deserts and grasslands. The ecosystem functions (soil characteristics, nutrient migration, and plant biomass) experienced greater changes in the humid low-elevation grasslands and alpine deserts. Our results suggest that the processes driven by climate or other factors can result in high-altitude PTE-affected habitat facing greater threats.
Collapse
Affiliation(s)
- Jingzhao Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China; Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Mark L Brusseau
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Li He
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
| | - Alessandra Gorlier
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Tianci Yao
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Peipei Tian
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Sansan Feng
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Qing Yu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Qianwen Nie
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yiyang Yang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Chuang Yin
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Meng Tang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Wei Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Fangping Yin
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
24
|
The Patterns and Causes of Dermatitis in Terrestrial and Semi-Aquatic Mammalian Wildlife. Animals (Basel) 2021; 11:ani11061691. [PMID: 34204062 PMCID: PMC8228222 DOI: 10.3390/ani11061691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Causative disease and stress agents which manifest as dermatitis in mammals have varying effects on individual animals, from benign irritation and inflammation, to causing morbidity and even mortality. Bacteria, viruses and ectoparasites are all potential causes of dermatitis, and it can be exacerbated by various environmental, genetic and social factors. Furthermore, it is uncertain whether dermatitis is more likely to manifest in already-vulnerable wildlife species. Here, we systematically review the literature for reports of dermatitis in terrestrial and semi-aquatic wild mammalian species, with the goal of determining the biogeographical scale of dermatitis reports, the causes of dermatitis, and whether manifestation of dermatitis is reported more commonly in certain wildlife species or their captivity status (i.e., free-living, in captivity or in a laboratory). We reveal biases in the reporting of dermatitis by a biogeographic realm, with 55% of cases reported in the Nearctic, and towards particular orders of mammals, namely Artiodactyla and Carnivora. Overall, free-living wildlife is almost twice as likely to be reported as having dermatitis than individuals in captivity and six times more likely than individuals in laboratories, which we interpret as owing to exposure to a broader spectrum of parasites in free-ranging individuals, and potential reporting bias in captive individuals. Notably, dermatitis was reported in 23 threatened species, with some species more likely than others to be reported exhibiting clinical signs of dermatitis resulting from underlying health problems. We also find that threatened species are more likely to be reported as having dermatitis in captivity, particularly outside of their endemic home range. This review highlights diverse patterns of dermatological disease causes in captive and free-ranging wildlife, conditions under which they are more likely to be documented, and the need for cross-disciplinary research to ascertain (and so better manage) the varied causes.
Collapse
|
25
|
Comprehensive genus-wide screening of seahorse microsatellite loci identifies priority species for conservation assessment. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Niemeier S, Müller J, Struck U, Rödel MO. Superfrogs in the city: 150 year impact of urbanization and agriculture on the European Common Frog. GLOBAL CHANGE BIOLOGY 2020; 26:6729-6741. [PMID: 32975007 DOI: 10.1111/gcb.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Despite growing pressure on biodiversity deriving from increasing anthropogenic disturbances, some species successfully persist in altered ecosystems. However, these species' characteristics and thresholds, as well as the environmental frame behind that process are usually unknown. We collected data on body size, fluctuating asymmetry (FA), as well as nitrogen stable isotopes (δ15 N) from museum specimens of the European Common Frog, Rana temporaria, all originating from the Berlin-Brandenburg area, Germany, in order to test: (a) if specimens have changed over the last 150 years (1868-2018); and (b) if changes could be attributed to increasing urbanization and agricultural intensity. We detected that after the Second World War, frogs were larger than in pre-war Berlin. In rural Brandenburg, we observed no such size change. FA analysis revealed a similar tendency with lower levels in Berlin after the war and higher levels in Brandenburg. Enrichment of δ15 N decreased over time in both regions but was generally higher and less variable in sites with agricultural land use. Frogs thus seem to encounter favorable habitat conditions after pollution in postwar Berlin improved, but no such tendencies were observable in the predominantly agricultural landscape of Brandenburg. Urbanization, characterized by the proportion of built-up area, was not the main associated factor for the observed trait changes. However, we detected a relationship with the amount of urban greenspace. Our study exemplifies that increasing urbanization must not necessarily worsen conditions for species living in urban habitats. The Berlin example demonstrates that public parks and other urban greenspaces have the potential to serve as suitable refuges for some species. These findings underline the urgency of establishing, maintaining, and connecting such habitats, and generally consider their importance for future urban planning.
Collapse
Affiliation(s)
- Stephanie Niemeier
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| |
Collapse
|