1
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kim H, Lee W, Kim Y, Lee SJ, Choi W, Lee GK, Park SJ, Ju S, Kim SY, Lee C, Han JY. Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma. Exp Mol Med 2024; 56:2082-2095. [PMID: 39300154 PMCID: PMC11446976 DOI: 10.1038/s12276-024-01320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 09/22/2024] Open
Abstract
Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs.
Collapse
Affiliation(s)
- Hyondeog Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Wonyeop Lee
- Anticancer Resistance Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Youngwook Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea.
- Division of Cancer Data Science, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Wonyoung Choi
- Cancer Molecular Biology Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Geon Kook Lee
- Cancer Diagnostics Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Seung-Jin Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Shinyeong Ju
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ji-Youn Han
- Anticancer Resistance Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
4
|
Yuan DY, McKeague ML, Raghu VK, Schoen RE, Finn OJ, Benos PV. Cellular and transcriptional profiles of peripheral blood mononuclear cells pre-vaccination predict immune response to preventative MUC1 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598031. [PMID: 38948837 PMCID: PMC11212910 DOI: 10.1101/2024.06.14.598031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial ( NCT02134925 ) were conducted in individuals with a history of advanced colonic adenoma to test the safety and immunogenicity of the MUC1 tumor antigen vaccine and its potential to prevent new adenomas. These were the first two trials of a non-viral cancer vaccine administered in the absence of cancer. The vaccine was safe and strongly immunogenic in 43% (NCT007773097) and 25% ( NCT02134925 ) of participants. The lack of response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to some level of suppression previously reported only in cancer. Single-cell RNA-sequencing (scRNA-seq) on banked pre-vaccination peripheral blood mononuclear cells (PBMCs) from 16 immune responders and 16 non-responders identified specific cell types, genes, and pathways of a productive vaccine response. Responders had a significantly higher percentage of CD4+ naive T cells pre-vaccination, but a significantly lower percentage of CD8+ T effector memory (TEM) cells and CD16+ monocytes. Differential gene expression (DGE) and transcription factor inference analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in CD4+ naive T cells, and pathway analysis showed enriched signaling activity in responders. Furthermore, Bayesian network analysis suggested that these genes were mechanistically connected to response. Our analyses identified several immune mechanisms and candidate biomarkers to be further validated as predictors of immune responses to a preventative cancer vaccine that could facilitate selection of individuals likely to benefit from a vaccine or be used to improve vaccine responses.
Collapse
|
5
|
Lokhande L, Nilsson D, de Matos Rodrigues J, Hassan M, Olsson LM, Pyl PT, Vasquez L, Porwit A, Gerdtsson AS, Jerkeman M, Ek S. Quantification and Profiling of Early and Late Differentiation Stage T Cells in Mantle Cell Lymphoma Reveals Immunotherapeutic Targets in Subsets of Patients. Cancers (Basel) 2024; 16:2289. [PMID: 39001353 PMCID: PMC11240320 DOI: 10.3390/cancers16132289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
With the aim to advance the understanding of immune regulation in MCL and to identify targetable T-cell subsets, we set out to combine image analysis and spatial omic technology focused on both early and late differentiation stages of T cells. MCL patient tissue (n = 102) was explored using image analysis and GeoMx spatial omics profiling of 69 proteins and 1812 mRNAs. Tumor cells, T helper (TH) cells and cytotoxic (TC) cells of early (CD57-) and late (CD57+) differentiation stage were analyzed. An image analysis workflow was developed based on fine-tuned Cellpose models for cell segmentation and classification. TC and CD57+ subsets of T cells were enriched in tumor-rich compared to tumor-sparse regions. Tumor-sparse regions had a higher expression of several key immune suppressive proteins, tentatively controlling T-cell expansion in regions close to the tumor. We revealed that T cells in late differentiation stages (CD57+) are enriched among MCL infiltrating T cells and are predictive of an increased expression of immune suppressive markers. CD47, IDO1 and CTLA-4 were identified as potential targets for patients with T-cell-rich MCL TIME, while GITR might be a feasible target for MCL patients with sparse T-cell infiltration. In subgroups of patients with a high degree of CD57+ TC-cell infiltration, several immune checkpoint inhibitors, including TIGIT, PD-L1 and LAG3 were increased, emphasizing the immune-suppressive features of this highly differentiated T-cell subset not previously described in MCL.
Collapse
Affiliation(s)
- Lavanya Lokhande
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden
| | - Daniel Nilsson
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden
| | | | - May Hassan
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden
| | - Lina M. Olsson
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden
| | - Paul-Theodor Pyl
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | | | - Mats Jerkeman
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Nagarkatti PS, Nagarkatti M. 6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells. J Leukoc Biol 2024; 115:1070-1083. [PMID: 38366630 PMCID: PMC11135611 DOI: 10.1093/jleuko/qiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Collapse
Affiliation(s)
- Alkeiver S Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Bryan L Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| |
Collapse
|
7
|
Kramer G, Blair T, Bambina S, Kaur AP, Alice A, Baird J, Friedman D, Dowdell AK, Tomura M, Grassberger C, Piening BD, Crittenden MR, Gough MJ. Fluorescence tracking demonstrates T cell recirculation is transiently impaired by radiation therapy to the tumor. Sci Rep 2024; 14:11909. [PMID: 38789721 PMCID: PMC11126658 DOI: 10.1038/s41598-024-62871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.
Collapse
Affiliation(s)
- Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - David Friedman
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Brian D Piening
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, 97213, USA.
| |
Collapse
|
8
|
Chen JJ, Vincent MY, Shepard D, Peereboom D, Mahalingam D, Battiste J, Patel MR, Juric D, Wen PY, Bullock A, Selfridge JE, Pant S, Liu J, Li W, Fyfe S, Wang S, Zota V, Mahoney J, Watnick RS, Cieslewicz M, Watnick J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. COMMUNICATIONS MEDICINE 2024; 4:95. [PMID: 38773224 PMCID: PMC11109328 DOI: 10.1038/s43856-024-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - Dejan Juric
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Shubham Pant
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joyce Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Wendy Li
- Vigeo Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lahusen A, Cai J, Schirmbeck R, Wellstein A, Kleger A, Seufferlein T, Eiseler T, Lin YN. A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing. Sci Rep 2024; 14:9377. [PMID: 38654067 DOI: 10.1038/s41598-024-60107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.
Collapse
Affiliation(s)
- Anton Lahusen
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Jierui Cai
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Alexander Kleger
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, 89081, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
- Organoid Core Facility, Ulm University Hospital, 89081, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Yuan-Na Lin
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Zhang XF, Zhang XL, Wang YJ, Fang Y, Li ML, Liu XY, Luo HY, Tian Y. The regulatory network of the chemokine CCL5 in colorectal cancer. Ann Med 2023; 55:2205168. [PMID: 37141250 PMCID: PMC10161960 DOI: 10.1080/07853890.2023.2205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The chemokine CCL5 plays a potential role in the occurrence and development of colorectal cancer (CRC). Previous studies have shown that CCL5 directly acts on tumor cells to change tumor metastatic rates. In addition, CCL5 recruits immune cells and immunosuppressive cells into the tumor microenvironment (TME) and reshapes the TME to adapt to tumor growth or increase antitumor immune efficacy, depending on the type of secretory cells releasing CCL5, the cellular function of CCL5 recruitment, and the underlying mechanisms. However, at present, research on the role played by CCL5 in the occurrence and development of CRC is still limited, and whether CCL5 promotes the occurrence and development of CRC and its role remain controversial. This paper discusses the cells recruited by CCL5 in patients with CRC and the specific mechanism of this recruitment, as well as recent clinical studies of CCL5 in patients with CRC.Key MessagesCCL5 plays dual roles in colorectal cancer progression.CCL5 remodels the tumor microenvironment to adapt to colorectal cancer tumor growth by recruiting immunosuppressive cells or by direct action.CCL5 inhibits colorectal cancer tumor growth by recruiting immune cells or by direct action.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-Jing Wang
- Department of General Surgery, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Fang
- Organ Transplant Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-Li Li
- Honghui Hospital affiliated to Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Ono K, Sujino T, Miyamoto K, Harada Y, Kojo S, Yoshimatsu Y, Tanemoto S, Koda Y, Zheng J, Sayama K, Koide T, Teratani T, Mikami Y, Takabayashi K, Nakamoto N, Hosoe N, London M, Ogata H, Mucida D, Taniuchi I, Kanai T. Downregulation of chemokine receptor 9 facilitates CD4 +CD8αα + intraepithelial lymphocyte development. Nat Commun 2023; 14:5152. [PMID: 37620389 PMCID: PMC10449822 DOI: 10.1038/s41467-023-40950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) reside in the gut epithelial layer, where they help in maintaining intestinal homeostasis. Peripheral CD4+ T cells can develop into CD4+CD8αα+ IELs upon arrival at the gut epithelium via the lamina propria (LP). Although this specific differentiation of T cells is well established, the mechanisms preventing it from occurring in the LP remain unclear. Here, we show that chemokine receptor 9 (CCR9) expression is low in epithelial CD4+CD8αα+ IELs, but CCR9 deficiency results in CD4+CD8αα+ over-differentiation in both the epithelium and the LP. Single-cell RNA sequencing shows an enriched precursor cell cluster for CD4+CD8αα+ IELs in Ccr9-/- mice. CD4+ T cells isolated from the epithelium of Ccr9-/- mice also display increased expression of Cbfβ2, and the genomic occupancy modification of Cbfβ2 expression reveals its important function in CD4+CD8αα+ differentiation. These results implicate a link between CCR9 downregulation and Cbfb2 splicing upregulation to enhance CD4+CD8αα+ IEL differentiation.
Collapse
Affiliation(s)
- Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunology and Stem Cell Biology, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Jiawen Zheng
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazutoshi Sayama
- Applied Life Science Course, College of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Yan C, Ma Y, Li J, Chen X, Ma J. Identification of key immune cell-related genes involved in tumorigenesis and prognosis of cervical squamous cell carcinoma. Hum Vaccin Immunother 2023; 19:2254239. [PMID: 37799074 PMCID: PMC10561582 DOI: 10.1080/21645515.2023.2254239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
The infiltration of immune cells can significantly affect the prognosis and immune therapy of patients with cervical squamous cell carcinoma (CSCC). This study aimed to explore key immune cell-related genes in the tumorigenesis and prognosis of CSCC. The module significantly related to immunity was screened by weighted gene co-expression network analysis (WGCNA) and ESTIMATE analysis, followed by correlation analysis with clinical traits. Key candidate genes were intersected with the protein-protein interaction (PPI) network genes for immune-related genes. The relationship between immune cell infiltration and key genes was analyzed. Tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) predicted the response to immunotherapy in CSCC patients. Clinically, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were manipulated for analyzing the changes in mRNA and protein expression of key genes in cancer. Western blot was conducted to assess the correlation between key genes and immune infiltration. The brown module was notably associated with the immune microenvironment of CSCC, from which three immune-related key genes (TYROBP, CCL5, and HLA-DRA) were obtained. High expression of these genes was significantly positively associated with the infiltration abundance of T cells, B cells, and other immune cells. High expression levels of three key genes were confirmed in para-cancer tissue and correlated with the abundance of immune cells. The high-expression group of key genes was more sensitive to immunotherapy. We provide a theoretical basis for searching for potential targets for effective treatment and diagnosis of CSCC and provide new ideas for developing novel immunotherapy strategies.
Collapse
Affiliation(s)
- Chunxiao Yan
- School of Medicine, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanyan Ma
- School of Medicine, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Junyan Li
- School of Medicine, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xuejun Chen
- School of Medicine, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jiong Ma
- School of Medicine, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Nomura A, Kobayashi T, Seo W, Ohno-Oishi M, Kakugawa K, Muroi S, Yoshida H, Endo TA, Moro K, Taniuchi I. Identification of a novel enhancer essential for Satb1 expression in T H2 cells and activated ILC2s. Life Sci Alliance 2023; 6:e202301897. [PMID: 37193606 PMCID: PMC10189277 DOI: 10.26508/lsa.202301897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.
Collapse
Affiliation(s)
- Aneela Nomura
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Hideyuki Yoshida
- Laboratory for YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School for Medicine, Osaka University, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| |
Collapse
|
14
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lu DY, Yeh WL, Lin C. Bradykinin B1 Receptor Affects Tumor-Associated Macrophage Activity and Glioblastoma Progression. Antioxidants (Basel) 2023; 12:1533. [PMID: 37627528 PMCID: PMC10451655 DOI: 10.3390/antiox12081533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bradykinin is a small active peptide and is considered an inflammatory mediator in several pathological conditions. Bradykinin exerts its effects by coupling to its receptors, including bradykinin B1 (B1R) and bradykinin B2. B1R has been implicated in the development of various cancers. Our previous study reported that B1R promoted glioblastoma (GBM) development by supporting the migration and invasion of GBM cells. However, the mechanisms underlying the effects of B1R on tumor-associated macrophages (TAMs) and GBM progression remain unknown. Accordingly, to explore the regulatory effects of B1R overexpression (OE) in GBM on tumor-associated immune cells and tumor progression, we constructed a B1R wild-type plasmid and developed a B1R OE model. The results reveal that B1R OE in GBM promoted the expression of ICAM-1 and VCAM-1-cell adhesion molecules-in GBM. Moreover, B1R OE enhanced GBM cell migration ability and monocyte attachment. B1R also regulated the production of the protumorigenic cytokines and chemokines IL-6, IL-8, CXCL11, and CCL5 in GBM, which contributed to tumor progression. We additionally noted that B1R OE in GBM increased the expression of CD68 in TAMs. Furthermore, B1R OE reduced the level of reactive oxygen species in GBM cells by upregulating heme oxygenase-1, an endogenous antioxidant protein, thereby protecting GBM cells from oxidative stress. Notably, B1R OE upregulated the expression of programmed death-ligand 1 in both GBM cells and macrophages, thus providing resistance against T-cell response. B1R OE in GBM also promoted tumor growth and reduced survival rates in an intracranial xenograft mouse model. These results indicate that B1R expression in GBM promotes TAM activity and modulates GBM progression. Therefore, B1R could be an effective target for therapeutic methods in GBM.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
15
|
Wei W, Ye B, Huang Z, Mu X, Qiao J, Zhao P, Jiang Y, Wu J, Zhan X. Prediction of Prognosis, Immunotherapy and Chemotherapy with an Immune-Related Risk Score Model for Endometrial Cancer. Cancers (Basel) 2023; 15:3673. [PMID: 37509334 PMCID: PMC10377799 DOI: 10.3390/cancers15143673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic cancer. The overall survival remains unsatisfying due to the lack of effective treatment screening approaches. Immunotherapy as a promising therapy has been applied for EC treatment, but still fails in many cases. Therefore, there is a strong need to optimize the screening approach for clinical treatment. In this study, we employed co-expression network (GCN) analysis to mine immune-related GCN modules and key genes and further constructed an immune-related risk score model (IRSM). The IRSM was proved effective as an independent predictor of poor prognosis. The roles of IRSM-related genes in EC were confirmed by IHC. The molecular basis, tumor immune microenvironment and clinical characteristics of the IRSM were revealed. Moreover, the IRSM effectiveness was associated with immunotherapy and chemotherapy. Patients in the low-risk group were more sensitive to immunotherapy and chemotherapy than those in the high-risk group. Interestingly, the patients responding to immunotherapy were also more sensitive to chemotherapy. Overall, we developed an IRSM which could be used to predict the prognosis, immunotherapy response and chemotherapy sensitivity of EC patients. Our analysis not only improves the treatment of EC but also offers targets for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenting Huang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoling Mu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Qiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Zhao
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuehang Jiang
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
17
|
Micevic G, Bosenberg MW, Yan Q. The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy. Clin Cancer Res 2023; 29:1173-1182. [PMID: 36449280 PMCID: PMC10073242 DOI: 10.1158/1078-0432.ccr-22-0784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Immune checkpoint inhibitors (ICI) have significantly improved treatment outcomes for several types of cancer over the past decade, but significant challenges that limit wider effectiveness of current immunotherapies remain to be addressed. Certain "cold" tumor types, such as pancreatic cancer, exhibit very low response rates to ICI due to intrinsically low immunogenicity. In addition, many patients who initially respond to ICI lack a sustained response due to T-cell exhaustion. Several recent studies show that epigenetic modifiers, such as SETDB1 and LSD1, can play critical roles in regulating both tumor cell-intrinsic immunity and T-cell exhaustion. Here, we review the evidence showing that multiple epigenetic regulators silence the expression of endogenous antigens, and their loss induces viral mimicry responses bolstering the response of "cold" tumors to ICI in preclinical models. Similarly, a previously unappreciated role for epigenetic enzymes is emerging in the establishment and maintenance of stem-like T-cell populations that are critical mediators of response to ICI. Targeting the crossroads of epigenetics and immune checkpoint therapy has tremendous potential to improve antitumor immune responses and herald the next generation of sustained responses in immuno-oncology.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
18
|
Sun J, Zhang H, Wei W, Xiao X, Huang C, Wang L, Zhong H, Jiang Y, Zheng F, Yang H, Jiang G, Zhang X. Regulation of CD8 + T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer. Oncogene 2023; 42:1247-1262. [PMID: 36869127 DOI: 10.1038/s41388-023-02637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
The limited success of immunotherapies targeting immune checkpoint inhibitors is largely ascribed to the lack of infiltrating CD8+ T lymphocytes. Circular RNAs (circRNAs) are a novel type of prevalent noncoding RNA that have been implicated in tumorigenesis and progression, while their roles in modulating CD8+ T cells infiltration and immunotherapy in bladder cancer have not yet been investigated. Herein, we uncover circMGA as a tumor-suppressing circRNA triggering CD8+ T cells chemoattraction and boosting the immunotherapy efficacy. Mechanistically, circMGA functions to stabilize CCL5 mRNA by interacting with HNRNPL. In turn, HNRNPL increases the stability of circMGA, forming a feedback loop that enhances the function of circMGA/HNRNPL complex. Intriguingly, therapeutic synergy between circMGA and anti-PD-1 could significantly suppress xenograft bladder cancer growth. Taken together, the results demonstrate that circMGA/HNRNPL complex may be targetable for cancer immunotherapy and the study advances our understanding of the physiological roles of circRNAs in antitumor immunity.
Collapse
Affiliation(s)
- Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjie Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He Zhong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangkai Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fuxin Zheng
- Department of Urology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
20
|
Wu C, Tao Y, Li N, Fei J, Wang Y, Wu J, Gu HF. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys. J Cell Commun Signal 2023; 17:169-188. [PMID: 35809207 PMCID: PMC10030752 DOI: 10.1007/s12079-022-00685-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetic kidney disease is the leading cause of impaired kidney function, albuminuria, and renal replacement therapy (dialysis or transplantation), thus placing a large burden on health-care systems. This urgent event requires us to reveal the molecular mechanism of this disease to develop more efficacious treatment. Herein, we reported single-cell RNA sequencing analyses in kidneys of db/db mouse, an animal model for type 2 diabetes and diabetic kidney disease. We first analyzed the hub genes expressed differentially in the single cell resolution transcriptome map of the kidneys. Then we figured out the communication among the renal and immune cells in the kidneys. Data from this report may provide novel information for better understanding the cell-specific targets involved in the aetiologia of type 2 diabetic kidney disease and for cell communication and signaling between renal cells and immune cells of this complex disease.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjun Tao
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Nan Li
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingjin Fei
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yurong Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Shavit E, Menascu S, Achiron A, Gurevich M. Age-related blood transcriptional regulators affect disease progression in pediatric multiple sclerosis. Neurobiol Dis 2023; 176:105953. [PMID: 36493973 DOI: 10.1016/j.nbd.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pediatric onset multiple sclerosis patients (POMS) are defined as multiple sclerosis with an onset before the age of 18 years. Compared to adult onset multiple sclerosis (AOMS), POMS has more severe disease activity at onset, but better recovery. Little is known about the molecular mechanism responsible for the differences in the clinical presentations. METHODS Peripheral Blood Mononuclear Cells samples were taken from 22 POMS patients (mean age 14.1 ± 2.4 years, 15 females, 7 male), and 16 AOMS patients, (mean age 30.8 ± 6.1 years,10 females, 6 males), and gene-expression were analyzed using Affymetrix Inc. HU-133-A2 microarrays. Differentially Expressed Genes (DEGs) that significantly distinguished between POMS and AOMS with pvalue <0.05 after false discovery rate correction were evaluated using Partek software. Twenty-one matched age and gender control was applied to clarify age-related changes. Clinical assessment was performed by analysis of expanded disability status scale (EDSS) and brain MRI lesion loads. Gene functional analysis was performed by Ingenuity Pathway Analysis software. RESULTS Compared to AOMS, POMS had higher EDSS (3.0 IQR 2.0-3.0 and 2.0 IQR 2.0-3.0, p = 0.005), volume of T1 (2.72 mm3, IQR 0.44-8.39 mm3 and 0.5 mm3 IQR 0-1.29 mm3 respectively, p = 0.04) and T2 (3.70 mm3, IQR 1.3-9.6 and 0.96 mm3, IQR 0.24-4.63 respectively, p = 0.02) brain MRI lesions. The POMS transcriptional profile was characterized by 551 DEGs, enriched by cell cycling, B lymphocyte signaling and senescent pathways (p < 0.02). Of these, 183 DEGs significantly correlated with T2 lesions volume. The POMS MRI correlated DEGs (n = 183) and their upstream regulators (n = 718) has overlapped with age related DEGs obtained from healthy subjects (n = 497). This evaluated common DEGs (n = 29) defined as POMS age-related regulators, suggesting to promote effect on disease severity. CONCLUSION Our finding of higher transcriptional levels of genes involved in cell cycle, cell migration and B cell proliferation that promoted by transcriptional level of age-associated genes and transcription factors allows better understanding of the more aggressive clinical course that defines the POMS.
Collapse
Affiliation(s)
- Eitan Shavit
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; St. George's Hospital Medical School, University of London, London, United Kingdom; Arrow project for medical research education, Sheba Medical Center, Ramat-Gan, Israel.
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Monaco G, Khavaran A, Gasull AD, Cahueau J, Diebold M, Chhatbar C, Friedrich M, Heiland DH, Sankowski R. Transcriptome Analysis Identifies Accumulation of Natural Killer Cells with Enhanced Lymphotoxin-β Expression during Glioblastoma Progression. Cancers (Basel) 2022; 14:4915. [PMID: 36230839 PMCID: PMC9563981 DOI: 10.3390/cancers14194915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas are the most common primary brain tumors. Despite extensive clinical and molecular insights into these tumors, the prognosis remains dismal. While targeted immunotherapies have shown remarkable success across different non-brain tumor entities, they failed to show efficacy in glioblastomas. These failures prompted the field to reassess the idiosyncrasies of the glioblastoma microenvironment. Several high-dimensional single-cell RNA sequencing studies generated remarkable findings about glioblastoma-associated immune cells. To build on the collective strength of these studies, we integrated several murine and human datasets that profiled glioblastoma-associated immune cells at different time points. We integrated these datasets and utilized state-of-the-art algorithms to investigate them in a hypothesis-free, purely exploratory approach. We identified a robust accumulation of a natural killer cell subset that was characterized by a downregulation of activation-associated genes with a concomitant upregulation of apoptosis genes. In both species, we found a robust upregulation of the Lymphotoxin-β gene, a cytokine from the TNF superfamily and a key factor for the development of adaptive immunity. Further validation analyses uncovered a correlation of lymphotoxin signaling with mesenchymal-like glioblastoma regions in situ and in TCGA and CGGA glioblastoma cohorts. In summary, we identify lymphotoxin signaling as a potential therapeutic target in glioblastoma-associated natural killer cells.
Collapse
Affiliation(s)
- Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ashkan Khavaran
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan Cahueau
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
23
|
Nour-Eldine W, Ltaief SM, Abdul Manaph NP, Al-Shammari AR. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol 2022; 13:950275. [PMID: 36268027 PMCID: PMC9578337 DOI: 10.3389/fimmu.2022.950275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormal cytokine levels in circulating blood have been repeatedly reported in autism; however, the underlying cause remains unclear. This systematic review aimed to investigate cytokine levels in peripheral blood compartments and identify their potential immune cellular sources in subjects with autism through comparison with controls. We conducted an electronic database search (PubMed, Scopus, ProQuest Central, Ovid, SAGE Journals, and Wiley Online Library) from inception (no time limits) to July 9, 2020, and identified 75 relevant articles. Our qualitative data synthesis focused on results consistently described in at least three independent studies, and we reported the results according to the PRISMA protocol. We found that compared with controls, in subjects with autism, cytokines IL-6, IL-17, TNF-α, and IL-1β increased in the plasma and serum. We also identified monocytes, neutrophils, and CD4+ T cells as potential sources of these elevated cytokines in autism. Cytokines IFN-γ, TGF-β, RANTES, and IL-8 were increased in the plasma/serum of subjects with autism, and IFN-γ was likely produced by CD4+ T cells and natural killer (NK) cells, although conflicting evidence is present for IFN-γ and TGF-β. Other cytokines-IL-13, IL-10, IL-5, and IL-4-were found to be unaltered in the plasma/serum and post-stimulated blood immune cells in autistic individuals as compared with controls. The frequencies of T cells, monocytes, B cells, and NK cells were unchanged in subjects with autism as opposed to controls, suggesting that abnormal cytokines were unlikely due to altered cell numbers but might be due to altered functioning of these cells in autism. Our results support existing studies of abnormal cytokines in autism and provide comprehensive evidence of potential cellular sources of these altered cytokines in the context of autism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205224, identifier [CRD42020205224].
Collapse
Affiliation(s)
| | | | | | - Abeer R. Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
24
|
Construction of Prognostic Risk Model for Small Cell Lung Cancer Based on Immune-Related Genes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7116080. [PMID: 36245844 PMCID: PMC9554662 DOI: 10.1155/2022/7116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Small cell lung cancer (SCLC) is a highly invasive and fatal malignancy. Research at the present stage implied that the expression of immune-related genes is associated with the prognosis in SCLC. Accordingly, it is essential to explore effective immune-related molecular markers to judge prognosis and treat SCLC. Our research obtained SCLC dataset from Gene Expression Omnibus (GEO) and subjected mRNAs in it to differential expression analysis. Differentially expressed mRNAs (DEmRNAs) were intersected with immune-related genes to yield immune-related differentially expressed genes (DEGs). The functions of these DEGs were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Thereafter, we categorized 3 subtypes of immune-related DEGs via K-means clustering. Kaplan-Meier curves analyzed the effects of 3 subtypes on SCLC patients' survival. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE validated that the activation of different immune gene subtypes differed significantly. Finally, an immune-related-7-gene assessment model was constructed by univariate-Lasso-multiple Cox regression analyses. Riskscores, Kaplan-Meier curves, receiver operating characteristic (ROC) curves, and independent prognostic analyses validated the prognostic value of the immune-related-7-gene assessment model. As suggested by GSEA, there was a prominent difference in cytokine-related pathways between high- and low-risk groups. As the analysis went further, we discovered a statistically significant difference in the expression of human leukocyte antigen (HLA) proteins and costimulatory molecules expressed on the surface of CD274, CD152, and T lymphocytes in different groups. In a word, we started with immune-related genes to construct the prognostic model for SCLC, which could effectively evaluate the clinical outcomes and offer guidance for the treatment and prognosis of SCLC patients.
Collapse
|
25
|
Guy R, Herman S, Benyamini H, Ben-Zur T, Kobo H, Pasmanik-Chor M, Yaacobi D, Barel E, Yagil C, Yagil Y, Offen D. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Proposed Therapy in a Rat Model of Cerebral Small Vessel Disease. Int J Mol Sci 2022; 23:ijms231911211. [PMID: 36232513 PMCID: PMC9569832 DOI: 10.3390/ijms231911211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.
Collapse
Affiliation(s)
- Reut Guy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University, Jerusalem 9103401, Israel
| | - Tali Ben-Zur
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Kobo
- Genomics Research Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Yaacobi
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Eric Barel
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Chana Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yoram Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-523-342-737
| |
Collapse
|
26
|
Liang Y, He H, Wang W, Wang H, Mo S, Fu R, Liu X, Song Q, Xia Z, Wang L. Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming. Mol Cancer 2022; 21:182. [PMID: 36131282 PMCID: PMC9492468 DOI: 10.1186/s12943-022-01648-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/27/2022] [Indexed: 11/14/2022] Open
Abstract
Background Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect the contribution and impact of polyclonality on tumor progression. Methods In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data. Results The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolution model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the microenvironment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, microenvironmental modification exhibited significant heterogeneity among patients. Conclusions This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01648-z.
Collapse
Affiliation(s)
- Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haiyan He
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Weida Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Henan Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shaowen Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Department of Basic Science, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China.,Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xindi Liu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Qiong Song
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
27
|
Distinctive populations of CD4+T cells associated with vaccine efficacy. iScience 2022; 25:104934. [PMID: 36060075 PMCID: PMC9436750 DOI: 10.1016/j.isci.2022.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Memory T cells underpin vaccine-induced immunity but are not yet fully understood. To distinguish features of memory cells that confer protective immunity, we used single cell transcriptome analysis to compare antigen-specific CD4+T cells recalled to lungs of mice that received a protective or nonprotective subunit vaccine followed by challenge with a fungal pathogen. We unexpectedly found populations specific to protection that expressed a strong type I interferon response signature, whose distinctive transcriptional signature appeared unconventionally dependent on IFN-γ receptor. We also detected a unique population enriched in protection that highly expressed the gene for the natural killer cell marker NKG7. Lastly, we detected differences in TCR gene use and in Th1- and Th17-skewed responses after protective and nonprotective vaccine, respectively, reflecting heterogeneous Ifng- and Il17a-expressing populations. Our findings highlight key features of transcriptionally diverse and distinctive antigen-specific T cells associated with protective vaccine-induced immunity. Protective and nonprotective vaccines generate distinct T cells in fungal infection A strong type I interferon signal is seen among CD4 T cells in protective immunity Th1 bias is seen with protective immunity; Th17 bias with nonprotective immunity Nkg7-expressing CD4 T cells are enriched in protective immunity
Collapse
|
28
|
Masuda K, Kornberg A, Miller J, Lin S, Suek N, Botella T, Secener KA, Bacarella AM, Cheng L, Ingham M, Rosario V, Al-Mazrou AM, Lee-Kong SA, Kiran RP, Stoeckius M, Smibert P, Del Portillo A, Oberstein PE, Sims PA, Yan KS, Han A. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer. JCI Insight 2022; 7:e154646. [PMID: 35192548 PMCID: PMC9057629 DOI: 10.1172/jci.insight.154646] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023] Open
Abstract
Clinical outcomes in colorectal cancer (CRC) correlate with T cell infiltrates, but the specific contributions of heterogenous T cell types remain unclear. To investigate the diverse function of T cells in CRC, we profiled 37,931 T cells from tumors and adjacent normal colon of 16 patients with CRC with respect to transcriptome, TCR sequence, and cell surface markers. Our analysis identified phenotypically and functionally distinguishable effector T cell types. We employed single-cell gene signatures from these T cell subsets to query the TCGA database to assess their prognostic significance. We found 2 distinct cytotoxic T cell types. GZMK+KLRG1+ cytotoxic T cells were enriched in CRC patients with good outcomes. GNLY+CD103+ cytotoxic T cells with a dysfunctional phenotype were not associated with good outcomes, despite coexpression of CD39 and CD103, markers that denote tumor reactivity. We found 2 distinct Treg subtypes associated with opposite outcomes. While total Tregs were associated with good outcomes, CD38+ Tregs were associated with bad outcomes independently of stage and possessed a highly suppressive phenotype, suggesting that they inhibit antitumor immunity in CRC. These findings highlight the potential utility of these subpopulations in predicting outcomes and support the potential for novel therapies directed at CD38+ Tregs or CD8+CD103+ T cells.
Collapse
Affiliation(s)
| | - Adam Kornberg
- Columbia Center for Translational Immunology
- Department of Microbiology & Immunology
| | - Jonathan Miller
- Department of Pediatrics
- Columbia Center for Human Development
| | - Sijie Lin
- Columbia Center for Translational Immunology
| | - Nathan Suek
- Columbia Center for Translational Immunology
| | | | | | | | | | - Matthew Ingham
- Department of Medicine, Division of Hematology & Oncology
- Herbert Irving Comprehensive Cancer Center, and
| | - Vilma Rosario
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Ahmed M. Al-Mazrou
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Steven A. Lee-Kong
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Ravi P. Kiran
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | | | | | | | - Paul E. Oberstein
- Department of Medicine, Division of Hematology & Oncology
- Herbert Irving Comprehensive Cancer Center, and
| | - Peter A. Sims
- Departments of Systems Biology and Biochemistry & Molecular Biophysics
| | - Kelley S. Yan
- Columbia Center for Human Development
- Department of Medicine, Division of Digestive & Liver Diseases, and
- Department of Genetics & Development, Columbia University, New York, New York, USA
| | - Arnold Han
- Columbia Center for Translational Immunology
- Department of Microbiology & Immunology
- Herbert Irving Comprehensive Cancer Center, and
- Department of Medicine, Division of Digestive & Liver Diseases, and
| |
Collapse
|
29
|
Hayashi Y, Harada Y, Harada H. Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia 2022; 36:1203-1214. [PMID: 35354921 DOI: 10.1038/s41375-022-01548-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
30
|
Li Z, Yang Q, Tang X, Chen Y, Wang S, Qi X, Zhang Y, Liu Z, Luo J, Liu H, Ba Y, Guo L, Wu B, Huang F, Cao G, Yin Z. Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells. Sci Bull (Beijing) 2022; 67:408-426. [PMID: 36546093 DOI: 10.1016/j.scib.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
The distinct characteristics of γδ T cells determine their vital roles in the formation of local immune responses and contribute to tissue homeostasis. However, the heterogeneity of γδ T cells across tissues remains unclear. By combining transcriptional and chromatin analyses with a truly unbiased fashion, we constructed a single-cell transcriptome and chromatin accessibility landscape of mouse γδ T cells in the lymph, spleen, and thymus. We also revealed the heterogeneity of γδ T1 and γδ T17 cells across these tissues and inferred their potential regulatory mechanisms. In the thymus, we reconstructed the developmental trajectory and gained further insights into the signature genes from the mature stage, intermediate stage, and immature stage of γδ T cells on the basis of single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing data. Notably, a novel Gzma+ γδ T cell subset was identified with immature properties and only localized to the thymus. Finally, NR1D1, a circadian transcription factor (TF), was validated as a key and negative regulator of γδ T17 cell differentiation by performing a combined analysis of TF motif enrichment, regulon enrichment, and Nr1d1 knockout mice. In summary, our data represent a comprehensive mapping on the transcriptome and chromatin accessibility dynamics of mouse γδ T cells, providing a valuable resource and reference for future studies on γδ T cells.
Collapse
Affiliation(s)
- Zhenhua Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Yiming Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Jing Luo
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510000, China
| | - Yongbing Ba
- OE Biotech Co., Ltd., Shanghai 201114, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Fang Huang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
31
|
Wang C, Shi Z, Zhang Y, Li M, Zhu J, Huang Z, Zhang J, Chen J. CBFβ promotes colorectal cancer progression through transcriptionally activating OPN, FAM129A, and UPP1 in a RUNX2-dependent manner. Cell Death Differ 2021; 28:3176-3192. [PMID: 34050318 PMCID: PMC8563980 DOI: 10.1038/s41418-021-00810-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is commonly associated with aberrant transcription regulation, but characteristics of the dysregulated transcription factors in CRC pathogenesis remain to be elucidated. In the present study, core-binding factor β (CBFβ) is found to be significantly upregulated in human CRC tissues and correlates with poor survival rate of CRC patients. Mechanistically, CBFβ is found to promote CRC cell proliferation, migration, invasion, and inhibit cell apoptosis in a RUNX2-dependent way. Transcriptome studies reveal that CBFβ and RUNX2 form a transcriptional complex that activates gene expression of OPN, FAM129A, and UPP1. Furthermore, CBFβ significantly promotes CRC tumor growth and live metastasis in a mouse xenograft model and a mouse liver metastasis model. In addition, tumor-suppressive miR-143/145 are found to inhibit CBFβ expression by specifically targeting its 3'-UTR region. Consistently, an inverse correlation between miR-143/miR-145 and CBFβ expression levels is present in CRC patients. Taken together, this study uncovers a novel regulatory role of CBFβ-RUNX2 complex in the transcriptional activation of OPN, FAM129A, and UPP1 during CRC development, and may provide important insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ziyu Shi
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuqian Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Mingyue Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jie Zhu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhen Huang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jiangning Chen
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
32
|
Sacconi A, De Vitis C, de Latouliere L, di Martino S, De Nicola F, Goeman F, Mottini C, Paolini F, D'Ascanio M, Ricci A, Tafuri A, Marchetti P, Di Napoli A, De Biase L, Negro A, Napoli C, Anibaldi P, Salvati V, Duffy D, Terrier B, Fanciulli M, Capalbo C, Sciacchitano S, Blandino G, Piaggio G, Mancini R, Ciliberto G. Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients. Cell Death Dis 2021; 12:1019. [PMID: 34716309 PMCID: PMC8553595 DOI: 10.1038/s41419-021-04299-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/β response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.
Collapse
Affiliation(s)
- Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Luisa de Latouliere
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simona di Martino
- UOSD Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Frauke Goeman
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carla Mottini
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesca Paolini
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michela D'Ascanio
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Luciano De Biase
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Andrea Negro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Christian Napoli
- Department of Medical-Surgical Sciences and of Translational Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Anibaldi
- Hospital Direction and Clinical Departments, Sant'Andrea University Hospital, Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Darragh Duffy
- Institut Pasteur, Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre, University of Paris, Paris, France
| | - Maurizio Fanciulli
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carlo Capalbo
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy
| | - Giovanni Blandino
- UOSD Oncogenomica ed Epigenetica, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Piaggio
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
33
|
An Immune-Related Gene Prognostic Index for Triple-Negative Breast Cancer Integrates Multiple Aspects of Tumor-Immune Microenvironment. Cancers (Basel) 2021; 13:cancers13215342. [PMID: 34771505 PMCID: PMC8582543 DOI: 10.3390/cancers13215342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer. Immune checkpoint inhibitor (ICI) therapy has made progress in TNBC treatment. PD-L1 expression is a useful biomarker of ICI therapy efficacy. However, tumor-immune microenvironment (TIME) factors, such as immune cell compositions and tumor-infiltrating lymphocyte (TIL) status, also influence tumor immunity. Therefore, it is necessary to seek biomarkers that are associated with multiple aspects of TIME in TNBC. In this study, we developed an immune-related gene prognostic index (IRGPI) with a substantial prognostic value for TNBC. Moreover, the results from multiple cohorts reproducibly demonstrate that IRGPI is significantly associated with immune cell compositions, the exclusion and dysfunction of TILs, as well as PD-1 and PD-L1 expression in TIME. Therefore, IRGPI is a promising biomarker closely related to patient survival and TIME of TNBC and may have a potential effect on the immunotherapy strategy of TNBC. Abstract Tumor-immune cell compositions and immune checkpoints comprehensively affect TNBC outcomes. With the significantly improved survival rate of TNBC patients treated with ICI therapies, a biomarker integrating multiple aspects of TIME may have prognostic value for improving the efficacy of ICI therapy. Immune-related hub genes were identified with weighted gene co-expression network analysis and differential gene expression assay using The Cancer Genome Atlas TNBC data set (n = 115). IRGPI was constructed with Cox regression analysis. Immune cell compositions and TIL status were analyzed with CIBERSORT and TIDE. The discovery was validated with the Molecular Taxonomy of Breast Cancer International Consortium data set (n = 196) and a patient cohort from our hospital. Tumor expression or serum concentrations of CCL5, CCL25, or PD-L1 were determined with immunohistochemistry or ELISA. The constructed IRGPI was composed of CCL5 and CCL25 genes and was negatively associated with the patient’s survival. IRGPI also predicts the compositions of M0 and M2 macrophages, memory B cells, CD8+ T cells, activated memory CD4 T cells, and the exclusion and dysfunction of TILs, as well as PD-1 and PD-L1 expression of TNBC. IRGPI is a promising biomarker for predicting the prognosis and multiple immune characteristics of TNBC.
Collapse
|
34
|
Ghallab A, Myllys M, Friebel A, Duda J, Edlund K, Halilbasic E, Vucur M, Hobloss Z, Brackhagen L, Begher-Tibbe B, Hassan R, Burke M, Genc E, Frohwein LJ, Hofmann U, Holland CH, González D, Keller M, Seddek AL, Abbas T, Mohammed ESI, Teufel A, Itzel T, Metzler S, Marchan R, Cadenas C, Watzl C, Nitsche MA, Kappenberg F, Luedde T, Longerich T, Rahnenführer J, Hoehme S, Trauner M, Hengstler JG. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10:cells10102516. [PMID: 34685496 PMCID: PMC8533774 DOI: 10.3390/cells10102516] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Julia Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Michael Burke
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany;
| | - Christian H. Holland
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Magdalena Keller
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Elsayed S. I. Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Andreas Teufel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Timo Itzel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Sarah Metzler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany;
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| |
Collapse
|
35
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
36
|
Yuno M, Nagata S, Fujita T, Fujii H. MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis. Biol Methods Protoc 2021; 6:bpab013. [PMID: 34409168 PMCID: PMC8365529 DOI: 10.1093/biomethods/bpab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology for purifying specific genomic regions to facilitate identification of their associated molecules, including proteins, RNAs, and other genomic regions. In enChIP, the target genomic region is tagged with engineered DNA-binding molecules, for example, a variant of the clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a guide RNA (gRNA) and a catalytically inactive form of Cas9 (dCas9). In this study, to increase the flexibility of enChIP and expand the range of target cells, we generated murine stem cell virus (MSCV)-based retroviral plasmids for expressing dCas9. We constructed MSCV-based retroviral plasmids expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-Sp-dCas9) and various drug resistance genes. We showed that by using these plasmids, it is feasible to purify target genomic regions with yields comparable to those reported using other systems. These systems might give enChIP users greater flexibility in choosing optimal systems for drug selection of transduced cells.
Collapse
Affiliation(s)
- Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoko Nagata
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
37
|
Zhou S, Lu H, Xiong M. Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis. Front Immunol 2021; 12:726747. [PMID: 34484236 PMCID: PMC8411707 DOI: 10.3389/fimmu.2021.726747] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by inflammatory cell infiltration, leading to persistent synovitis and joint destruction. The pathogenesis of RA remains unclear. This study aims to explore the immune molecular mechanism of RA through bioinformatics analysis. Methods Five microarray datasets and a high throughput sequencing dataset were downloaded. CIBERSORT algorithm was performed to evaluate immune cell infiltration in synovial tissues between RA and healthy control (HC). Wilcoxon test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were conducted to identify the significantly different infiltrates of immune cells. Differentially expressed genes (DEGs) were screened by "Batch correction" and "RobustRankAggreg" methods. Functional correlation of DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Candidate biomarkers were identified by cytoHubba of Cytoscape, and their diagnostic effectiveness was predicted by Receiver Operator Characteristic Curve (ROC) analysis. The association of the identified biomarkers with infiltrating immune cells was explored using Spearman's rank correlation analysis in R software. Results Ten significantly different types of immune cells between RA and HC were identified. A total of 202 DEGs were obtained by intersection of DEGs screened by two methods. The function of DEGs were significantly associated with immune cells. Five hub genes (CXCR4, CCL5, CD8A, CD247, and GZMA) were screened by R package "UpSet". CCL5+CXCR4 and GZMA+CD8A were verified to have the capability to diagnose RA and early RA with the most excellent specificity and sensitivity, respectively. The correlation between immune cells and biomarkers showed that CCL5 was positively correlated with M1 macrophages, CXCR4 was positively correlated with memory activated CD4+ T cells and follicular helper T (Tfh) cells, and GZMA was positively correlated with Tfh cells. Conclusions CCL5, CXCR4, GZMA, and CD8A can be used as diagnostic biomarker for RA. GZMA-Tfh cells, CCL5-M1 macrophages, and CXCR4- memory activated CD4+ T cells/Tfh cells may participate in the occurrence and development of RA, especially GZMA-Tfh cells for the early pathogenesis of RA.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hongcheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Xiong
- Department of Orthopedics, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
38
|
Tang KH, Li S, Khodadadi-Jamayran A, Jen J, Han H, Guidry K, Chen T, Hao Y, Fedele C, Zebala JA, Maeda DY, Christensen JG, Olson P, Athanas A, Loomis CA, Tsirigos A, Wong KK, Neel BG. Combined Inhibition of SHP2 and CXCR1/2 Promotes Anti-Tumor T Cell Response in NSCLC. Cancer Discov 2021; 12:47-61. [PMID: 34353854 DOI: 10.1158/2159-8290.cd-21-0369] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with over-activation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor gMDSCs via tumor-intrinsic, NF-kB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C-inhibitor trials. Combined SHP2(SHP099)/CXCR1/2(SX682) inhibition depleted a specific cluster of S100a8/9high gMDSCs, generated Klrg1+ CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in NSCLC patients.
Collapse
Affiliation(s)
- Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York.
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York
| | - Jayu Jen
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Han Han
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Kayla Guidry
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York
| | - Carmine Fedele
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Cynthia A Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York, New York
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York.
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
39
|
Chu Y, Nayyar G, Jiang S, Rosenblum JM, Soon-Shiong P, Safrit JT, Lee DA, Cairo MS. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in vitro cytotoxicity against GD2 + pediatric solid tumors and in vivo survival of xenografted immunodeficient NSG mice. J Immunother Cancer 2021; 9:jitc-2020-002267. [PMID: 34244307 PMCID: PMC8268924 DOI: 10.1136/jitc-2020-002267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background Children with recurrent and/or metastatic osteosarcoma (OS), neuroblastoma (NB) and
glioblastoma multiforme (GBM) have a dismal event-free survival (<25%).
The majority of these solid tumors highly express GD2. Dinutuximab, an anti-GD2
monoclonal antibody, significantly improved event-free survival in children with
GD2+ NB post autologous stem cell transplantation and enhanced natural
killer (NK) cell-mediated antibody-dependent cell cytotoxicity. Thus, approaches to
increase NK cell number and activity, improve persistence and trafficking, and enhance
tumor targeting may further improve the clinical benefit of dinutuximab. N-803 is a
superagonist of an interleukin-15 (IL-15) variant bound to an IL-15 receptor alpha Su-Fc
fusion with enhanced biological activity. Methods The anti-tumor combinatorial effects of N-803, dinutuximab and ex vivo expanded
peripheral blood NK cells (exPBNK) were performed in vitro using cytoxicity assays
against GD2+ OS, NB and GBM cells. Perforin and interferon (IFN)-γ
levels were measured by ELISA assays. Multiple cytokines/chemokines/growth factors
released were measured by multiplex assays. Human OS, GBM or NB xenografted
NOD/SCID/IL2rγnull (NSG) mice were used to investigate the anti-tumor
combinatorial effects in vivo. Results N-803 increased the viability and proliferation of exPBNK. The increased viability and
proliferation are associated with increased phosphorylation of Stat3, Stat5, AKT,
p38MAPK and the expression of NK activating receptors. The combination of dinutuximab
and N-803 significantly enhanced in vitro cytotoxicity of exPBNK with enhanced perforin
and IFN-γ release against OS, GBM and NB. The combination of
exPBNK+N-803+dinutuximab significantly reduced the secretion of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), platelet-derived growth factor-BB
(PDGF-BB), and stem cell growth factor beta (SCGF-β) from OS or GBM tumor cells.
Furthermore, OS or GBM significantly inhibited the secretion of regulated on activation,
normal T cell expressed and presumably secreted (RANTES) and stromal cell-derived
factor-1 alpha (SDF-1α) from exPBNK cells (p<0.001) but significantly
enhanced monokine induced by gamma interferon (MIG) secretion from exPBNK cells
(p<0.001). N-803 combined with dinutuximab and exPBNK cells significantly
extended the survival of OS, GBM or NB xenografted NSG mice. Conclusions Our results provide the rationale for the development of a clinical trial of N-803 in
combination with dinutuximab and ex vivo exPBNK cells in patients with recurrent or
metastatic GD2+ solid tumors.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Susiyan Jiang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | | | - Dean A Lee
- Department of Hem/Onc/BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
40
|
Fujita H, Fujita T, Fujii H. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications. CRISPR J 2021; 4:290-300. [PMID: 33876963 DOI: 10.1089/crispr.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A multitude of molecular interactions with chromatin governs various chromosomal functions in cells. Insights into the molecular compositions at specific genomic regions are pivotal to deepen our understanding of regulatory mechanisms and the pathogenesis of disorders caused by the abnormal regulation of genes. The locus-specific purification of genomic DNA using the clustered regularly interspaced short palindromic repeats (CRISPR) system enables the isolation of target genomic regions for identification of bound interacting molecules. This CRISPR-based DNA purification method has many applications. In this study, we present an overview of the CRISPR-based DNA purification methodologies as well as recent applications.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
41
|
Fang KY, Cao WC, Xie TA, Lv J, Chen JX, Cao XJ, Li ZW, Deng ST, Guo XG. Exploration and validation of related hub gene expression during SARS-CoV-2 infection of human bronchial organoids. Hum Genomics 2021; 15:18. [PMID: 33726831 PMCID: PMC7962432 DOI: 10.1186/s40246-021-00316-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people’s health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein–protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. Results In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. Conclusions In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.
Collapse
Affiliation(s)
- Ke-Ying Fang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Chao Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Tian-Ao Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Lv
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhong-Wei Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shu-Ting Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
42
|
Yeo ECF, Brown MP, Gargett T, Ebert LM. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells 2021; 10:607. [PMID: 33803414 PMCID: PMC8001644 DOI: 10.3390/cells10030607] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common form of primary brain tumour in adults. For more than a decade, conventional treatment has produced a relatively modest improvement in the overall survival of glioblastoma patients. The immunosuppressive mechanisms employed by neoplastic and non-neoplastic cells within the tumour can limit treatment efficacy, and this can include the secretion of immunosuppressive cytokines and chemokines. These factors can play a significant role in immune modulation, thus disabling anti-tumour responses and contributing to tumour progression. Here, we review the complex interplay between populations of immune and tumour cells together with defined contributions by key cytokines and chemokines to these intercellular interactions. Understanding how these tumour-derived factors facilitate the crosstalk between cells may identify molecular candidates for potential immunotherapeutic targeting, which may enable better tumour control and improved patient survival.
Collapse
Affiliation(s)
- Erica C. F. Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lisa M. Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Lu Z, Deng X, Li H. Prognostic Value of a Ten-Gene Signature in HNSCC Patients Based on Tumor-Associated Macrophages Expression Profiling. Front Oncol 2020; 10:569002. [PMID: 33312950 PMCID: PMC7708322 DOI: 10.3389/fonc.2020.569002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are regarded as the most abundantly infiltrating immune cells around the tumor microenvironment (TME) in head and neck squamous cell carcinoma (HNSCC), which plays an essential role in immunosuppression and tumorigenesis. In the TCGA HNSCC cohort, 500 patients with clinical-pathological information and RNA sequence expression were randomly assigned to training for lasso regression and validation for verification, respectively. A TAM-based ten-gene signature (TBGs) was constructed, which divided the patients into high-risk and low-risk groups, could predict overall survival (OS) of HNSCC patients in the training dataset (p = 3.527e-05) and validation dataset (p = 3.785e-02). The result of Cox univariate and multivariate regression analyses showed that the risk score of TBGs could be an independent prognostic factor in HNSCC. ROC curve confirmed that the risk score of TBGs has good sensitivity and specificity for prognosis prediction (AUC = 0.659) and was also verified by the validation dataset (AUC = 0.621). We obtained key risk transcription factors (TFs)-EHF and SNAI2-by correlation analysis with TBGs. Moreover, we ran a gene set enrichment analysis (GSEA) to speculate that TBGs act on interstitial remodeling, tumor killing, metabolic reprogramming, and tumor immune-related pathways. Finally, we combined clinical-pathological features and risk score of TBGs to establish clinical nomograms, and calibration curves verified the accuracy of long-term clinical prognosis in the two datasets (C-index of 5-year OS = 0.721 and 0.716). In general, the TBGs we obtained may accurately predict the prognosis of HNSCC patients to provide personalized treatment.
Collapse
Affiliation(s)
- Zhaoyi Lu
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoli Deng
- Textile College, Changzhou Vocational Institute of Textile and Garment, Changzhou, China.,Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
44
|
The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel) 2020; 12:cancers12071765. [PMID: 32630699 PMCID: PMC7407580 DOI: 10.3390/cancers12071765] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cells can “hijack” chemokine networks to support tumor progression. In this context, the C-C chemokine ligand 5/C-C chemokine receptor type 5 (CCL5/CCR5) axis is gaining increasing attention, since abnormal expression and activity of CCL5 and its receptor CCR5 have been found in hematological malignancies and solid tumors. Numerous preclinical in vitro and in vivo studies have shown a key role of the CCL5/CCR5 axis in cancer, and thus provided the rationale for clinical trials using the repurposed drug maraviroc, a CCR5 antagonist used to treat HIV/AIDS. This review summarizes current knowledge on the role of the CCL5/CCR5 axis in cancer. First, it describes the involvement of the CCL5/CCR5 axis in cancer progression, including autocrine and paracrine tumor growth, ECM (extracellular matrix) remodeling and migration, cancer stem cell expansion, DNA damage repair, metabolic reprogramming, and angiogenesis. Then, it focuses on individual hematological and solid tumors in which CCL5 and CCR5 have been studied preclinically. Finally, it discusses clinical trials of strategies to counteract the CCL5/CCR5 axis in different cancers using maraviroc or therapeutic monoclonal antibodies.
Collapse
|