1
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
2
|
Kang J, Liang Y, Liu J, Hu M, Lin S, Zhong J, Wang C, Zeng Q, Zhang C. Dual roles of photosynthetic hydrogel with sustained oxygen generation in promoting cell survival and eradicating anaerobic infection. Mater Today Bio 2024; 28:101197. [PMID: 39221211 PMCID: PMC11364899 DOI: 10.1016/j.mtbio.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Tissue engineering offers a promising alternative for oral and maxillofacial tissue defect rehabilitation; however, cells within a sizeable engineered tissue construct after transplantation inevitably face prolonged and severe hypoxic conditions, which may compromise the survivability of the transplanted cells and arouse the concern of anaerobic infection. Microalgae, which can convert carbon dioxide and water into oxygen and glucose through photosynthesis, have been studied as a source of oxygen supply for several biomedical applications, but their promise in orofacial tissue regeneration remains unexplored. Here, we demonstrated that through photosynthetic oxygenation, Chlamydomonas reinhardtii (C. reinhardtii) supported dental pulp stem cell (DPSC) energy production and survival under hypoxia. We developed a multifunctional photosynthetic hydrogel by embedding DPSCs and C. reinhardtii encapsulated alginate microspheres (CAMs) within gelatin methacryloyl hydrogel (GelMA) (CAMs@GelMA). This CAMs@GelMA hydrogel can generate a sustainable and sufficient oxygen supply, reverse intracellular hypoxic status, and enhance the metabolic activity and viability of DPSCs. Furthermore, the CAMs@GelMA hydrogel exhibited selective antibacterial activity against oral anaerobes and remarkable antibiofilm effects on multispecies biofilms by disrupting the hypoxic microenvironment and increasing reactive oxygen species generation. Our work presents an innovative photosynthetic strategy for oral tissue engineering and opens new avenues for addressing other hypoxia-related challenges.
Collapse
Affiliation(s)
- Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ye Liang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
4
|
Chua ST, Smith A, Murthy S, Murace M, Yang H, Schertel L, Kühl M, Cicuta P, Smith AG, Wangpraseurt D, Vignolini S. Light management by algal aggregates in living photosynthetic hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2316206121. [PMID: 38805271 PMCID: PMC11161743 DOI: 10.1073/pnas.2316206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Collapse
Affiliation(s)
- Sing Teng Chua
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alyssa Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Maria Murace
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100040, China
| | | | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093-0205
- Department of Nanoengineering, University of California San Diego, La Jolla, CA92093-0205
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
5
|
Liu H, Yu S, Liu B, Xiang S, Jiang M, Yang F, Tan W, Zhou J, Xiao M, Li X, Richardson JJ, Lin W, Zhou J. Space-Efficient 3D Microalgae Farming with Optimized Resource Utilization for Regenerative Food. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401172. [PMID: 38483347 DOI: 10.1002/adma.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Siqin Yu
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuhong Xiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Weiwei Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jianfei Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| | - Ming Xiao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wei Lin
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| |
Collapse
|
6
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
7
|
Saldaña PH, Angelini C, Bertness MD, Altieri AH. Dead foundation species drive ecosystem dynamics. Trends Ecol Evol 2024; 39:294-305. [PMID: 37923644 DOI: 10.1016/j.tree.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Foundation species facilitate communities, modulate energy flow, and define ecosystems, but their ecological roles after death are frequently overlooked. Here, we reveal the widespread importance of their dead structures as unique, interacting components of ecosystems that are vulnerable to global change. Key metabolic activity, mobility, and morphology traits of foundation species either change or persist after death with important consequences for ecosystem functions, biodiversity, and subsidy dynamics. Dead foundation species frequently mediate ecosystem stability, resilience, and transitions, often through feedbacks, and harnessing their structural and trophic roles can improve restoration outcomes. Enhanced recognition of dead foundation species and their incorporation into habitat monitoring, ecological theory, and ecosystem forecasting can help solve the escalating conservation challenges of the Anthropocene.
Collapse
Affiliation(s)
- Patrick H Saldaña
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA.
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA
| | - Mark D Bertness
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
9
|
Dranseike D, Cui Y, Ling AS, Donat F, Bernhard S, Bernero M, Areeckal A, Qin XH, Oakey JS, Dillenburger B, Studart AR, Tibbitt MW. Dual carbon sequestration with photosynthetic living materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.572991. [PMID: 38187760 PMCID: PMC10769394 DOI: 10.1101/2023.12.22.572991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Natural ecosystems offer efficient pathways for carbon sequestration, serving as a resilient approach to remove CO2 from the atmosphere with minimal environmental impact. However, the control of living systems outside of their native environments is often challenging. Here, we engineered a photosynthetic living material for dual CO2 sequestration by immobilizing photosynthetic microorganisms within a printable polymeric network. The carbon concentrating mechanism of the cyanobacteria enabled accumulation of CO2 within the cell, resulting in biomass production. Additionally, the metabolic production of OH- ions in the surrounding medium created an environment for the formation of insoluble carbonates via microbially-induced calcium carbonate precipitation (MICP). Digital design and fabrication of the living material ensured sufficient access to light and nutrient transport of the encapsulated cyanobacteria, which were essential for long-term viability (more than one year) as well as efficient photosynthesis and carbon sequestration. The photosynthetic living materials sequestered approximately 2.5 mg of CO2 per gram of hydrogel material over 30 days via dual carbon sequestration, with 2.2 ± 0.9 mg stored as insoluble carbonates. Over an extended incubation period of 400 days, the living materials sequestered 26 ± 7 mg of CO2 per gram of hydrogel material in the form of stable minerals. These findings highlight the potential of photosynthetic living materials for scalable carbon sequestration, carbon-neutral infrastructure, and green building materials. The simplicity of maintenance, coupled with its scalability nature, suggests broad applications of photosynthetic living materials as a complementary strategy to mitigate CO2 emissions.
Collapse
Affiliation(s)
- Dalia Dranseike
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Yifan Cui
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Andrea S. Ling
- Digital Building Technologies, Department of Architecture, ETH Zurich, Zurich, CH
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Margherita Bernero
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - Akhil Areeckal
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Xiao-Hua Qin
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - John S. Oakey
- Department of Chemical and Biomedical Engineering, University of Wyoming, Laramie, Wyoming, US
| | | | - André R. Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, CH
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| |
Collapse
|
10
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
12
|
Sun Y, Li C, Xu Z, Cao Y, Sheng H, Wang ZL, Cao LNY. Conformable Multifunctional Space Fabric by Metal 3D Printing for Collision Hazard Protection and Self-Powered Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019043 DOI: 10.1021/acsami.3c15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The monitoring of space debris assumes paramount significance to ensure the sustainability and security of space activities as well as underground bases in outer space. However, designing a wide range monitoring system with easy fabrication, low power, and high precision remains an urgent challenge under the scarcity of materials and extreme environment conditions of outer space. Here, we designed a one-piece, robust, but flexible, and repairable 3D metal-printed triboelectric nanogenerator (FR-TENG) by incorporating the advantages of standardization and customization of outer space 3D metal printing. Inspired by the structure of hexagonal and pangolin scales, a curved structure is ingeniously applied in the design of 3D printed metal to adapt different curved surfaces while maintaining superior compressive strength, providing excellent flexibility and shape adaptability. Benefiting from the unique structural design, the FR-TENG has a minimum length of 1 cm with a weight of only 3.5 g and the minimum weight resolution detected of 9.6 g, with a response time of 20 ms. Furthermore, a multichannel self-powered collision monitoring system has been developed to monitor minor collisions, providing warnings to determine potential impacts on the space station and bases surfaces. The system may contribute to ensuring the successful completion of space missions and providing a safer space environment for the exploration of extraterrestrial life and the establishment of underground protective bases.
Collapse
Affiliation(s)
- Yanshuo Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaxing Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hengrui Sheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, Guangxi, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Leo N Y Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Sun X, Chen S, Qu B, Wang R, Zheng Y, Liu X, Li W, Gao J, Chen Q, Zhuo D. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun 2023; 14:6586. [PMID: 37852967 PMCID: PMC10584836 DOI: 10.1038/s41467-023-42369-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Additive manufacturing technology has significantly impacted contemporary industries due to its ability to generate intricate computer-designed geometries. However, 3D-printed polymer parts often possess limited application potential, primarily because of their weak mechanical attributes. To overcome this drawback, this study formulates liquid crystal/photocurable resins suitable for the stereolithography technique by integrating 4'-pentyl-4-cyanobiphenyl with a photosensitive acrylic resin. This study demonstrates that stereolithography facilitates the precise modulation of the existing liquid crystal morphology within the resin. Furthermore, the orientation of the liquid crystal governs the oriented polymerization of monomers or prepolymers bearing acrylate groups. The products of this 3D printing approach manifest anisotropic behavior. Remarkably, when utilizing liquid crystal/photocurable resins, the resulting 3D-printed objects are approximately twice as robust as those created using commercial resins in terms of their tensile, flexural, and impact properties. This pioneering approach holds promise for realizing autonomously designed structures that remain elusive with present additive manufacturing techniques.
Collapse
Affiliation(s)
- Xiaolu Sun
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| | - Bo Qu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Rui Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Yanyu Zheng
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Xiaoying Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Wenjie Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Jianhong Gao
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
| | - Dongxian Zhuo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| |
Collapse
|
14
|
Datta D, Weiss EL, Wangpraseurt D, Hild E, Chen S, Golden JW, Golden SS, Pokorski JK. Phenotypically complex living materials containing engineered cyanobacteria. Nat Commun 2023; 14:4742. [PMID: 37550278 PMCID: PMC10406891 DOI: 10.1038/s41467-023-40265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942 within a hydrogel matrix. Subsequently, a strain of S. elongatus is engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation.
Collapse
Affiliation(s)
- Debika Datta
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Elliot L Weiss
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Daniel Wangpraseurt
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Erica Hild
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - James W Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Roger L, Lewinski N, Putnam H, Chen S, Roxbury D, Tresguerres M, Wangpraseurt D. Nanotechnology for coral reef conservation, restoration and rehabilitation. NATURE NANOTECHNOLOGY 2023; 18:831-833. [PMID: 37231144 DOI: 10.1038/s41565-023-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Liza Roger
- Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- School of Ocean Futures, Arizona State University, Tempe, AZ, USA.
| | - Nastassja Lewinski
- Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Hollie Putnam
- College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
17
|
Wang X, Sun Y, Wangpraseurt D. Engineered photoresponsive biohybrids for tumor therapy. SMART MEDICINE 2023; 2:e20220041. [PMID: 39188274 PMCID: PMC11235730 DOI: 10.1002/smmd.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 08/28/2024]
Abstract
Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Yazhi Sun
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Daniel Wangpraseurt
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
18
|
Handral HK, Wyrobnik TA, Lam ATL. Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers (Basel) 2023; 15:polym15061487. [PMID: 36987266 PMCID: PMC10057597 DOI: 10.3390/polym15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.
Collapse
Affiliation(s)
- Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Correspondence:
| | - Tom Adam Wyrobnik
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Alan Tin-Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| |
Collapse
|
19
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Reyes G, Vega-Coloma M, Antonova A, Ajdary R, Jonveaux S, Flanigan C, Lautenbacher N, Rojas OJ. Direct CO 2 Capture by Alkali-Dissolved Cellulose and Sequestration in Building Materials and Artificial Reef Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209327. [PMID: 36516448 DOI: 10.1002/adma.202209327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Current carbon capture and utilization (CCU) technologies require high energy input and costly catalysts. Here, an effective pathway is offered that addresses climate action by atmospheric CO2 sequestration. Industrially relevant highly reactive alkali cellulose solutions are used as CO2 absorption media. The latter lead to mineralized cellulose materials (MCM) at a tailorable cellulose-to-mineral ratio, forming organic-inorganic viscous systems (viscosity from 102 to 107 mPa s and storage modulus from 10 to 105 Pa). CO2 absorption and conversion into calcium carbonate and associated minerals translate to maximum absorption of 6.5 gCO2 gcellulose -1 , tracking inversely with cellulose loading. Cellulose lean gels are easily converted into dry powders, shown as a functional component of ceramic glazes and cementitious composites. Meanwhile, cellulose-rich gels are moldable and extrudable, yielding stone-like structures tested as artificial substrates for coral reef restoration. Life Cycle Assessment (LCA) suggests new CCU opportunities for building materials, as demonstrated in underwater deployment for coral reef ecosystem restoration.
Collapse
Affiliation(s)
- Guillermo Reyes
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-00076, Finland
| | - Mabel Vega-Coloma
- Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Av. Collao 1202, Casilla 5-C, Concepción, 4081112, Chile
| | - Anna Antonova
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4 A, Otaniemi, Espoo, 02150, Finland
| | - Rubina Ajdary
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-00076, Finland
| | - Solène Jonveaux
- Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Colleen Flanigan
- Zoe - A Living Sea Sculpture in Cozumel, Av. Rafael E. Melgar, San Miguel de Cozumel, Q.R., 77688, Mexico
| | - Nathalie Lautenbacher
- Department of Design, Aalto University, Otaniementie 14, Otaniemi, Espoo, 02150, Finland
| | - Orlando J Rojas
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-00076, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
21
|
You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, Guan J, Yao E, Tang M, Zhong Z, Ma X, Wangpraseurt D, Sun Y, Lu TY, Chen S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. SCIENCE ADVANCES 2023; 9:eade7923. [PMID: 36812321 PMCID: PMC9946358 DOI: 10.1126/sciadv.ade7923] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting techniques have emerged as the most popular methods to fabricate 3D-engineered tissues; however, there are challenges in simultaneously satisfying the requirements of high cell density (HCD), high cell viability, and fine fabrication resolution. In particular, bioprinting resolution of digital light processing-based 3D bioprinting suffers with increasing bioink cell density due to light scattering. We developed a novel approach to mitigate this scattering-induced deterioration of bioprinting resolution. The inclusion of iodixanol in the bioink enables a 10-fold reduction in light scattering and a substantial improvement in fabrication resolution for bioinks with an HCD. Fifty-micrometer fabrication resolution was achieved for a bioink with 0.1 billion per milliliter cell density. To showcase the potential application in tissue/organ 3D bioprinting, HCD thick tissues with fine vascular networks were fabricated. The tissues were viable in a perfusion culture system, with endothelialization and angiogenesis observed after 14 days of culture.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David B. Berry
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Ma
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting-yu Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
de León EHP, Valle-Pérez AU, Khan ZN, Hauser CA. Intelligent and Smart Biomaterials for Sustainable 3D Printing Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Zhang X, Liang X, Xu M, Wang J, Wang F, Chen M. In situ recombination for durable photoelectrocatalytic degradation of organic dye in wastewater. CHEMOSPHERE 2023; 312:137237. [PMID: 36400199 DOI: 10.1016/j.chemosphere.2022.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Photoelectrocatalysis (PEC) can effectively degrade organic pollutants by using photoelectrodes without secondary pollution. However, significant mass transport resistance and decreased catalytic activity caused by the shedding of active components remain a barrier to achieving the photocatalytic system with a high degradation rate and long-term durability. Here, an in situ recombination concept is presented to overcome this challenge. The bionic coral-like electrode, obtained by in situ assembly of UIO-66 around TiO2 nanoflowers (TNF) on Ti-foam substrate, is employed as the photoanode in PEC. Ex situ evaluation of photoelectrochemical activity demonstrates that the UIO-66@TNF/Ti-foam (U@T/T) design significantly improves the light-propagation, light-absorption and charge transfer. In Situ degradation evaluations also shows that the interesting design promotes rapid and stable degradation of organic dye (e.g. Rhodamine B (RhB)). At 2.0 V of bias potential and pH 7.0 in 5 mg L-1 RhB, under the action of active species such as ·O2- and ·OH (proved by the degradation mechanism experiments), the removal rate of RhB can reach 96.1% at 120 min and almost complete removal at 200 min (99.1%).
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China; School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Xian Liang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
| | - Mai Xu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Jin Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Fengwu Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
| | - Minggong Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China.
| |
Collapse
|
24
|
Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater 2023; 155:154-166. [PMID: 36435443 DOI: 10.1016/j.actbio.2022.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing. STATEMENT OF SIGNIFICANCE: As oxygen plays a key role in almost every step of the tissue regeneration process, the development of oxygen delivering therapies represents an active field of research, where photosynthetic biomaterials have risen as a promising approach for wound healing. Therefore, in this work a photosynthetic alginate hydrogel-based wound dressing containing C. reinhardtii microalgae was developed and validated in healthy skin of human volunteers. Moreover, hydrogels were modified to additionally release other bioactive molecules such as recombinant VEGF or antibiotics. The present study provides key scientific data to support the use of photosynthetic hydrogels as customizable dressings to promote wound healing.
Collapse
|
25
|
Žunar B, Ito T, Mosrin C, Sugahara Y, Bénédetti H, Guégan R, Vallée B. Confocal imaging of biomarkers at a single-cell resolution: quantifying 'living' in 3D-printable engineered living material based on Pluronic F-127 and yeast Saccharomyces cerevisiae. Biomater Res 2022; 26:85. [PMID: 36539854 PMCID: PMC9769040 DOI: 10.1186/s40824-022-00337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Engineered living materials (ELMs) combine living cells with non-living scaffolds to obtain life-like characteristics, such as biosensing, growth, and self-repair. Some ELMs can be 3D-printed and are called bioinks, and their scaffolds are mostly hydrogel-based. One such scaffold is polymer Pluronic F127, a liquid at 4 °C but a biocompatible hydrogel at room temperature. In such thermally-reversible hydrogel, the microorganism-hydrogel interactions remain uncharacterized, making truly durable 3D-bioprinted ELMs elusive. METHODS We demonstrate the methodology to assess cell-scaffold interactions by characterizing intact alive yeast cells in cross-linked F127-based hydrogels, using genetically encoded ratiometric biosensors to measure intracellular ATP and cytosolic pH at a single-cell level through confocal imaging. RESULTS When embedded in hydrogel, cells were ATP-rich, in exponential or stationary phase, and assembled into microcolonies, which sometimes merged into larger superstructures. The hydrogels supported (micro)aerobic conditions and induced a nutrient gradient that limited microcolony size. External compounds could diffuse at least 2.7 mm into the hydrogels, although for optimal yeast growth bioprinted structures should be thinner than 0.6 mm. Moreover, the hydrogels could carry whole-cell copper biosensors, shielding them from contaminations and providing them with nutrients. CONCLUSIONS F127-based hydrogels are promising scaffolds for 3D-bioprinted ELMs, supporting a heterogeneous cell population primarily shaped by nutrient availability.
Collapse
Affiliation(s)
- Bojan Žunar
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
- Department of Chemistry and Biochemistry, Laboratory for Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Taiga Ito
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Christine Mosrin
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
| | - Régis Guégan
- Global Center for Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
- Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans, Cedex 2, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
26
|
Ghosh S, Yi HG. A Review on Bioinks and their Application in Plant Bioprinting. Int J Bioprint 2022; 8:612. [PMID: 36404783 PMCID: PMC9668583 DOI: 10.18063/ijb.v8i4.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the characterization and fabrication methods concerning new bioinks have received much attention, largely because the absence of bioprintable materials has been identified as one of the most rudimentary challenges for rapid advancement in the field of three-dimensional (3D) printing. Bioinks for printing mammalian organs have been rapidly produced, but bioinks in the field of plant science remain sparse. Thus, 3D fabrication of plant parts is still in its infancy due to the lack of appropriate bioink materials, and aside from that, the difficulty in recreating sophisticated microarchitectures that accurately and safely mimic natural biological activities is a concern. Therefore, this review article is designed to emphasize the significance of bioinks and their applications in plant bioprinting.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Levy N, Berman O, Yuval M, Loya Y, Treibitz T, Tarazi E, Levy O. Emerging 3D technologies for future reformation of coral reefs: Enhancing biodiversity using biomimetic structures based on designs by nature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154749. [PMID: 35339542 DOI: 10.1016/j.scitotenv.2022.154749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The rapid decline of vulnerable coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. Examining how to upgrade these tools may uncover options to better support or increase biodiversity of coral reefs. As many of the issues facing reef restoration today deal with the scalability and effectiveness of restoration efforts, there is an urgency to invest in technology that can help reach ecosystem-scale. Here, we provide an overview on the evolution to current state of artificial reefs as a reef reformation tool and discuss a blueprint with which to guide the next generation of biomimetic artificial habitats for ecosystem support. Currently, existing artificial structures have difficulty replicating the 3D complexity of coral habitats and scaling them to larger areas can be problematic in terms of production and design. We introduce a novel customizable 3D interface for producing scalable, biomimetic artificial structures, utilizing real data collected from coral ecosystems. This interface employs 3D technologies, 3D imaging and 3D printing, to extract core reef characteristics, which can be translated and digitized into a 3D printed artificial reef. The advantages of 3D printing lie in providing customized tools by which to integrate the vital details of natural reefs, such as rugosity and complexity, into a sustainable manufacturing process. This methodology can offer economic solutions for developing both small and large-scale biomimetic structures for a variety of restoration situations, that closely resemble the coral reefs they intend to support.
Collapse
Affiliation(s)
- Natalie Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Ofer Berman
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Matan Yuval
- Hatter Department of Marine Technologies, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; Inter-University Institute for Marine Sciences of Eilat, Eilat 88103, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Ramat Aviv 6997801, Israel
| | - Tali Treibitz
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ezri Tarazi
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
28
|
Bollati E, Lyndby NH, D'Angelo C, Kühl M, Wiedenmann J, Wangpraseurt D. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. eLife 2022; 11:73521. [PMID: 35801683 PMCID: PMC9342951 DOI: 10.7554/elife.73521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pigments homologous to the green fluorescent protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on: (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral intra-tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10–20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering and skeletal reflection during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Niclas H Lyndby
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Michael Kühl
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, San Diego, United States
| |
Collapse
|
29
|
Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues. Acta Biomater 2022:S1742-7061(22)00278-1. [PMID: 35562006 DOI: 10.1016/j.actbio.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
3D bioprinting technology has emerged as a tool that promises to revolutionize the biomedical field, including tissue engineering and regeneration. Despite major technological advancements, several challenges remain to be solved before 3D bioprinted tissues could be fully translated from the bench to the bedside. As oxygen plays a key role in aerobic metabolism, which allows energy production in the mitochondria; as a consequence, the lack of tissue oxygenation is one of the main limitations of current bioprinted tissues and organs. In order to improve tissue oxygenation, recent approaches have been established for a broad range of clinical applications, with some already applied using 3D bioprinting technologies. Among them, the incorporation of photosynthetic microorganisms, such as microalgae and cyanobacteria, is a promising approach that has been recently explored to generate chimerical plant-animal tissues where, upon light exposure, oxygen can be produced and released in a localized and controlled manner. This review will briefly summarize the state-of-the-art approaches to improve tissue oxygenation, as well as studies describing the use of photosynthetic microorganisms in 3D bioprinting technologies. STATEMENT OF SIGNIFICANCE: 3D bioprinting technology has emerged as a tool for the generation of viable and functional tissues for direct in vitro and in vivo applications, including disease modeling, drug discovery and regenerative medicine. Despite the latest advancements in this field, suboptimal oxygen delivery to cells before, during and after the bioprinting process limits their viability within 3D bioprinted tissues. This review article first highlights state-of-the-art approaches used to improve oxygen delivery in bioengineered tissues to overcome this challenge. Then, it focuses on the emerging roles played by photosynthetic organisms as novel biomaterials for bioink generation. Finally, it provides considerations around current challenges and novel potential opportunities for their use in bioinks, by comparing latest published studies using algae for 3D bioprinting.
Collapse
|
30
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
31
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
32
|
Wangpraseurt D, You S, Sun Y, Chen S. Biomimetic 3D living materials powered by microorganisms. Trends Biotechnol 2022; 40:843-857. [DOI: 10.1016/j.tibtech.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
|
33
|
Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Bulleri F, Farhan R, Frühling VMM, Gribben PE, Harrison SB, He Q, Klinghardt M, Langeneck J, Lanham BS, Mondardini L, Mulders Y, Oleksyn S, Ramus AP, Schiel DR, Schneider T, Siciliano A, Silliman BR, Smale DA, South PM, Wernberg T, Zhang S, Zotz G. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat Commun 2022; 13:581. [PMID: 35102155 PMCID: PMC8803935 DOI: 10.1038/s41467-022-28194-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation. Species interactions that can enhance habitat heterogeneity such as facilitation cascades of foundation species have been overlooked in biodiversity models. This study conducted 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which biodiversity is explained by three axes of habitat heterogeneity in facilitation cascades.
Collapse
|
34
|
A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Ciffréo L, Marchand C, Szczepanski CR, Medici MG, Godeau G. Bioinspired and Post-Functionalized 3D-Printed Surfaces with Parahydrophobic Properties. Biomimetics (Basel) 2021; 6:biomimetics6040071. [PMID: 34940014 PMCID: PMC8698420 DOI: 10.3390/biomimetics6040071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Desertification is a growing risk for humanity. Studies show that water access will be the leading cause of massive migration in the future. For this reason, significant research efforts are devoted to identifying new sources of water. Among this work, one of the more interesting strategies takes advantage of atmospheric non-liquid water using water harvesting. Various strategies exist to harvest water, but many suffer from low yield. In this work, we take inspiration from a Mexican plant (Echeveria pulvinate) to prepare a material suitable for future water harvesting applications. Observation of E. pulvinate reveals that parahydrophobic properties are favorable for water harvesting. To mimic these properties, we leveraged a combination of 3D printing and post-functionalization to control surface wettability and obtain parahydrophobic properties. The prepared surfaces were investigated using IR and SEM. The surface roughness and wettability were also investigated to completely describe the elaborated surfaces and strongly hydrophobic surfaces with parahydrophobic properties are reported. This new approach offers a powerful platform to develop parahydrophobic features with desired three-dimensional shape.
Collapse
Affiliation(s)
- Léna Ciffréo
- Institut Méditerranéen du Risque de l’Environnement et du Développement Durable (IMREDD), Université Côte d’Azur, 06200 Nice, France; (L.C.); (C.M.)
| | - Claire Marchand
- Institut Méditerranéen du Risque de l’Environnement et du Développement Durable (IMREDD), Université Côte d’Azur, 06200 Nice, France; (L.C.); (C.M.)
| | - Caroline R. Szczepanski
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Marie-Gabrielle Medici
- Institut de Physique de Nice (INPHYNI), Université Côte d’Azur, UMR 7010, 06000 Nice, France;
| | - Guilhem Godeau
- Institut Méditerranéen du Risque de l’Environnement et du Développement Durable (IMREDD), Université Côte d’Azur, 06200 Nice, France; (L.C.); (C.M.)
- Institut de Physique de Nice (INPHYNI), Université Côte d’Azur, UMR 7010, 06000 Nice, France;
- Correspondence: ; Tel.: +33-489-152-904
| |
Collapse
|
36
|
Coral holobionts and biotechnology: from Blue Economy to coral reef conservation. Curr Opin Biotechnol 2021; 74:110-121. [PMID: 34861476 DOI: 10.1016/j.copbio.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.
Collapse
|
37
|
Avila-Ramírez A, Valle-Pérez AU, Susapto HH, Pérez-Pedroza R, Briola GR, Alrashoudi A, Khan Z, Bilalis P, Hauser CAE. Ecologically Friendly Biofunctional Ink for Reconstruction of Rigid Living Systems Under Wet Conditions. Int J Bioprint 2021; 7:398. [PMID: 34805592 PMCID: PMC8600305 DOI: 10.18063/ijb.v7i4.398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
The development of three-dimensional (3D)-printable inks is essential for several applications, from industrial manufacturing to novel applications for biomedical engineering. Remarkably, biomaterials for tissue engineering applications can be expanded to other new horizons; for instance, restoration of rigid living systems as coral reefs is an emergent need derived from recent issues from climate change. The coral reefs have been endangered, which can be observed in the increasing bleaching around the world. Very few studies report eco-friendly inks for matter since most conventional approaches require synthetic polymer, which at some point could be a pollutant depending on the material. Therefore, there is an unmet need for cost-effective formulations from eco-friendly materials for 3D manufacturing to develop carbonate-based inks for coral reef restoration. Our value proposition derives from technologies developed for regenerative medicine, commonly applied for human tissues like bone and cartilage. In our case, we created a novel biomaterial formulation from biopolymers such as gelatin methacrylate, poly (ethylene glycol diacrylate), alginate, and gelatin as scaffold and binder for the calcium carbonate and hydroxyapatite bioceramics needed to mimic the structure of rigid structures. This project presents evidence from 2D/3D manufacturing, chemical, mechanical, and biological characterization, which supports the hypothesis of its utility to aid in the fight to counteract the coral bleaching that affects all the marine ecosystem, primarily when this is supported by solid research in biomaterials science used for living systems, it can extend tissue engineering into new approaches in different domains such as environmental or marine sciences.
Collapse
Affiliation(s)
- Alan Avila-Ramírez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alexander U Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hepi Hari Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rosario Pérez-Pedroza
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Giuseppina R Briola
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Alrashoudi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zainab Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| |
Collapse
|
38
|
Kumar V, Vlaskin MS, Grigorenko AV. 3D Bioprinting to Fabricate Living Microalgal Materials. Trends Biotechnol 2021; 39:1243-1244. [PMID: 34689997 DOI: 10.1016/j.tibtech.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
3D bioprinting to fabricate live microalgal materials is an impending technological transformation in the field of microalgal biotechnology. Balasubramanian et al. have demonstrated 3D bioprinting using alginate hydrogel encapsulation to create unique photosynthetically active microalgal biomaterials that are biodegradable, regenerative, and eco-friendly.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Anatoly V Grigorenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
39
|
Zhou H, Li D, He X, Hui X, Guo H, Hu C, Mu X, Wang ZL. Bionic Ultra-Sensitive Self-Powered Electromechanical Sensor for Muscle-Triggered Communication Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101020. [PMID: 34081406 PMCID: PMC8336610 DOI: 10.1002/advs.202101020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The past few decades have witnessed the tremendous progress of human-machine interface (HMI) in communication, education, and manufacturing fields. However, due to signal acquisition devices' limitations, the research on HMI related to communication aid applications for the disabled is progressing slowly. Here, inspired by frogs' croaking behavior, a bionic triboelectric nanogenerator (TENG)-based ultra-sensitive self-powered electromechanical sensor for muscle-triggered communication HMI application is developed. The sensor possesses a high sensitivity (54.6 mV mm-1 ), a high-intensity signal (± 700 mV), and a wide sensing range (0-5 mm). The signal intensity is 206 times higher than that of traditional biopotential electromyography methods. By leveraging machine learning algorithms and Morse code, the safe, accurate (96.3%), and stable communication aid HMI applications are achieved. The authors' bionic TENG-based electromechanical sensor provides a valuable toolkit for HMI applications of the disabled, and it brings new insights into the interdisciplinary cross-integration between TENG technology and bionics.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optoelectronic Technology & SystemsMinistry of Educationand International R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & SystemsMinistry of Educationand International R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & SystemsMinistry of Educationand International R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xindan Hui
- Key Laboratory of Optoelectronic Technology & SystemsMinistry of Educationand International R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Hengyu Guo
- Department of Applied PhysicsChongqing UniversityChongqing400044P. R. China
| | - Chenguo Hu
- Department of Applied PhysicsChongqing UniversityChongqing400044P. R. China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & SystemsMinistry of Educationand International R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332‐0245USA
| |
Collapse
|
40
|
Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci U S A 2021; 118:2025252118. [PMID: 34215695 DOI: 10.1073/pnas.2025252118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.
Collapse
|
41
|
Patnaik R, Mallick N. Microalgal Biodiesel Production: Realizing the Sustainability Index. Front Bioeng Biotechnol 2021; 9:620777. [PMID: 34124015 PMCID: PMC8193856 DOI: 10.3389/fbioe.2021.620777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Search for new and renewable sources of energy has made research reach the tiny little tots, microalgae for the production of biodiesel. But despite years of research on the topic, a definitive statement, declaring microalgae as an economically, environmentally, and socially sustainable resource is yet to be seen or heard of. With technological and scientific glitches being blamed for this delay in the progress of the production system, an assessment of the sustainability indices achieved so far by the microalgal biodiesel is important to be done so as to direct future research efforts in a more coordinated manner to achieve the sustainability mark. This article provides a review of the current economic, environmental, and social status of microalgal biodiesel and the strategies adopted to achieve them, with suggestions to address the challenges faced by the microalgal biodiesel production system.
Collapse
Affiliation(s)
- Reeza Patnaik
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nirupama Mallick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
42
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
43
|
Yuan Y, Yan S, Fang Q. Light transport modeling in highly complex tissues using the implicit mesh-based Monte Carlo algorithm. BIOMEDICAL OPTICS EXPRESS 2021; 12:147-161. [PMID: 33520382 PMCID: PMC7818958 DOI: 10.1364/boe.411898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
The mesh-based Monte Carlo (MMC) technique has grown tremendously since its initial publication nearly a decade ago. It is now recognized as one of the most accurate Monte Carlo (MC) methods, providing accurate reference solutions for the development of novel biophotonics techniques. In this work, we aim to further advance MMC to address a major challenge in biophotonics modeling, i.e. light transport within highly complex tissues, such as dense microvascular networks, porous media and multi-scale tissue structures. Although the current MMC framework is capable of simulating light propagation in such media given its generality, the run-time and memory usage grow rapidly with increasing media complexity and size. This greatly limits our capability to explore complex and multi-scale tissue structures. Here, we propose a highly efficient implicit mesh-based Monte Carlo (iMMC) method that incorporates both mesh- and shape-based tissue representations to create highly complex yet memory-efficient light transport simulations. We demonstrate that iMMC is capable of providing accurate solutions for dense vessel networks and porous tissues while reducing memory usage by greater than a hundred- or even thousand-fold. In a sample network of microvasculature, the reduced shape complexity results in nearly 3x speed acceleration. The proposed algorithm is now available in our open-source MMC software at http://mcx.space/#mmc.
Collapse
Affiliation(s)
- Yaoshen Yuan
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Shijie Yan
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
44
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|