1
|
Jiang M, Xu F, Lei Z, Chen X, Luo H, Zheng Z, Zhang D, Lan Y, Ruan J. Heterogeneous Brain Dynamics Between Acute Cerebellar and Brainstem Infarction. CEREBELLUM (LONDON, ENGLAND) 2024; 24:6. [PMID: 39652189 PMCID: PMC11628581 DOI: 10.1007/s12311-024-01770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/12/2024]
Abstract
To evaluate the alterations in brain dynamics in patients suffering from brainstem or cerebellar infarctions and their potential associations with cognitive function. In this study, 37 patients were recruited who had acute cerebellar infarction (CI), 32 patients who had acute brainstem infarction (BsI), and 40 healthy controls (HC). Every participant had their resting-state electroencephalogram (EEG) data captured, and the EEG microstates were analyzed. The cognitive function was measured by the Neuropsychological Cognitive Scale including the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Boston Naming Test (BNT), the Digit Span Test (Digitspan), and the Symbol Digit Modalities Test (SDMT). Compared with the HC group, the transition probabilities from Microstate A(MsA) and MsD to MsC significantly decreased while the transition probabilities from MsA to MsD and from MsD to MsB significantly increased in the BsI group. By contrast, the CI group showed a significant increase in transition probabilities from MsA and MsD to MsC, whereas the transitions from MsD to MsB significantly decreased. Subgroup analysis within the CI group demonstrated that the CI patients with dizziness showed increased coverage and duration in MsB but decreased MsD occurrence than those of CI patients with vertigo. In addition, the BsI patients with pons infarction performed a decreased transition probability between MsA and MsD than those of BsI patients with medulla oblongata infarctions. Moreover, the changes in Microstate (Ms) were significantly correlated with cognitive scales in patients with CI or BsI. Altered brain dynamics in patients with CI or BsI suggested that disturbances in resting brain networks might play a functional role in the cognitive impairment of the CI or BsI patients. Through the use of microstate analysis, the dizziness or vertigo following CI could be differentiated. These findings may serve as a powerful tool in our future clinical practices.
Collapse
Affiliation(s)
- Mingqing Jiang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Feng Xu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ziye Lei
- Department of Neurology, Luzhou People's Hospital, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhong Zheng
- Center for Neurological Function Test and Neuromodulation, West China Xiamen Hospital, Sichuan University, Xiamen, 36102, China
| | - Dechou Zhang
- Department of Neurology, Southwest Medical University Affiliated Hospital of Traditional Chinese Medicine, Luzhou, 646000, China
| | - Yongshu Lan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Ren H, Ran X, Qiu M, Lv S, Wang J, Wang C, Xu Y, Gao Z, Ren W, Zhou X, Mu J, Yu Y, Zhao Z. Abnormal nonlinear features of EEG microstate sequence in obsessive-compulsive disorder. BMC Psychiatry 2024; 24:881. [PMID: 39627734 PMCID: PMC11616381 DOI: 10.1186/s12888-024-06334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND At present, only a few studies have explored electroencephalography (EEG) microstates of patients with obsessive-compulsive disorder (OCD) and the results are inconsistent. Additionally, the nonlinear features of EEG microstate sequences contain rich information about the brain, yet how the nonlinear features of EEG microstate sequences abnormally change in patients with OCD is still unknown. METHODS Resting-state EEG data were collected from 48 OCD patients and macheted 48 healthy controls (HC). Subsequently, EEG microstate analysis was used to extract the microstate temporal parameters (duration, occurrence, coverage) and nonlinear features of EEG microstate sequences (sample entropy, Lempel-Ziv complexity, Hurst index). Finally, the temporal parameters and nonlinear features of EEG microstate sequences were sent to three kinds of machine learning models to classify OCD patients. RESULTS Both groups obtained four typical EEG microstate topographies. The duration of microstates A, B, and C in OCD patients decreased significantly, while the occurrence of microstate D increased significantly compared to HC. Sample entropy and Lempel-Ziv complexity of microstate sequences in OCD patients increased significantly, while Hurst index decreased significantly compared to HC. The classification accuracy using the nonlinear features of microstate sequences reached up to 85%, significantly higher than that based on microstate temporal parameter models. CONCLUSION This study provides supplementary findings on EEG microstates in OCD patients with a larger sample size. We found that the nonlinear features of EEG microstate sequences in OCD patients can serve as potential electrophysiological biomarkers for distinguishing OCD patients.
Collapse
Affiliation(s)
- Huicong Ren
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xiangying Ran
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Mengyue Qiu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Shiyang Lv
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junming Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Chang Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Yongtao Xu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Zhixian Gao
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Wu Ren
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Xuezhi Zhou
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junlin Mu
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yi Yu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
| | - Zongya Zhao
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China.
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, People's Republic of China.
| |
Collapse
|
3
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
4
|
Murphy M, Jiang C, Wang LA, Kozhemiako N, Wang Y, Wang J, Pan JQ, Purcell SM. Electroencephalographic Microstates During Sleep and Wake in Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100371. [PMID: 39296796 PMCID: PMC11408315 DOI: 10.1016/j.bpsgos.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Aberrant functional connectivity is a hallmark of schizophrenia. The precise nature and mechanism of dysconnectivity in schizophrenia remains unclear, but evidence suggests that dysconnectivity is different in wake versus sleep. Microstate analysis uses electroencephalography (EEG) to investigate large-scale patterns of coordinated brain activity by clustering EEG data into a small set of recurring spatial patterns, or microstates. We hypothesized that this technique would allow us to probe connectivity between brain networks at a fine temporal resolution and uncover previously unknown sleep-specific dysconnectivity. Methods We studied microstates during sleep in patients with schizophrenia by analyzing high-density EEG sleep data from 114 patients with schizophrenia and 79 control participants. We used a polarity-insensitive k-means analysis to extract a set of 6 microstate topographies. Results These 6 states included 4 widely reported canonical microstates. In patients and control participants, falling asleep was characterized by a shift from microstates A, B, and C to microstates D, E, and F. Microstate F was decreased in patients during wake, and microstate E was decreased in patients during sleep. The complexity of microstate transitions was greater in patients than control participants during wake, but this reversed during sleep. Conclusions Our findings reveal behavioral state-dependent patterns of cortical dysconnectivity in schizophrenia. Furthermore, these findings are largely unrelated to previous sleep-related EEG markers of schizophrenia such as decreased sleep spindles. Therefore, these findings are driven by previously undescribed sleep-related pathology in schizophrenia.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Chenguang Jiang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lei A. Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jun Wang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Shaun M. Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Teng C, Cong L, Tian Q, Liu K, Cheng S, Zhang T, Dang W, Hou Y, Ma J, Hui D, Hu W. EEG microstate in people with different degrees of fear of heights during virtual high-altitude exposure. Brain Res Bull 2024; 218:111112. [PMID: 39486463 DOI: 10.1016/j.brainresbull.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Previous neuroimaging studies based on electroencephalography (EEG) microstate analysis have identified abnormal neural electric activity in patients with psychiatric diseases. However, the microstate information in individuals with different degrees of fear of heights (FoH) remains unknown so far. The aim of the study was therefore to explore the changes of EEG microstate characteristics in different FoH individuals when exposed to high-altitude stimulated by virtual reality (VR). First, acrophobia questionnaire (AQ) before the experiment and 32-channel EEG signals under the virtual high-altitude exposure were collected from 69 subjects. Second, each subject was divided into one of three levels of FoH including no-FoH, mild or moderate FoH (m-FoH) and severe FoH (s-FoH) groups according to their AQ scores. Third, using microstate analysis, we transformed EEG data into sequences of characteristic topographic maps and computed EEG microstate features including microstate basic parameters, microstate sequences complexity and microstate energy. Finally, the extracted features as inputs were sent to train and test an support vector machine (SVM) for classifying different FoH groups. The results demonstrated that five types of microstates (labeled as A, B, C, D and F) were identified across all subjects, of which microstates A-D resembled the four typical microstate classes and microstate F was a non-canonical microstate. Significantly decreased occurrence, coverage and duration of microstate F and transition probabilities from other microstates to microstate F in m-FoH and s-FoH groups were observed compared to no-FoH group. It was also demonstrated that both m-FoH and s-FoH groups showed a notable reduction in sample entropy and Lempel-Ziv complexity. Moreover, energies of microstate D for m-FoH group and microstate B for s-FoH group in right parietal, parietooccipital and occipital regions exhibited prominent decreases as comparison to people without FoH. But, no significant differences were found between m-FoH and s-FoH groups. Additionally, the results indicated that AQ-anxiety scores were negatively correlated with microstate basic metrics as well as microstate energy. For classification, the performance of SVM reached a relatively high accuracy of 89 % for distinguishing no-FoH from m-FoH. In summary, the findings highlight the alterations of EEG microstates in people with fear of heights induced by virtual high-altitude, reflecting potentially underlying abnormalities in the allocation of neural assemblies. Therefore, the combination of EEG microstate analysis and VR may be a potential valuable approach for the diagnosis of fear of heights.
Collapse
Affiliation(s)
- Chaolin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qiumei Tian
- Department of Gastroenterology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ke Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Taihui Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weitao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajing Hou
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Duoduo Hui
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wendong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Wan W, Gao Z, Gu Z, Peng CK, Cui X. Decoding aging and cognitive functioning through spatiotemporal EEG patterns: Introducing spatiotemporal information-based similarity analysis. CHAOS (WOODBURY, N.Y.) 2024; 34:113124. [PMID: 39514384 DOI: 10.1063/5.0203249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Exploring spatiotemporal patterns of high-dimensional electroencephalography (EEG) time series generated from complex brain system is crucial for deciphering aging and cognitive functioning. Analyzing high-dimensional EEG series poses challenges, particularly when employing distance-based methods for spatiotemporal dynamics. Therefore, we proposed an innovative methodology for multi-channel EEG data, termed as Spatiotemporal Information-based Similarity (STIBS) analysis. The core of this method is to first perform state space compression of multi-channel EEG time series using global field power, which can provide insight into the dynamic integration of spatiotemporal patterns between the steady states and non-steady states of brain. Subsequently, we quantify the pairwise differences and non-randomness of spatiotemporal patterns using an information-based similarity analysis. Results demonstrated that this method holds the potential to serve as a distinguishing marker between young and elderly on both pairwise differences and non-randomness indices. Young individuals and those with higher cognitive abilities exhibit more complex macrostructure and non-random spatiotemporal patterns, whereas both aging and cognitive decline lead to more randomized spatiotemporal patterns. We further extended the proposed analytics to brain regions adversarial STIBS (bra-STIBS), highlighting differences between young and elderly, as well as high and low cognitive groups. Furthermore, utilizing the STIBS-based XGBoost model yields superior recognition accuracy in aging (93.05%) and cognitive functioning (74.29%, 64.19%, and 80.28%, respectively, for attention, memory, and compatibility performance recognition). STIBS-based methodology not only contributes to the ongoing exploration of neurobiological changes in aging but also provides a powerful tool for characterizing the spatiotemporal nonlinear dynamics of the brain and their implications for cognitive functioning.
Collapse
Affiliation(s)
- Wang Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China
| | - Zhilin Gao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chung-Kang Peng
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xingran Cui
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Tüscher O, Muthuraman M, Horstmann JP, Horta G, Radyushkin K, Baumgart J, Sigurdsson T, Endle H, Ji H, Kuhnhäuser P, Götz J, Kepser LJ, Lotze M, Grabe HJ, Völzke H, Leehr EJ, Meinert S, Opel N, Richers S, Stroh A, Daun S, Tittgemeyer M, Uphaus T, Steffen F, Zipp F, Groß J, Groppa S, Dannlowski U, Nitsch R, Vogt J. Altered cortical synaptic lipid signaling leads to intermediate phenotypes of mental disorders. Mol Psychiatry 2024; 29:3537-3552. [PMID: 38806692 PMCID: PMC11541086 DOI: 10.1038/s41380-024-02598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.
Collapse
Affiliation(s)
- Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research Mainz, Mainz, Germany
- Institute for Molecular Biology Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Neurology, Neural engineering with Signal Analytics and Artificial Intelligence (NESA-AI), University Hospital of Würzburg, Würzburg, Germany
- Informatics for Medical Technology, University Augsburg, Augsburg, Germany
| | - Johann-Philipp Horstmann
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Guilherme Horta
- Focus Program Translational Neuroscience, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Anatomy, University Medical Center Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- TARC, Translational Animal Research Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- TARC, Translational Animal Research Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, University Medical Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Haichao Ji
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Prisca Kuhnhäuser
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan Götz
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lara-Jane Kepser
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Department SHIP/Clinical Epidemiological Research, Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sebastian Richers
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Silvia Daun
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (IMN-3), Research Centre Jülich, Jülich, Germany
| | - Marc Tittgemeyer
- Max Planck Institute of Metabolism Research, Cologne, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Timo Uphaus
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Sergiu Groppa
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Robert Nitsch
- Institute for Translational Neuroscience, University of Münster, Münster, Germany.
| | - Johannes Vogt
- Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Department of Molecular and Translational Neuroscience, Institute of Anatomy II, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Wei C, Yang Q, Chen J, Rao X, Li Q, Luo J. EEG microstate as a biomarker of post-stroke depression with acupuncture treatment. Front Neurol 2024; 15:1452243. [PMID: 39534268 PMCID: PMC11554454 DOI: 10.3389/fneur.2024.1452243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Post-stroke depression (PSD) is a prevalent psychiatric complication among stroke survivors. The PSD researches focus on pathogenesis, new treatment methods and efficacy prediction. This study explored the electroencephalography (EEG) microstates in PSD and assessed their changes after acupuncture treatment, aiming to find the biological characteristics and the predictors of treatment efficacy of PSD. Methods A 64-channel resting EEG data was collected from 70 PSD patients (PSD group) and 40 healthy controls (HC group) to explore the neuro-electrophysiological mechanism of PSD. The PSD patients received 6 weeks of acupuncture treatment. EEG data was collected from 60 PSD patients after acupuncture treatment (MA group) to verify whether acupuncture had a modulating effect on abnormal EEG microstates. Finally, the MA group was divided into two groups: the remission prediction group (RP group) and the non-remission prediction group (NRP group) according to the 24-Item Hamilton Depression Scale (HAMD-24) reduction rate. A prediction model for acupuncture treatment was established by baseline EEG microstates. Results The duration of microstate D along with the occurrence and contribution of microstate C were reduced in PSD patients. Acupuncture treatment partially normalized abnormal EEG microstates in PSD patients. Baseline EEG microstates predicted the efficacy of acupuncture treatment with an area under the curve (AUC) of 0.964. Conclusion This study provides a novel viewpoint on the neurophysiological mechanisms of PSD and emphasizes the potential of EEG microstates as a functional biomarker. Additionally, we anticipated the therapeutic outcomes of acupuncture by analyzing the baseline microstates, which holds significant practical implication for the PSD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Doyle AE, Bearden CE, Gur RE, Ledbetter DH, Martin CL, McCoy TH, Pasaniuc B, Perlis RH, Smoller JW, Davis LK. Advancing Mental Health Research Through Strategic Integration of Transdiagnostic Dimensions and Genomics. Biol Psychiatry 2024:S0006-3223(24)01664-0. [PMID: 39424167 DOI: 10.1016/j.biopsych.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Genome wide studies are yielding a growing catalogue of common and rare variants that confer risk for psychopathology. Yet, despite representing unprecedented progress, emerging data also indicate that the full promise of psychiatric genetics - including understanding pathophysiology and improving personalized care - will not be fully realized by targeting traditional, dichotomous diagnostic categories. The current article provides reflections on themes emerging from a 2021 NIMH sponsored conference convened to address strategies for the evolving field of psychiatric genetics. As anticipated by NIMH's Research Domain Framework, multi-level investigations of dimensional and transdiagnostic phenotypes, particularly when integrated with biobanks and big data, will be critical to advancing knowledge. The path forward will also require more diverse representation in source studies. Additionally, progress will be catalyzed by a range of converging approaches, including capitalizing on computational methods, pursuing biological insights, working within a developmental framework, and engaging healthcare systems and patient communities.
Collapse
Affiliation(s)
- Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, University of California at Los Angeles [UCLA]
| | - Raquel E Gur
- Departments of Psychiatry, Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, and the Lifespan Brain Institute of Children's Hospital of Philadelphia and Penn Medicine
| | - David H Ledbetter
- Departments of Pediatrics and Psychiatry, University of Florida College of Medicine-Jacksonville
| | | | - Thomas H McCoy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Pathology and Laboratory Medicine, and Human Genetics, UCLA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center; Vanderbilt Genetics Institute, Vanderbilt University Medical Center.
| |
Collapse
|
10
|
Gao Z, Xiao Y, Zhu F, Tao B, Zhao Q, Yu W, Sweeney JA, Gong Q, Lui S. Multilayer network analysis reveals instability of brain dynamics in untreated first-episode schizophrenia. Cereb Cortex 2024; 34:bhae402. [PMID: 39375878 DOI: 10.1093/cercor/bhae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Although aberrant static functional brain network activity has been reported in schizophrenia, little is known about how the dynamics of neural function are altered in first-episode schizophrenia and are modulated by antipsychotic treatment. The baseline resting-state functional magnetic resonance imaging data were acquired from 122 first-episode drug-naïve schizophrenia patients and 128 healthy controls (HCs), and 44 patients were rescanned after 1-year of antipsychotic treatment. Multilayer network analysis was applied to calculate the network switching rates between brain states. Compared to HCs, schizophrenia patients at baseline showed significantly increased network switching rates. This effect was observed mainly in the sensorimotor (SMN) and dorsal attention networks (DAN), and in temporal and parietal regions at the nodal level. Switching rates were reduced after 1-year of antipsychotic treatment at the global level and in DAN. Switching rates at baseline at the global level and in the inferior parietal lobule were correlated with the treatment-related reduction of negative symptoms. These findings suggest that instability of functional network activity plays an important role in the pathophysiology of acute psychosis in early-stage schizophrenia. The normalization of network stability after antipsychotic medication suggests that this effect may represent a systems-level mechanism for their therapeutic efficacy.
Collapse
Affiliation(s)
- Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Cincinnati, OH 45219, United States
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| |
Collapse
|
11
|
Yan Y, Gao M, Geng Z, Wu Y, Xiao G, Wang L, Pang X, Yang C, Zhou S, Li H, Hu P, Wu X, Wang K. Abnormal EEG microstates in Alzheimer's disease: predictors of β-amyloid deposition degree and disease classification. GeroScience 2024; 46:4779-4792. [PMID: 38727873 PMCID: PMC11336126 DOI: 10.1007/s11357-024-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 08/22/2024] Open
Abstract
Electroencephalography (EEG) microstates are used to study cognitive processes and brain disease-related changes. However, dysfunctional patterns of microstate dynamics in Alzheimer's disease (AD) remain uncertain. To investigate microstate changes in AD using EEG and assess their association with cognitive function and pathological changes in cerebrospinal fluid (CSF). We enrolled 56 patients with AD and 38 age- and sex-matched healthy controls (HC). All participants underwent various neuropsychological assessments and resting-state EEG recordings. Patients with AD also underwent CSF examinations to assess biomarkers related to the disease. Stepwise regression was used to analyze the relationship between changes in microstate patterns and CSF biomarkers. Receiver operating characteristics analysis was used to assess the potential of these microstate patterns as diagnostic predictors for AD. Compared with HC, patients with AD exhibited longer durations of microstates C and D, along with a decreased occurrence of microstate B. These microstate pattern changes were associated with Stroop Color Word Test and Activities of Daily Living scale scores (all P < 0.05). Mean duration, occurrences of microstate B, and mean occurrence were correlated with CSF Aβ 1-42 levels, while duration of microstate C was correlated with CSF Aβ 1-40 levels in AD (all P < 0.05). EEG microstates are used to predict AD classification with moderate accuracy. Changes in EEG microstate patterns in patients with AD correlate with cognition and disease severity, relate to Aβ deposition, and may be useful predictors for disease classification.
Collapse
Affiliation(s)
- Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Manman Gao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yue Wu
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Guixian Xiao
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Hongru Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Baez S, Hernandez H, Moguilner S, Cuadros J, Santamaria‐Garcia H, Medel V, Migeot J, Cruzat J, Valdes‐Sosa PA, Lopera F, González‐Hernández A, Bonilla‐Santos J, Gonzalez‐Montealegre RA, Aktürk T, Legaz A, Altschuler F, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, Huepe D, Soto‐Añari M, Coronel‐Oliveros C, Herrera E, Abasolo D, Clark RA, Güntekin B, Duran‐Aniotz C, Parra MA, Lawlor B, Tagliazucchi E, Prado P, Ibanez A. Structural inequality and temporal brain dynamics across diverse samples. Clin Transl Med 2024; 14:e70032. [PMID: 39360669 PMCID: PMC11447638 DOI: 10.1002/ctm2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Structural income inequality - the uneven income distribution across regions or countries - could affect brain structure and function, beyond individual differences. However, the impact of structural income inequality on the brain dynamics and the roles of demographics and cognition in these associations remains unexplored. METHODS Here, we assessed the impact of structural income inequality, as measured by the Gini coefficient on multiple EEG metrics, while considering the subject-level effects of demographic (age, sex, education) and cognitive factors. Resting-state EEG signals were collected from a diverse sample (countries = 10; healthy individuals = 1394 from Argentina, Brazil, Colombia, Chile, Cuba, Greece, Ireland, Italy, Turkey and United Kingdom). Complexity (fractal dimension, permutation entropy, Wiener entropy, spectral structure variability), power spectral and aperiodic components (1/f slope, knee, offset), as well as graph-theoretic measures were analysed. FINDINGS Despite variability in samples, data collection methods, and EEG acquisition parameters, structural inequality systematically predicted electrophysiological brain dynamics, proving to be a more crucial determinant of brain dynamics than individual-level factors. Complexity and aperiodic activity metrics captured better the effects of structural inequality on brain function. Following inequality, age and cognition emerged as the most influential predictors. The overall results provided convergent multimodal metrics of biologic embedding of structural income inequality characterised by less complex signals, increased random asynchronous neural activity, and reduced alpha and beta power, particularly over temporoposterior regions. CONCLUSION These findings might challenge conventional neuroscience approaches that tend to overemphasise the influence of individual-level factors, while neglecting structural factors. Results pave the way for neuroscience-informed public policies aimed at tackling structural inequalities in diverse populations.
Collapse
Affiliation(s)
- Sandra Baez
- Departamento de PsicologíaUniversidad de los AndesBogotaColombia
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
| | - Hernan Hernandez
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Sebastian Moguilner
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - Jhosmary Cuadros
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa MaríaValparaísoChile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del TáchiraSan CristóbalVenezuela
| | - Hernando Santamaria‐Garcia
- PhD Program in NeurosciencePontificia Universidad JaverianaBogotaColombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio BogotáSan IgnacioColombia
| | - Vicente Medel
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Joaquín Migeot
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Josephine Cruzat
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of AntioquiaMedellínColombia
| | | | | | | | - Tuba Aktürk
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Agustina Legaz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdobaArgentina
| | - Florencia Altschuler
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sol Fittipaldi
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- School of Psychology, Trinity College DublinDublinIreland
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of EconomicsIzmirTurkey
- Brain Dynamics Multidisciplinary Research CenterDokuz Eylul UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of EdinburghScotlandUK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- School of Psychology, Trinity College DublinDublinIreland
| | - Alberto A Fernández Lucas
- Department of Legal MedicinePsychiatry and Pathology at the Complutense University of MadridMadridSpain
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo IbáñezPenalolenChile
| | | | - Carlos Coronel‐Oliveros
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaísoChile
| | - Eduar Herrera
- Departamento de Estudios PsicológicosUniversidad IcesiCaliColombia
| | - Daniel Abasolo
- Faculty of Engineering and Physical Sciences, Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of SurreyGuildfordUK
| | - Ruaridh A. Clark
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
- Department of Electronic and Electrical EngineeringCentre for Signal and Image ProcessingUniversity of StrathclydeGlasgowUK
| | - Bahar Güntekin
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Health Sciences and Technology Research Institute (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Claudia Duran‐Aniotz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Mario A. Parra
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Brian Lawlor
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Enzo Tagliazucchi
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- University of Buenos AiresBuenos AiresArgentina
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- Trinity College Dublin, The University of DublinDublinIreland
| |
Collapse
|
13
|
Denzer S, Diezig S, Achermann P, Mast FW, Koenig T. Electrophysiological (EEG) microstates during dream-like bizarre experiences in a naturalistic scenario using immersive virtual reality. Eur J Neurosci 2024; 60:5815-5830. [PMID: 39258353 DOI: 10.1111/ejn.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Monitoring the reality status of conscious experience is essential for a human being to interact successfully with the external world. Despite its importance for everyday functioning, reality monitoring can systematically become erroneous, for example, while dreaming or during hallucinatory experiences. To investigate brain processes associated with reality monitoring occurring online during an experience, i.e., perceptual reality monitoring, we assessed EEG microstates in healthy, young participants. In a within-subjects design, we compared the experience of reality when being confronted with dream-like bizarre elements versus realistic elements in an otherwise highly naturalistic real-world scenario in immersive virtual reality. Dream-like bizarreness induced changes in the subjective experience of reality and bizarreness, and led to an increase in the contribution of a specific microstate labelled C'. Microstate C' was related to the suspension of disbelief, i.e. the suppression of bizarre mismatches. Together with the functional interpretation of microstate C' as reported by previous studies, the findings of this study point to the importance of prefrontal meta-conscious control processes in perceptual reality monitoring.
Collapse
Affiliation(s)
- Simone Denzer
- Institute of Psychology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Sarah Diezig
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
14
|
SA A, C S, P D, PS S, ML A, Kumar D, Thomas SV, Menon RN. Resting state EEG microstate profiling and a machine-learning based classifier model in epilepsy. Cogn Neurodyn 2024; 18:2419-2432. [PMID: 39555277 PMCID: PMC11564422 DOI: 10.1007/s11571-024-10095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 11/19/2024] Open
Abstract
Electroencephalography-based (EEG) microstate analysis is a promising and widely studied method in which spontaneous cerebral activity is segmented into sub second level quasi-stable states and analyzed. Currently it is being widely explored due to increasing evidence of the association of microstates with cognitive functioning and large-scale brain networks identified by functional magnetic resonance imaging (fMRI). In our study using the four archetypal microstates (A, B, C and D), we investigated the changes in resting state EEG microstate dynamics in persons with temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) compared to healthy controls (HC). Machine learning was applied to study its feasibility in differentiating between different groups using microstate statistics. We found significant differences in all parameters related to Microstate D (fronto-parietal network) in TLE patients and Microstate B (visual processing) in IGE patients compared to HCs. Occurrence, duration and time coverage of Microstate B was highest in IGE when compared to the other groups. We also found significant deviations in transition probabilities for both epilepsy groups, particularly into Microstate C (salience network) in IGE. Classification accuracy into clinical groups was found to exceed 70% using microstate parameters which improved on incorporating neuropsychological test differences. To the best of our knowledge, the current study is the first to compare and validate the use of microstate features to discriminate between two disparate epilepsy syndromes (TLE, IGE) and HCs using machine learning suggesting that resting state EEG microstates can be used for endophenotyping and to study resting state dysfunction in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10095-z.
Collapse
Affiliation(s)
- Asha SA
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Sudalaimani C
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Devanand P
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Subodh PS
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Arya ML
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Devika Kumar
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Sanjeev V Thomas
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Ramshekhar N Menon
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| |
Collapse
|
15
|
Barzon G, Ambrosini E, Vallesi A, Suweis S. EEG microstate transition cost correlates with task demands. PLoS Comput Biol 2024; 20:e1012521. [PMID: 39388512 PMCID: PMC11495555 DOI: 10.1371/journal.pcbi.1012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/22/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The ability to solve complex tasks relies on the adaptive changes occurring in the spatio-temporal organization of brain activity under different conditions. Altered flexibility in these dynamics can lead to impaired cognitive performance, manifesting for instance as difficulties in attention regulation, distraction inhibition, and behavioral adaptation. Such impairments result in decreased efficiency and increased effort in accomplishing goal-directed tasks. Therefore, developing quantitative measures that can directly assess the effort involved in these transitions using neural data is of paramount importance. In this study, we propose a framework to associate cognitive effort during the performance of tasks with electroencephalography (EEG) activation patterns. The methodology relies on the identification of discrete dynamical states (EEG microstates) and optimal transport theory. To validate the effectiveness of this framework, we apply it to a dataset collected during a spatial version of the Stroop task, a cognitive test in which participants respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. The Stroop task is a cognitive test where participants must respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. Our findings reveal an increased cost linked to cognitive effort, thus confirming the framework's effectiveness in capturing and quantifying cognitive transitions. By utilizing a fully data-driven method, this research opens up fresh perspectives for physiologically describing cognitive effort within the brain.
Collapse
Affiliation(s)
- Giacomo Barzon
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Fondazione Bruno Kessler, Povo, Italy
| | - Ettore Ambrosini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Antonino Vallesi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Yao R, Song M, Shi L, Pei Y, Li H, Tan S, Wang B. Microstate D as a Biomarker in Schizophrenia: Insights from Brain State Transitions. Brain Sci 2024; 14:985. [PMID: 39451999 PMCID: PMC11505886 DOI: 10.3390/brainsci14100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives. There is a significant correlation between EEG microstate and the neurophysiological basis of mental illness, brain state, and cognitive function. Given that the unclear relationship between network dynamics and different microstates, this paper utilized microstate, brain network, and control theories to understand the microstate characteristics of short-term memory task, aiming to mechanistically explain the most influential microstates and brain regions driving the abnormal changes in brain state transitions in patients with schizophrenia. Methods. We identified each microstate and analyzed the microstate abnormalities in schizophrenia patients during short-term memory tasks. Subsequently, the network dynamics underlying the primary microstates were studied to reveal the relationships between network dynamics and microstates. Finally, using control theory, we confirmed that the abnormal changes in brain state transitions in schizophrenia patients are driven by specific microstates and brain regions. Results. The frontal-occipital lobes activity of microstate D decreased significantly, but the left frontal lobe of microstate B increased significantly in schizophrenia, when the brain was moving toward the easy-to-reach states. However, the frontal-occipital lobes activity of microstate D decreased significantly in schizophrenia, when the brain was moving toward the hard-to-reach states. Microstate D showed that the right-frontal activity had a higher priority than the left-frontal, but microstate B showed that the left-frontal priority decreased significantly in schizophrenia, when changes occur in the synchronization state of the brain. Conclusions. In conclusion, microstate D may be a biomarker candidate of brain abnormal activity during the states transitions in schizophrenia, and microstate B may represent a compensatory mechanism that maintains brain function and exchanges information with other brain regions. Microstate and brain network provide complementary perspectives on the neurodynamics, offering potential insights into brain function in health and disease.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Meirong Song
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Yan Pei
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Haifang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China;
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| |
Collapse
|
17
|
Al Fahoum A, Zyout A. Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-Based Schizophrenia Detection. Int J Neural Syst 2024; 34:2450046. [PMID: 39010724 DOI: 10.1142/s0129065724500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm's efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm's robustness. The performance metrics derived from these tests - accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa - indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system's accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.
Collapse
Affiliation(s)
- Amjed Al Fahoum
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
| | - Ala'a Zyout
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
18
|
Li Y, Li J, Wang P, Yu D, Chen Z, Shi Z, Wu Y, Qi W, Lu W, Shi H. Electroencephalography microstate alterations reflect potential double-edged cognitive adaptation in Ménière's disease. CNS Neurosci Ther 2024; 30:e14896. [PMID: 39107944 PMCID: PMC11303265 DOI: 10.1111/cns.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE To explore the microstate characteristics and underlying brain network activity of Ménière's disease (MD) patients based on high-density electroencephalography (EEG), elucidate the association between microstate dynamics and clinical manifestation, and explore the potential of EEG microstate features as future neurobiomarkers for MD. METHODS Thirty-two patients diagnosed with MD and 29 healthy controls (HC) matched for demographic characteristics were included in the study. Dysfunction and subjective symptom severity were assessed by neuropsychological questionnaires, pure tone audiometry, and vestibular function tests. Resting-state EEG recordings were obtained using a 256-channel EEG system, and the electric field topographies were clustered into four dominant microstate classes (A, B, C, and D). The dynamic parameters of each microstate were analyzed and utilized as input for a support vector machine (SVM) classifier to identify significant microstate signatures associated with MD. The clinical significance was further explored through Spearman correlation analysis. RESULTS MD patients exhibited an increased presence of microstate class C and a decreased frequency of transitions between microstate class A and B, as well as between class A and D. The transitions from microstate class A to C were also elevated. Further analysis revealed a positive correlation between equilibrium scores and the transitions from microstate class A to C under somatosensory challenging conditions. Conversely, transitions between class A and B were negatively correlated with vertigo symptoms. No significant correlations were detected between these characteristics and auditory test results or emotional scores. Utilizing the microstate features identified via sequential backward selection, the linear SVM classifier achieved a sensitivity of 86.21% and a specificity of 90.61% in distinguishing MD patients from HC. CONCLUSIONS We identified several EEG microstate characteristics in MD patients that facilitate postural control yet exacerbate subjective symptoms, and effectively discriminate MD from HC. The microstate features may offer a new approach for optimizing cognitive compensation strategies and exploring potential neurobiological markers in MD.
Collapse
Affiliation(s)
- Yi‐Ni Li
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Li
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Jun Wang
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dong‐Zhen Yu
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng‐Nong Chen
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng‐Yu Shi
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya‐Qin Wu
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei‐Dong Qi
- Department of Otolaryngology Head and Neck SurgeryHuashan Hospital Fudan UniversityShanghaiChina
| | - Wen Lu
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hai‐Bo Shi
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Khoo SY, Lai WH, On SH, On YY, Adam BM, Law WC, Ng BHS, Fong AYY, Anselm ST. Resting-state electroencephalography (EEG) microstates of healthy individuals following mild sleep deprivation. Sci Rep 2024; 14:16820. [PMID: 39039219 PMCID: PMC11263689 DOI: 10.1038/s41598-024-67902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Mild sleep deprivation is widespread in many societies worldwide. Electroencephalography (EEG) microstate analysis provides information on spatial and temporal characteristics of resting brain network, serving as an indicator of neurophysiological activities at rest. This study seeks to investigate potential neural markers in EEG following mild sleep deprivation of a single night using EEG microstate analysis. Six-minute resting EEG was conducted on thirty healthy adults within 6 hours of waking in the morning and after at least 18 h of sleep deprivation. Translated and validated Malay language Karolinska Sleepiness Scale was used to assess the participants' degree of sleepiness. Microstate characteristics analysis was conducted on the final 24 subjects based on four standard microstate maps. Microstate C shows a significant increase in mean duration, coverage and occurrence, while microstate D has significantly higher occurrence after sleep deprivation. This study demonstrates notable changes in resting state EEG microstates following mild sleep deprivation. Present findings deepen our understanding of the brain's spatiotemporal dynamics under this condition and suggest the potential utility of neural markers in this domain as components of composite markers for sleep deprivation.
Collapse
Affiliation(s)
- Sing Yee Khoo
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
- Clinical Research Centre, Institutes for Clinical Research, National Institutes of Health, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia.
| | - Wei Hong Lai
- Clinical Research Centre, Institutes for Clinical Research, National Institutes of Health, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Shin Hui On
- Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yue Yuan On
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Bujang Mohamad Adam
- Clinical Research Centre, Institutes for Clinical Research, National Institutes of Health, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Wan Chung Law
- Neurology Department, Sarawak General Hospital, Jalan Hospital, Ministry of Health, 93586, Kuching, Sarawak, Malaysia
| | - Benjamin Han Sim Ng
- Neurology Department, Sibu General Hospital, Ministry of Health, KM 5 ½, Jalan Ulu Oya, Pekan Sibu, 96000, Sibu, Sarawak, Malaysia
| | - Alan Yean Yip Fong
- Clinical Research Centre, Institutes for Clinical Research, National Institutes of Health, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Su Ting Anselm
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
20
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Tomescu MI, Papasteri C, Sofonea A, Berceanu AI, Carcea I. Personality Moderates Intra-Individual Variability in EEG Microstates and Spontaneous Thoughts. Brain Topogr 2024; 37:524-535. [PMID: 38038786 PMCID: PMC11199214 DOI: 10.1007/s10548-023-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Variability in brain activity that persists after accounting for overt behavioral and physiological states is often considered noise and controlled as a covariate in research. However, studying intra-individual variability in brain function can provide valuable insights into the dynamic nature of the brain. To explore this, we conducted a study on 43 participants analyzing the EEG microstate dynamics and self-reported spontaneous mental activity during five-minute resting-state recordings on two separate days with a twenty days average delay between recordings. Our results showed that the associations between EEG microstates and spontaneous cognition significantly changed from one day to another. Moreover, microstate changes were associated with changes in spontaneous cognition. Specifically, inter-day changes in Verbal thoughts about Others and future Planning were positively related to bottom-up sensory network-related microstate changes and negatively associated with top-down, attention, and salience network-related microstates. In addition, we find that personality traits are related to inter-day changes in microstates and spontaneous thoughts. Specifically, extraversion, neuroticism, agreeableness, and openness to experience moderated the relationship between inter-day changes in EEG microstates and spontaneous thoughts. Our study provides valuable information on the dynamic changes in the EEG microstate-spontaneous cognition organization, which could be essential for developing interventions and treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Department of Psychology, Faculty of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania.
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania.
| | - Claudiu Papasteri
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Alexandru I Berceanu
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Ioana Carcea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, New Jersey, NJ, USA
| |
Collapse
|
22
|
Kleinert T, Nash K. Trait Aggression is Reflected by a Lower Temporal Stability of EEG Resting Networks. Brain Topogr 2024; 37:514-523. [PMID: 36400856 PMCID: PMC11199292 DOI: 10.1007/s10548-022-00929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Trait aggression can lead to catastrophic consequences for individuals and society. However, it remains unclear how aggressive people differ from others regarding basic, task-independent brain characteristics. We used EEG microstate analysis to investigate how the temporal organization of neural resting networks might help explain inter-individual differences in aggression. Microstates represent whole-brain networks, which are stable for short timeframes (40-120 ms) before quickly transitioning into other microstate types. Recent research demonstrates that the general temporal stability of microstates across types predicts higher levels of self-control and inhibitory control, and lower levels of risk-taking preferences. Given that these outcomes are inversely related to aggression, we investigated whether microstate stability at rest would predict lower levels of trait aggression. As males show higher levels of aggression than females, and males and females express aggression differently, we also tested for possible gender-differences. As hypothesized, people with higher levels of trait aggression showed lower microstate stability. This effect was moderated by gender, with men showing stronger associations compared to women. These findings support the notion that temporal dynamics of sub-second resting networks predict complex human traits. Furthermore, they provide initial indications of gender-differences in the functional significance of EEG microstates.
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
23
|
Murphy M, Carrión RE, Rubio J, Malhotra AK. Peak alpha frequency and electroencephalographic microstates are correlated with aggression in schizophrenia. J Psychiatr Res 2024; 175:60-67. [PMID: 38704982 PMCID: PMC11374487 DOI: 10.1016/j.jpsychires.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Large scale retrospective studies have shown an association between schizophrenia and risk of violence. Overall, this increase in risk is small and does not justify or support stigmatizing public perceptions or media depictions of people with schizophrenia. Nonetheless, in some situations, some symptoms of schizophrenia can increase the risk of violent behavior. Prediction of this behavior would allow high impact preventive interventions. However, to date the neurobiological correlates of violent behavior in schizophrenia are not well understood, precluding the development of prognostic biomarkers. We used electroencephalography to measure alpha activity and microstates from 31 patients with schizophrenia and 18 age matched controls. Participants also completed multiple assessments of current aggressive tendencies and their lifetime history of aggressive acts. We found that individual alpha peak frequency was negatively correlated with aggression scores in both patients and controls (largest Spearman's r = -0.45). Furthermore, this result could be replicated in data taken from a single frontal channel suggesting that this may be possible to obtain in routine clinical settings (largest Spearman's r = -0.40). We also found that transitions between microstates corresponding to auditory and visual networks were inversely correlated with aggression scores. Finally, we found that, within patients, aggression was correlated with the degree of randomness between microstate transitions. This suggests that aggression is related to inappropriate switching between large scale brain networks and subsequent failure to appropriately integrate complicated environmental and internal stimuli. By elucidating some of the electrophysiological correlates of aggression, these data facilitate the development of prognostic biomarkers.
Collapse
Affiliation(s)
- Michael Murphy
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Ricardo E Carrión
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| | - Jose Rubio
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| | - Anil K Malhotra
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| |
Collapse
|
24
|
Schiller B, Sperl MFJ, Kleinert T, Nash K, Gianotti LRR. EEG Microstates in Social and Affective Neuroscience. Brain Topogr 2024; 37:479-495. [PMID: 37523005 PMCID: PMC11199304 DOI: 10.1007/s10548-023-00987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.
Collapse
Affiliation(s)
- Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Matthias F J Sperl
- Department of Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg and Giessen (Research Campus Central Hessen), Marburg, Germany
| | - Tobias Kleinert
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Jiang H, Zhao S, Wu Q, Cao Y, Zhou W, Gong Y, Shao C, Chi A. Dragon boat exercise reshapes the temporal-spatial dynamics of the brain. PeerJ 2024; 12:e17623. [PMID: 38952974 PMCID: PMC11216202 DOI: 10.7717/peerj.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/02/2024] [Indexed: 07/03/2024] Open
Abstract
Although exercise training has been shown to enhance neurological function, there is a shortage of research on how exercise training affects the temporal-spatial synchronization properties of functional networks, which are crucial to the neurological system. This study recruited 23 professional and 24 amateur dragon boat racers to perform simulated paddling on ergometers while recording EEG. The spatiotemporal dynamics of the brain were analyzed using microstates and omega complexity. Temporal dynamics results showed that microstate D, which is associated with attentional networks, appeared significantly altered, with significantly higher duration, occurrence, and coverage in the professional group than in the amateur group. The transition probabilities of microstate D exhibited a similar pattern. The spatial dynamics results showed the professional group had lower brain complexity than the amateur group, with a significant decrease in omega complexity in the α (8-12 Hz) and β (13-30 Hz) bands. Dragon boat training may strengthen the attentive network and reduce the complexity of the brain. This study provides evidence that dragon boat exercise improves the efficiency of the cerebral functional networks on a spatiotemporal scale.
Collapse
Affiliation(s)
- Hongke Jiang
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Shanguang Zhao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Qianqian Wu
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Yingying Cao
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Wu Zhou
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Youwu Gong
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Aiping Chi
- School of Physical Education, Shaanxi Normal University, Xian, China
| |
Collapse
|
26
|
Pascucci D, Roinishvili M, Chkonia E, Brand A, Whitney D, Herzog MH, Manassi M. Intact Serial Dependence in Schizophrenia: Evidence from an Orientation Adjustment Task. Schizophr Bull 2024:sbae106. [PMID: 38936422 DOI: 10.1093/schbul/sbae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS For a long time, it was proposed that schizophrenia (SCZ) patients rely more on sensory input and less on prior information, potentially leading to reduced serial dependence-ie, a reduced influence of prior stimuli in perceptual tasks. However, existing evidence is constrained to a few paradigms, and whether reduced serial dependence reflects a general characteristic of the disease remains unclear. STUDY DESIGN We investigated serial dependence in 26 SCZ patients and 27 healthy controls (CNT) to evaluate the influence of prior stimuli in a classic visual orientation adjustment task, a paradigm not previously tested in this context. STUDY RESULTS As expected, the CNT group exhibited clear serial dependence, with systematic biases toward the orientation of stimuli shown in the preceding trials. Serial dependence in SCZ patients was largely comparable to that in the CNT group. CONCLUSIONS These findings challenge the prevailing notion of reduced serial dependence in SCZ, suggesting that observed differences between healthy CNT and patients may depend on aspects of perceptual or cognitive processing that are currently not understood.
Collapse
Affiliation(s)
- David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maya Roinishvili
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - Eka Chkonia
- Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | - Andreas Brand
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Whitney
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Vision Science Group, University of California, Berkeley, CA, USA
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mauro Manassi
- School of Psychology, University of Aberdeen, King's College, Aberdeen, UK
| |
Collapse
|
27
|
Sapienza J, Pacchioni F, Spangaro M, Bosia M. Dysconnection in schizophrenia: Filling the dots from old to new evidence. Clin Neurophysiol 2024; 162:226-228. [PMID: 38555237 DOI: 10.1016/j.clinph.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Hospital, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Federico Pacchioni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Hospital, Milan, Italy; School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Guo Q, Liu S, Wang L, Feng K, Yang S. Analysis of microstate features for Parkinson's disease based on reliability validation. J Neurosci Methods 2024; 406:110115. [PMID: 38531478 DOI: 10.1016/j.jneumeth.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a disorder with abnormal changes in brain activity. The lack of objective indicators makes the assessment of PD progression difficult. Assessment of brain activity changes in PD may offer a potential solution. NEW METHOD Electroencephalogram (EEG) microstates reflect global dynamic changes in the brain. Therefore, we utilized microstates to assess changes in PD brain activity. However, the effect of epoch duration on the reliability of microstate analyses in PD is unclear. Thus, we first assessed the effect of data duration on the reliability of microstate topography and temporal features in PD and older healthy individuals. According to the reliability assessment, EEG epochs with high reliability were selected for microstate analysis in PD. Finally, we investigated the correlation between microstate features and clinical scales to determine whether these features could serve as objective indicators to evaluate PD progression. RESULTS Microstate analysis features that show high reliability for 3 min and above epoch durations. The topology of microstate D was significantly changed in PD compared to healthy controls, as well as the temporal features of microstates C and D. Additionally, the occurrence of C was negatively correlated with MoCA, and the duration of D was positively correlated with UPDRS. COMPARISON WITH EXISTING METHOD(S) High reliability of PD microstate features obtained by our approach. CONCLUSION EEG for PD microstate analysis should be at least 3 min. Microstate analysis is expected to provide new ideas and objective indicators for assessing Parkinson's disease progression in the clinical setting.
Collapse
Affiliation(s)
- Qingfang Guo
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Liu
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Lei Wang
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Keke Feng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| | - Shuo Yang
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; State Key Laboratory of Reliable and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
29
|
Xue R, Li X, Deng W, Liang C, Chen M, Chen J, Liang S, Wei W, Zhang Y, Yu H, Xu Y, Guo W, Li T. Shared and distinct electroencephalogram microstate abnormalities across schizophrenia, bipolar disorder, and depression. Psychol Med 2024:1-8. [PMID: 38738283 DOI: 10.1017/s0033291724001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
BACKGROUND Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chengqian Liang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingxia Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Sugai Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Wu G, Zhao X, Luo X, Li H, Chen Y, Dang C, Sun L. Microstate dynamics and spectral components as markers of persistent and remittent attention-deficit/hyperactivity disorder. Clin Neurophysiol 2024; 161:147-156. [PMID: 38484486 DOI: 10.1016/j.clinph.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE We leveraged microstate characteristics and power features to examine temporal and spectral deviations underlying persistent and remittent attention-deficit/hyperactivity disorder (ADHD). METHODS 50 young adults with childhood ADHD (28 persisters, 22 remitters) and 28 demographically similar healthy controls (HC) were compared on microstates features and frequency principal components (f-PCs) of eye-closed resting state. Support vector machine model with sequential forward selection (SVM-SFS) was utilized to discriminate three groups. RESULTS Four microstates and four comparable f-PCs were identified. Compared to HC, ADHD persisters showed prolonged duration in microstate C, elevated power of the delta component (D), and compromised amplitude of the two alpha components (A1 and A2). Remitters showed increased duration and coverage of microstate C, together with decreased activity of D, relatively intact amplitude of A1, and amplitude reduction in A2. The SVM-SFS algorithm achieved an accuracy of 93.59% in classifying persisters, remitters and controls. The most discriminative features selected were those exhibiting group differences. CONCLUSIONS We found widespread anomalies in ADHD persisters in brain dynamics and intrinsic EEG components. Meanwhile, the neural features in remitters exhibited multiple patterns. SIGNIFICANCE This study underlines the use of microstate dynamics and spectral components as potential markers of persistent and remittent ADHD.
Collapse
Affiliation(s)
- GuiSen Wu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - XiXi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - XiangSheng Luo
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Li
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - YanBo Chen
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chen Dang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
31
|
Hermans T, Khazaei M, Raeisi K, Croce P, Tamburro G, Dereymaeker A, De Vos M, Zappasodi F, Comani S. Microstate Analysis Reflects Maturation of the Preterm Brain. Brain Topogr 2024; 37:461-474. [PMID: 37823945 PMCID: PMC11026208 DOI: 10.1007/s10548-023-01008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tim Hermans
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Pierpaolo Croce
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Anneleen Dereymaeker
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Maarten De Vos
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
- Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
32
|
Li H, Wang C, Ma L, Xu C, Li H. EEG analysis in patients with schizophrenia based on microstate semantic modeling method. Front Hum Neurosci 2024; 18:1372985. [PMID: 38638803 PMCID: PMC11024310 DOI: 10.3389/fnhum.2024.1372985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Microstate analysis enables the characterization of quasi-stable scalp potential fields on a sub-second timescale, preserving the temporal dynamics of EEG and spatial information of scalp potential distributions. Owing to its capacity to provide comprehensive pathological insights, it has been widely applied in the investigation of schizophrenia (SCZ). Nevertheless, previous research has primarily concentrated on differences in individual microstate temporal characteristics, neglecting potential distinctions in microstate semantic sequences and not fully considering the issue of the universality of microstate templates between SCZ patients and healthy individuals. Methods This study introduced a microstate semantic modeling analysis method aimed at schizophrenia recognition. Firstly, microstate templates corresponding to both SCZ patients and healthy individuals were extracted from resting-state EEG data. The introduction of a dual-template strategy makes a difference in the quality of microstate sequences. Quality features of microstate sequences were then extracted from four dimensions: Correlation, Explanation, Residual, and Dispersion. Subsequently, the concept of microstate semantic features was proposed, decomposing the microstate sequence into continuous sub-sequences. Specific semantic sub-sequences were identified by comparing the time parameters of sub-sequences. Results The SCZ recognition test was performed on the public dataset for both the quality features and semantic features of microstate sequences, yielding an impressive accuracy of 97.2%. Furthermore, cross-subject experimental validation was conducted, demonstrating that the method proposed in this paper achieves a recognition rate of 96.4% between different subjects. Discussion This research offers valuable insights for the clinical diagnosis of schizophrenia. In the future, further studies will seek to augment the sample size to enhance the effectiveness and reliability of this method.
Collapse
Affiliation(s)
- Hongwei Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Changming Wang
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Cong Xu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
33
|
Kučikienė D, Rajkumar R, Timpte K, Heckelmann J, Neuner I, Weber Y, Wolking S. EEG microstates show different features in focal epilepsy and psychogenic nonepileptic seizures. Epilepsia 2024; 65:974-983. [PMID: 38289522 DOI: 10.1111/epi.17897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) microstate analysis seeks to cluster the scalp's electric field into semistable topographical EEG activity maps at different time points. Our study aimed to investigate the features of EEG microstates in subjects with focal epilepsy and psychogenic nonepileptic seizures (PNES). METHODS We included 62 adult subjects with focal epilepsy or PNES who received video-EEG monitoring at the epilepsy monitoring unit. The subjects (mean age = 42.8 ± 21.2 years) were distributed equally between epilepsy and PNES groups. We extracted microstates from a 4.4 ± 1.0-min, 21-channel resting-state EEG. We excluded subjects with interictal epileptiform discharges during resting-state EEGs. After preprocessing, we derived five main EEG microstates-MS1 to MS5-for the full frequency band (1-30 Hz) and frequency subbands (delta, 1-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; beta, 12-30 Hz), using the MATLAB-based EEGLAB toolkit. Statistical features of microstates (duration, occurrence, contribution, global field power [GFP]) were compared between the groups, using logistic regression corrected for age and sex. RESULTS We detected no differences in microstate parameters in the full frequency band. We found a longer duration (delta: B = -7.680, p = .046; theta: B = -16.200, p = .043) and a higher contribution (delta: B = -7.414, p = .035; theta: B = -7.509, p = .031) of MS4 in lower frequency bands in the epilepsy group. The PNES group showed a higher occurrence of MS5 in the delta subband (B = 3.283, p = .032). In the theta subband, a higher GFP of MS1 was associated with the PNES group (B = 5.674, p = .025), whereas a higher GFP of MS2 was associated with the epilepsy group (B = -6.579, p = .026). SIGNIFICANCE Microstate features show differences between patients with focal epilepsy and PNES. EEG microstates could be a promising parameter, helping to understand changes in brain dynamics in subjects with epilepsy, and should be explored as a potential biomarker.
Collapse
Affiliation(s)
- Domantė Kučikienė
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN-Translational Medicine, Jülich, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Timpte
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Jan Heckelmann
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN-Translational Medicine, Jülich, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Yvonne Weber
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| |
Collapse
|
34
|
Chen H, Lei Y, Li R, Xia X, Cui N, Chen X, Liu J, Tang H, Zhou J, Huang Y, Tian Y, Wang X, Zhou J. Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia. Mol Psychiatry 2024; 29:1088-1098. [PMID: 38267620 DOI: 10.1038/s41380-023-02395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanqin Lei
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau S.A.R., 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau S.A.R., 999078, China
| | - Xinxin Xia
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Nanyi Cui
- TeleBrain Medical Technology Co., Beijing, 100000, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
35
|
Zarka D, Cevallos C, Ruiz P, Petieau M, Cebolla AM, Bengoetxea A, Cheron G. Electroencephalography microstates highlight specific mindfulness traits. Eur J Neurosci 2024; 59:1753-1769. [PMID: 38221503 DOI: 10.1111/ejn.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The present study aimed to investigate the spontaneous dynamics of large-scale brain networks underlying mindfulness as a dispositional trait, through resting-state electroencephalography (EEG) microstates analysis. Eighteen participants had attended a standardized mindfulness-based stress reduction training (MBSR), and 18 matched waitlist individuals (CTRL) were recorded at rest while they were passively exposed to auditory stimuli. Participants' mindfulness traits were assessed with the Five Facet Mindfulness Questionnaire (FFMQ). To further explore the relationship between microstate dynamics at rest and mindfulness traits, participants were also asked to rate their experience according to five phenomenal dimensions. After training, MBSR participants showed a highly significant increase in FFMQ score, as well as higher observing and non-reactivity FFMQ sub-scores than CTRL participants. Microstate analysis revealed four classes of microstates (A-D) in global clustering across all subjects. The MBSR group showed lower duration, occurrence and coverage of microstate C than the control group. Moreover, these microstate C parameters were negatively correlated to non-reactivity sub-scores of FFMQ across participants, whereas the microstate A occurrence was negatively correlated to FFMQ total score. Further analysis of participants' self-reports suggested that MBSR participants showed a better sensory-affective integration of auditory interferences. In line with previous studies, our results suggest that temporal dynamics of microstate C underlie specifically the non-reactivity trait of mindfulness. These findings encourage further research into microstates in the evaluation and monitoring of the impact of mindfulness-based interventions on the mental health and well-being of individuals.
Collapse
Affiliation(s)
- D Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - C Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - P Ruiz
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - M Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A Bengoetxea
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Athenea Neuroclinics, San Sebastian, Spain
| | - G Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
36
|
Ling Y, Wen X, Tang J, Tao Z, Sun L, Xin H, Luo B. Effect of topographic comparison of electroencephalographic microstates on the diagnosis and prognosis prediction of patients with prolonged disorders of consciousness. CNS Neurosci Ther 2024; 30:e14421. [PMID: 37679900 PMCID: PMC10915977 DOI: 10.1111/cns.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS The electroencephalography (EEG) microstates are indicative of fundamental information processing mechanisms, which are severely damaged in patients with prolonged disorders of consciousness (pDoC). We aimed to improve the topographic analysis of EEG microstates and explore indicators available for diagnosis and prognosis prediction of patients with pDoC, which were still lacking. METHODS We conducted EEG recordings on 59 patients with pDoC and 32 healthy controls. We refined the microstate method to accurately estimate topographical differences, and then classify and forecast the prognosis of patients with pDoC. An independent dataset was used to validate the conclusion. RESULTS Through optimized topographic analysis, the global explained variance (GEV) of microstate E increased significantly in groups with reduced levels of consciousness. However, its ability to classify the VS/UWS group was poor. In addition, the optimized GEV of microstate E exhibited a statistically significant decrease in the good prognosis group as opposed to the group with a poor prognosis. Furthermore, the optimized GEV of microstate E strongly predicted a patient's prognosis. CONCLUSION This technique harmonizes with the existing microstate analysis and exhibits precise and comprehensive differences in microstate topography between groups. Furthermore, this method has significant potential for evaluating the clinical prognosis of pDoC patients.
Collapse
Affiliation(s)
- Yi Ling
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xinrui Wen
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jianghui Tang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseZhejiang University School of Medicine First Affiliated HospitalHangzhouChina
| | - Zhengde Tao
- Department of NeurologyFirst People's Hospital of WenlingZhejiangChina
| | - Liping Sun
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hailiang Xin
- Department of RehabilitationHangzhou Mingzhou Brain Rehabilitation HospitalHangzhouChina
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- The MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
37
|
Michel CM, Brechet L, Schiller B, Koenig T. Current State of EEG/ERP Microstate Research. Brain Topogr 2024; 37:169-180. [PMID: 38349451 PMCID: PMC10884048 DOI: 10.1007/s10548-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland.
| | - Lucie Brechet
- Department of Readaptation and Geriatrics, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
39
|
Kleinert T, Nash K, Koenig T, Wascher E. Normative Intercorrelations Between EEG Microstate Characteristics. Brain Topogr 2024; 37:265-269. [PMID: 37450085 PMCID: PMC10884083 DOI: 10.1007/s10548-023-00988-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
EEG microstates are brief, recurring periods of stable brain activity that reflect the activation of large-scale neural networks. The temporal characteristics of these microstates, including their average duration, number of occurrences, and percentage contribution have been shown to serve as biomarkers of mental and neurological disorders. However, little is known about how microstate characteristics of prototypical network types relate to each other. Normative intercorrelations among these parameters are necessary to help researchers better understand the functions and interactions of underlying networks, interpret and relate results, and generate new hypotheses. Here, we present a systematic analysis of intercorrelations between EEG microstate characteristics in a large sample representative of western working populations (n = 583). Notably, we find that microstate duration is a general characteristic that varies across microstate types. Further, microstate A and B show mutual reinforcement, indicating a relationship between auditory and visual sensory processing at rest. Microstate C appears to play a special role, as it is associated with longer durations of all other microstate types and increased global field power, suggesting a relationship of these parameters with the anterior default mode network. All findings could be confirmed using independent EEG recordings from a retest-session (n = 542).
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Biological Psychology, Clinical Psychology, and Psychotherapy, University of Freiburg, Stefan- Meier Str. 8, 79104, Freiburg, Germany.
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, CH-3000, Bern, Switzerland
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
40
|
Zanesco AP. Normative Temporal Dynamics of Resting EEG Microstates. Brain Topogr 2024; 37:243-264. [PMID: 37702825 DOI: 10.1007/s10548-023-01004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
Collapse
Affiliation(s)
- Anthony P Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
41
|
Murphy M, Wang J, Jiang C, Wang LA, Kozhemiako N, Wang Y, Pan JQ, Purcell SM. A Potential Source of Bias in Group-Level EEG Microstate Analysis. Brain Topogr 2024; 37:232-242. [PMID: 37548801 PMCID: PMC11144056 DOI: 10.1007/s10548-023-00992-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Microstate analysis is a promising technique for analyzing high-density electroencephalographic data, but there are multiple questions about methodological best practices. Between and within individuals, microstates can differ both in terms of characteristic topographies and temporal dynamics, which leads to analytic challenges as the measurement of microstate dynamics is dependent on assumptions about their topographies. Here we focus on the analysis of group differences, using simulations seeded on real data from healthy control subjects to compare approaches that derive separate sets of maps within subgroups versus a single set of maps applied uniformly to the entire dataset. In the absence of true group differences in either microstate maps or temporal metrics, we found that using separate subgroup maps resulted in substantially inflated type I error rates. On the other hand, when groups truly differed in their microstate maps, analyses based on a single set of maps confounded topographic effects with differences in other derived metrics. We propose an approach to alleviate both classes of bias, based on a paired analysis of all subgroup maps. We illustrate the qualitative and quantitative impact of these issues in real data by comparing waking versus non-rapid eye movement sleep microstates. Overall, our results suggest that even subtle chance differences in microstate topography can have profound effects on derived microstate metrics and that future studies using microstate analysis should take steps to mitigate this large source of error.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, USA
| | - Jun Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chenguang Jiang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei A Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Shaun M Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA.
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
42
|
Thirioux B, Langbour N, Bokam P, Wassouf I, Guillard-Bouhet N, Wangermez C, Leblanc PM, Doolub D, Harika-Germaneau G, Jaafari N. EEG microstate co-specificity in schizophrenia and obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:207-225. [PMID: 37421444 DOI: 10.1007/s00406-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive-compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France.
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France.
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre Hospitalier Nord Deux-Sèvres, Parthenay, France
| | - Nathalie Guillard-Bouhet
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Carole Wangermez
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Pierre-Marie Leblanc
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Damien Doolub
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021, Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| |
Collapse
|
43
|
Liebrand M, Katsarakis A, Josi J, Diezig S, Michel C, Schultze-Lutter F, Rochas V, Mancini V, Kaess M, Hubl D, Koenig T, Kindler J. EEG microstate D as psychosis-specific correlate in adolescents and young adults with clinical high risk for psychosis and first-episode psychosis. Schizophr Res 2024; 264:49-57. [PMID: 38096659 DOI: 10.1016/j.schres.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
Resting-state electroencephalography (EEG) microstates are brief periods (60-120 ms) of quasi-stable scalp field potentials, indicating simultaneous activity of large-scale networks. Microstates are assumed to reflect basic neuronal information processing. A common finding in psychosis spectrum disorders is that microstates classes C and D are altered. Whereas evidence in adults with schizophrenia is substantial, little is known about effects in underage patients, particularly in those at clinical high risk for psychosis (CHR) and first-episode psychosis (FEP). The present study used 74-channel EEG to investigate microstate effects in a large sample of patients with CHR (n = 100) and FEP (n = 33), clinical controls (CC, n = 18), as well as age-matched healthy controls (HC, n = 68). Subjects span an age range from 9 to 35 years, thus, covering underage patients as well as the most vulnerable period for the emergence of psychosis and its prodrome. Four EEG microstates classes were analyzed (A-D). In class D, CHR and FEP patients showed a decrease compared to HC, and CHR patients also to CC. An increase in class C was found in CHR and FEP compared to HC but not to CC. Results were independent of age and no differences were found between the psychosis spectrum groups. The findings suggest an age-independent decrease of microstate class D to be specific to the psychosis spectrum, whereas the increase in class C seems to reflect unspecific psychopathology. Overall, present data strengthens the role of microstate D as potential biomarker for psychosis, as early as in adolescence and already in CHR status.
Collapse
Affiliation(s)
- Matthias Liebrand
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Angelos Katsarakis
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Johannes Josi
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Sarah Diezig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Frauke Schultze-Lutter
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
| | - Vincent Rochas
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Valentina Mancini
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
44
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575736. [PMID: 38293067 PMCID: PMC10827041 DOI: 10.1101/2024.01.15.575736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting-state (N=926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that the specific order in which rapid connectome states are sequenced shapes individuals' cognitive abilities and traits. Such sub-second connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
45
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575731. [PMID: 38293031 PMCID: PMC10827044 DOI: 10.1101/2024.01.15.575731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
46
|
Peng RJ, Fan Y, Li J, Zhu F, Tian Q, Zhang XB. Abnormalities of electroencephalography microstates in patients with depression and their association with cognitive function. World J Psychiatry 2024; 14:128-140. [PMID: 38327889 PMCID: PMC10845229 DOI: 10.5498/wjp.v14.i1.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND A growing number of recent studies have explored underlying activity in the brain by measuring electroencephalography (EEG) in people with depression. However, the consistency of findings on EEG microstates in patients with depression is poor, and few studies have reported the relationship between EEG microstates, cognitive scales, and depression severity scales. AIM To investigate the EEG microstate characteristics of patients with depression and their association with cognitive functions. METHODS A total of 24 patients diagnosed with depression and 32 healthy controls were included in this study using the Structured Clinical Interview for Disease for The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We collected information relating to demographic and clinical characteristics, as well as data from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Chinese version) and EEG. RESULTS Compared with the controls, the duration, occurrence, and contribution of microstate C were significantly higher [depression (DEP): Duration 84.58 ± 24.35, occurrence 3.72 ± 0.56, contribution 30.39 ± 8.59; CON: Duration 72.77 ± 10.23, occurrence 3.41 ± 0.36, contribution 24.46 ± 4.66; Duration F = 6.02, P = 0.049; Occurrence F = 6.19, P = 0.049; Contribution F = 10.82, P = 0.011] while the duration, occurrence, and contribution of microstate D were significantly lower (DEP: Duration 70.00 ± 15.92, occurrence 3.18 ± 0.71, contribution 22.48 ± 8.12; CON: Duration 85.46 ± 10.23, occurrence 3.54 ± 0.41, contribution 28.25 ± 5.85; Duration F = 19.18, P < 0.001; Occurrence F = 5.79, P = 0.050; Contribution F = 9.41, P = 0.013) in patients with depression. A positive correlation was observed between the visuospatial/constructional scores of the RBANS scale and the transition probability of microstate class C to B (r = 0.405, P = 0.049). CONCLUSION EEG microstate, especially C and D, is a possible biomarker in depression. Patients with depression had a more frequent transition from microstate C to B, which may relate to more negative rumination and visual processing.
Collapse
Affiliation(s)
- Rui-Jie Peng
- Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu Fan
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jin Li
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Feng Zhu
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Qing Tian
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
47
|
Zhou DD, Li HZ, Wang W, Kuang L. Changes in oscillatory patterns of microstate sequence in patients with first-episode psychosis. Sci Data 2024; 11:38. [PMID: 38182586 PMCID: PMC10770397 DOI: 10.1038/s41597-023-02892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
We aimed to utilize chaos game representation (CGR) for the investigation of microstate sequences and explore its potential as neurobiomarkers for psychiatric disorders. We applied our proposed method to a public dataset including 82 patients with first-episode psychosis (FEP) and 61 control subjects. Two time series were constructed: one using the microstate spacing distance in CGR and the other using complex numbers representing the microstate coordinates in CGR. Power spectral features of both time series and frequency matrix CGR (FCGR) were compared between groups and employed in a machine learning application. The four canonical microstates (A, B, C, and D) were identified using both shared and separate templates. Our results showed the microstate oscillatory pattern exhibited alterations in the FEP group. Using oscillatory features improved machine learning performance compared with classical features and FCGR. This study opens up new avenues for exploring the use of CGR in analyzing EEG microstate sequences. Features derived from microstate sequence CGR offer fine-grained neurobiomarkers for psychiatric disorders.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Hong-Zhi Li
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Zhang J, Li X, Liu S, Xu C, Zhang Z. Frequent media multitasking modulates the temporal dynamics of resting-state electroencephalography networks. Int J Psychophysiol 2024; 195:112265. [PMID: 37981033 DOI: 10.1016/j.ijpsycho.2023.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Multitasking with two or more media and devices has become increasingly common in our daily lives. The impact of chronic media multitasking on our cognitive abilities has received extensive concern. Converging studies have shown that heavy media multitaskers (HMM) have a greater demand for sensation seeking and are more easily distracted by task-irrelevant information than light media multitaskers (LMM). In this study, we analyzed the electroencephalogram data recorded during resting-state periods to investigate whether HMM and LMM differ with regard to basic resting network activation. Microstate analysis revealed that the activation of the attention network is weakened while the activation of the salience network is enhanced in HMM compared to LMM. This suggests that HMM's attention control is more likely to be guided by surrounding stimuli, which indirectly supports the deficit-producing hypothesis. Moreover, our results revealed that HMM had an enhanced visual network and may feel less comfortable than LMM during resting-state periods with eyes closed, supporting the view that HMM require more sensation seeking than LMM. Taken together, these results indicate that chronic media multitasking leads to HMM allocating attention in a bottom-up or stimulus-driven manner, while LMM deploy a top-down approach.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Xiyan Li
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Shiwei Liu
- Department of Education, Woosuk University, Wanju, Republic of Korea
| | - Can Xu
- Department of Neurosurgery, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhijie Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
49
|
Guo Y, Zhao X, Liu X, Liu J, Li Y, Yue L, Yuan F, Zhu Y, Sheng X, Yu D, Yuan K. Electroencephalography microstates as novel functional biomarkers for insomnia disorder. Gen Psychiatr 2023; 36:e101171. [PMID: 38143715 PMCID: PMC10749048 DOI: 10.1136/gpsych-2023-101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Background Insomnia disorder (ID) is one of the most common mental disorders. Research on ID focuses on exploring its mechanism of disease, novel treatments and treatment outcome prediction. An emerging technique in this field is the use of electroencephalography (EEG) microstates, which offer a new method of EEG feature extraction that incorporates information from both temporal and spatial dimensions. Aims To explore the electrophysiological mechanisms of repetitive transcranial magnetic stimulation (rTMS) for ID treatment and use baseline microstate metrics for the prediction of its efficacy. Methods This study included 60 patients with ID and 40 age-matched and gender-matched good sleep controls (GSC). Their resting-state EEG microstates were analysed, and the Pittsburgh Sleep Quality Index (PSQI) and polysomnography (PSG) were collected to assess sleep quality. The 60 patients with ID were equally divided into active and sham groups to receive rTMS for 20 days to test whether rTMS had a moderating effect on abnormal microstates in patients with ID. Furthermore, in an independent group of 90 patients with ID who received rTMS treatment, patients were divided into optimal and suboptimal groups based on their median PSQI reduction rate. Baseline EEG microstates were used to build a machine-learning predictive model for the effects of rTMS treatment. Results The class D microstate was less frequent and contribute in patients with ID, and these abnormalities were associated with sleep onset latency as measured by PSG. Additionally, the abnormalities were partially reversed to the levels observed in the GSC group following rTMS treatment. The baseline microstate characteristics could predict the therapeutic effect of ID after 20 days of rTMS, with an accuracy of 80.13%. Conclusions Our study highlights the value of EEG microstates as functional biomarkers of ID and provides a new perspective for studying the neurophysiological mechanisms of ID. In addition, we predicted the therapeutic effect of rTMS on ID based on the baseline microstates of patients with ID. This finding carries great practical significance for the selection of therapeutic options for patients with ID.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
50
|
Zhang K, Li K, Zhang C, Li X, Han S, Lv C, Xie J, Xia X, Bie L, Guo Y. The accuracy of different mismatch negativity amplitude representations in predicting the levels of consciousness in patients with disorders of consciousness. Front Neurosci 2023; 17:1293798. [PMID: 38178839 PMCID: PMC10764429 DOI: 10.3389/fnins.2023.1293798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction The mismatch negativity (MMN) index has been used to evaluate consciousness levels in patients with disorders of consciousness (DoC). Indeed, MMN has been validated for the diagnosis of vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state (MCS). In this study, we evaluated the accuracy of different MMN amplitude representations in predicting levels of consciousness. Methods Task-state electroencephalography (EEG) data were obtained from 67 patients with DoC (35 VS and 32 MCS). We performed a microstate analysis of the task-state EEG and used four different representations (the peak amplitude of MMN at electrode Fz (Peak), the average amplitude within a time window -25- 25 ms entered on the latency of peak MMN component (Avg for peak ± 25 ms), the average amplitude of averaged difference wave for 100-250 ms (Avg for 100-250 ms), and the average amplitude difference between the standard stimulus ("S") and the deviant stimulus ("D") at the time corresponding to Microstate 1 (MS1) (Avg for MS1) of the MMN amplitude to predict the levels of consciousness. Results The results showed that among the four microstates clustered, MS1 showed statistical significance in terms of time proportion during the 100-250 ms period. Our results confirmed the activation patterns of MMN through functional connectivity analysis. Among the four MMN amplitude representations, the microstate-based representation showed the highest accuracy in distinguishing different levels of consciousness in patients with DoC (AUC = 0.89). Conclusion We discovered a prediction model based on microstate calculation of MMN amplitude can accurately distinguish between MCS and VS states. And the functional connection of the MS1 is consistent with the activation mode of MMN.
Collapse
Affiliation(s)
- Kang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Kexin Li
- Department of Endocrinology, Jilin Province People’s Hospital, Changchun, China
| | - Chunyun Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People’s Hospital, Siping, China
| | - Shuai Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jingwei Xie
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The First Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Neurosurgery, The Seventh Medical Center of Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yongkun Guo
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou, China
| |
Collapse
|