1
|
Zhang W, Yi C, Song Z, Yu B, Jiang X, Guo L, Huang S, Xia T, Huang F, Yan Y, Li H, Dai Y. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156560. [PMID: 40058319 DOI: 10.1016/j.phymed.2025.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive decline, which can result in diabetic cognitive impairment (DCI). Recent studies have indicated that gut microbiota plays a significant role in the development of DCI. Tangliping Decoction (TLP), a traditional Chinese medicine compound, contains various active ingredients that have been shown to regulate the microecology of gut microbiota and potentially improve DCI. However, it remains unclear whether TLP can improve DCI by modulating gut microbiota, as well as which specific component is primarily responsible for these effects. PURPOSE Assess the impact of TLP on alleviating DCI and investigate the contribution of quercetin (QR), the core blood-absorbed component of TLP, in this process. and investigate the underlying mechanisms through which TLP and QR enhance DCI by modulating gut microbiota composition. STUDY DESIGN AND METHODS Initially, experiments such as morris water maze (MWM), morphological analysis, and 16S ribosomal RNA (16S rRNA) gene amplicon sequencing from DCI mice, were performed to validate the pharmacological efficacy of TLP in mitigating DCI. The results indicated that TLP possesses the capacity to modulate the composition and quantity of gut microbiota and safeguard the integrity of the gut barrier and brain barrier. Secondly, high performance liquid chromatography coupled with high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with network pharmacology methods were used to screen for blood-absorbed components, suggesting that QR may be a potential core blood-absorbed component of TLP in the treatment of DCI. Subsequently, the pharmacological efficacy of QR in ameliorating DCI was confirmed, and the characteristics of gut microbiota as well as the permeability of the gut and brain barrier, were assessed. Finally, fecal microbiota transplantation (FMT) experiments were conducted, wherein fecal matter from TLP and QR-treated mice (donor mice) was transplanted into pseudo-sterile DCI mice with antibiotic-induced depletion of gut microbiota. This approach aimed to elucidate the specific mechanisms by which TLP and QR improve DCI through the modulation of the structure, composition, and abundance of gut microbiota. RESULTS TLP and QR have the potential to enhance learning and memory capabilities in DCI mice, as well as reduce homeostasis model assessment insulin resistance (HOMA-IR) and restore homeostasis model assessment-β function (HOMA- β), leading to increased fasting insulin (FIN) levels and decreased fasting blood glucose (FBG) levels. Simultaneously, the administration of FMT from donor mice to pseudo-sterile DCI mice has been shown to alter the composition and abundance of gut microbiota, leading to amelioration of pathological damage in the colon and hippocampal tissues. Ultimately, FMT utilizing fecal suspensions from donor mice treated with TLP and QR improved cognitive function in pseudo-sterile DCI mice, restore gut microbiota dysbiosis, and maintained the integrity of the gut and brain barriers. CONCLUSION The results of this study indicate that TLP and its core component, QR, which is absorbed into the bloodstream, improve DCI through a gut microbiota-dependent mechanism, providing further evidence for gut microbiota as a therapeutic target for DCI treatment.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, Chifeng, Inner Mongolia, China
| | - Bin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Li T, Fu C, Tang Z, Li C, Hua D, Liu B, Tao Z, Yang J, Zhang L, Cheng T, Wang S, Ning G, Gu Y. Disentangling Organ-Specific Roles of Farnesoid X Receptor in Bile Acid and Glucolipid Metabolism. Liver Int 2025; 45:e70027. [PMID: 40052709 PMCID: PMC11887529 DOI: 10.1111/liv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND AND AIMS The farnesoid X receptor (FXR) is an attractive pharmaceutical target for metabolic dysfunction-associated steatotic liver disease (MASLD). However, its tissue-specific roles in energy metabolism remain controversial, hindering the development of effective therapies. To address this, new approaches are required. METHODS A novel mouse model was developed to facilitate the re-expression of endogenous FXR in specific tissues on a global FXR-null background. Liver-specific and gut-specific FXR re-expression models were generated. Mice were subjected to a high-fat diet (HFD) for 12 weeks, after which metabolic indices, bile acid (BA) profiles, and gut microbiota composition were analysed. Antibiotic treatment was used to mimic germ-free conditions. RESULTS The resistance of FXR-null mice to MASLD and most HFD-induced metabolic disorders, including increased body weight, adiposity, hepatic triglyceride (TG) accumulation, and hyperglycemia, was reversed by liver, but not gut, FXR re-expression. Gut FXR re-expression restored the increased intestinal TG absorption in FXR-null mice by limiting 12OH BA synthesis and inhibiting intestinal microsomal triglyceride transfer protein (MTTP). Moreover, gut FXR activity was essential for gut microbiota-driven promotion of diet-induced obesity (DIO) and MASLD. CONCLUSIONS Our study overcomes the limitations of traditional tissue-specific knockout models, providing a more comprehensive understanding of FXR's complex roles in metabolic homeostasis, encouraging the development of organ-specific FXR targeting strategy.
Collapse
Affiliation(s)
- Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongzheng Tang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changkun Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Duanyi Hua
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheying Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shujie Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Guo R, Zhang S, Li A, Zhang P, Peng X, Lu X, Fan X. Ginsenoside Rb1 and berberine synergistically protect against type 2 diabetes mellitus via GDF15/HAMP pathway throughout the liver lobules: Insights from spatial transcriptomics analysis. Pharmacol Res 2025; 215:107711. [PMID: 40147680 DOI: 10.1016/j.phrs.2025.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a significant public health issue with high morbidity and mortality. Ginsenoside Rb1 (Rb1) and berberine (BBR), the main bioactive compounds of Panax ginseng and Coptis chinensis, respectively, are known for their hypoglycemic effects. Nevertheless, the synergistic effects and underlying mechanism of Rb1 and BBR on T2DM remain unclear. In this study, we utilized a leptin receptor-deficient (db/db) mouse model to investigate the protective effects of their combination treatment. Our findings demonstrated that the combined use of Rb1 and BBR at a 1:4 ratio had more pronounced effects than the first-line anti-diabetic drug metformin on reducing the weight ratio of white adipose tissue, ameliorating insulin resistance, and improving glucose and lipid metabolism. Using spatial transcriptomics, we revealed that metformin treatment improved gluconeogenesis and lipogenesis only in the periportal zone, while the combination treatment induced improvements throughout the liver lobule, with distinct key targets across different zones, thus underscoring a more comprehensive modulation of hepatic metabolism. This may be the key reason why this combination therapy demonstrated superior protective effects against T2DM. Additionally, the reversed expression of the key callback gene hepcidin (HAMP) and its regulator growth differentiation factor 15 (GDF15) following the combination therapy across all zones, along with validation experiments, further suggested that GDF15/HAMP pathway might be a key mechanism underlying the beneficial effects of Rb1 and BBR against T2DM. This study also indicates a path toward innovative drug cocktails for treating T2DM, offering a holistic approach to regulate the entire liver lobule metabolism.
Collapse
Affiliation(s)
- Rongfang Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuying Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Peng
- The Joint‑Laboratory of Clinical Multi‑Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo 315010, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; The Joint‑Laboratory of Clinical Multi‑Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo 315010, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
4
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Park S, Jung S, Lee G, Lee E, Black R, Hong J, Jeong S. Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation. Adv Healthc Mater 2025:e2405219. [PMID: 40103525 DOI: 10.1002/adhm.202405219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Erin Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rodger Black
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
6
|
Li F, Peng X, Li W. The interaction between various food components and intestinal microbiota improves human health through the gut-X axis: independently or synergistically. Food Funct 2025; 16:2172-2193. [PMID: 39996355 DOI: 10.1039/d4fo04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Food contains various components that improve health by affecting the gut microbiota, primarily by modulating its abundance or altering its diversity. Active substances in food have different effects on the gut microbiota when they act alone or in synergy, resulting in varying impacts on health. The bioactive compounds in food exert different effects on various gut microbiota through multiple pathways, thereby delaying or preventing different kinds of disease. The combination of two or more active compounds may have a synergistic effect, which can more effectively alter the gut microbiota and alleviate diseases through the microbiota-gut-organ axis. According to reports, multiple different food components have similar effects, some of which have been shown to have a synergistic effect on the gut microbiota to promote health. However, there is currently no systematic review of its synergistic effects and mechanisms. There may be more compounds with synergistic effects that have not yet been discovered, while their mechanisms of synergy and ways of impacting host health through the gut microbiota deserve further investigation. The purpose of this review is to systematically summarize the effects of different food components on intestinal flora and health, and further analyze the potential synergies between different food components. PubMed and Google Scholar databases were searched in this review.
Collapse
Affiliation(s)
- Fenfa Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd, Guangzhou 510405, China.
| |
Collapse
|
7
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
9
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
10
|
Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, Xia Q, Yin K, Song S, Wang Z, Du H, Zhao D, Li X, Wang Z. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front Pharmacol 2025; 16:1534634. [PMID: 39963239 PMCID: PMC11830733 DOI: 10.3389/fphar.2025.1534634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes mellitus (DM) ranks among the most prevalent chronic metabolic diseases, characterized primarily by a persistent elevation in blood glucose levels. This condition typically stems from either insufficient insulin secretion or a functional defect in the insulin itself. Clinically, diabetes is primarily classified into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with T2DM comprising nearly 90% of all diagnosed cases. Notably, the global incidence of T2DM has surged dramatically over recent decades. The adenylate-activated protein kinase (AMPK) signaling pathway is crucial in regulating cellular energy metabolism, marking it as a significant therapeutic target for diabetes and related complications. Natural products, characterized by their diverse origins, multifaceted bioactivities, and relative safety, hold considerable promise in modulating the AMPK pathway. This review article explores the advances in research on natural products that target the AMPK signaling pathway, aiming to inform the development of innovative antidiabetic therapies.
Collapse
Affiliation(s)
- Min Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Liyan Cao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xueyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zirui Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Qinjing Xia
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Yin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zihan Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Haijian Du
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
11
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
12
|
Wang Y, Sheng Z, Li H, Tan X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. The effects of Fraxini cortex and Andrographis herba on Escherichia coli-induced diarrhea in chicken. Poult Sci 2025; 104:104824. [PMID: 39874706 PMCID: PMC11810841 DOI: 10.1016/j.psj.2025.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Escherichia coli (E. coli) is a type of pathogenic bacteria that often causes diarrhea in poultry. While antibiotics can control E. coli-induced diarrhea in chickens, it can lead the ongoing proliferation of antibiotic resistance. Traditional Chinese medicines (TCMs) that effectively protect against and treat chicken diarrhea caused by E. coli are an encouraging alternative. That enhance poultry immunity, curtail antibiotic resistance, and provide a secure, eco-friendly, and efficacious option for the livestock and poultry industry. In this study, the model of chicken diarrhea induced by E. coli was established, and different TCM formulas were used for treatment, and finally the formula with the best effect was screened out. The research also investigated the impact of these formulas on gut microbiota and serum metabolites in chickens, using 16S rRNA sequencing technology and metabolomics. Mass spectrometry technology and network pharmacology were used to analyze the optimal TCM formula corroborated by molecular docking and qPCR for further explore mechanism exploration. The findings indicated that Fraxini cortex and Andrographis herba dramatically lowered mortality rates and alleviated pathologic changes in cases of avian E. coli diarrhea (P < 0.05). Fraxini cortex and Andrographis herba significantly boosted the abundance of Bacteroidetes (P < 0.05) and mainly enhanced cysteine and methionine metabolic pathways. Moreover, 97 active ingredients in Fraxini cortex and Andrographis herba were identified, along with 1425 diarrhea-related targets, primarily enriched in the MAPK signaling pathway. Molecular docking and qPCR revealed that the crucial active ingredients in Fraxini cortex and Andrographis herba bonded effectively with disease targets and treated diarrhea by regulating the MAPK signaling pathway. This suggests that Fraxini cortex and Andrographis herba exerts an optimal effect on diarrhea by multi-target and multi-pathway regulation of metabolic pathways and gut microbiota.
Collapse
Affiliation(s)
- Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
13
|
Jael Teresa de Jesús QV, Gálvez-Ruíz JC, Márquez Ibarra AA, Leyva-Peralta MA. Perspectives on Berberine and the Regulation of Gut Microbiota: As an Anti-Inflammatory Agent. Pharmaceuticals (Basel) 2025; 18:193. [PMID: 40006007 PMCID: PMC11858814 DOI: 10.3390/ph18020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Berberine is a promising agent for modulating the intestinal microbiota, playing a crucial role in human health homeostasis. This natural compound promotes the growth of beneficial bacteria such as Bacteroides, Bifidobacterium, and Lactobacillus while reducing harmful bacteria such as Escherichia coli. Clinical and preclinical studies demonstrate that Berberine helps regulate T2D and metabolic disorders, improves blood glucose levels during T2D, and reduces lipid profile and chronic inflammation, especially when combined with probiotics. Berberine represents a promising adjuvant therapy for inflammatory diseases, particularly intestinal disorders, due to its multifaceted actions of inhibiting proinflammatory cytokines and pathways during IBS, IBD, and UC and its modulation of gut microbiota and/or enhancement of the integrity of the intestinal epithelial barrier. This review establishes the basis for future treatment protocols with berberine and fully elucidates its mechanisms.
Collapse
Affiliation(s)
| | - Juan-Carlos Gálvez-Ruíz
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico;
| | | | - Mario-Alberto Leyva-Peralta
- Department of Chemical-Biological and Agricultural Sciences, Universidad de Sonora, Unidad Regional Norte, Caborca 83621, Mexico;
| |
Collapse
|
14
|
Zhou F, Gu X, Wang W, Lin M, Wang L. Advancements in MRSA treatment: the role of berberine in enhancing antibiotic therapy. BMC Microbiol 2024; 24:540. [PMID: 39731013 DOI: 10.1186/s12866-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a significant public health problem. This study investigated the antimicrobial properties and mechanisms of berberine (BBR), a plant alkaloid, against MRSA, evaluating its potential to enhance antibiotic therapy. RESULTS Berberine only demonstrated variable but significant inhibitory effects on 50 clinical MRSA strains. When combined with antibiotics, synergistic effects were observed only with amikacin in 6 of the 50 MRSA strains. BBR disrupted MRSA cell wall integrity, leading to leakage of cellular contents. Network pharmacology analysis revealed that BBR targets multiple pathways essential for bacterial survival. CONCLUSION The study confirmed the potent antimicrobial activity of berberine against MRSA and its capability to act synergistically with traditional antibiotics. Berberine's impact on cell wall integrity and bacterial survival pathways highlights its potential as an adjunct therapy in MRSA treatment.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, P.R. China
| | - Xuemei Gu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Ming Lin
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China.
| |
Collapse
|
15
|
Cao YH, Zhou YM, Wang SY, Guo J, Cen LS. Promise of the gut microbiota in prevention and traditional Chinese medicine treatment of diabetic peripheral neuropathy. World J Diabetes 2024; 15:2387-2393. [PMID: 39676801 PMCID: PMC11580588 DOI: 10.4239/wjd.v15.i12.2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 11/18/2024] Open
Abstract
The pathogenesis of diabetic peripheral neuropathy (DPN) has not been fully elucidated, and treatment options are limited. Currently, the main strategies for treating DPN are strict glycemic control and symptomatic pain relief. In this editorial, we comment on an article by Li et al, which suggested that modulating the gut microbiota using traditional Chinese medicine (TCM) may be a promising strategy for alleviating DPN symptoms. The regulation of the gut microbiota has received widespread attention in the study of various diseases. TCM can participate in the regulation of gut microbiota through multiple mechanisms, and this regulatory effect can alleviate the clinical symptoms of DPN. We briefly analyzed the promise of the gut microbiota in the early diagnosis, treatment, and clinical efficacy of TCM for DPN. The gut microbiota has potential value at multiple nodes in the occurrence and progression of DPN.
Collapse
Affiliation(s)
- Yuan-Hao Cao
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yi-Mai Zhou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jing Guo
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, Zhejiang Province, China
| | - Lu-Sha Cen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
16
|
Kang X, Jin D, Ji H, An X, Zhang Y, Duan L, Yang C, Zhou R, Duan Y, Zhang Y, Sun Y, Jiang L, Lian F, Tong X. The Clinical Efficacy of Gegen Qinlian Decoction in Treating Type 2 Diabetes is Positively Correlated with the Dose of Coptidis rhizoma: Three Randomized, Doubleblind, Dose-Parallel Controlled Clinical Trials. Drug Des Devel Ther 2024; 18:5573-5582. [PMID: 39650851 PMCID: PMC11625183 DOI: 10.2147/dddt.s487315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024] Open
Abstract
Background The results of Study 1 we have published proved that medium and high doses of Gegen Qinlian Decoction (GQD) were effective in treating type 2 diabetes (T2D) with damp-heat syndrome. However, whether the main drug of GQD in treating T2D was Puerariae Lobatae Radix or Coptidis Rhizoma has always been a hot topic of debate among many doctors. Therefore, we conducted Study 2 and Study 3 to determine the main drug of GQD for treating T2D. Methods Both Study 2 and Study 3 were randomized, double-blind, dose-parallel controlled, multicenter trials. In Study 2, Puerariae Lobatae Radix was used as the main drug, and in Study 3, Coptidis Rhizoma was used as the main drug. About 120 patients with newly diagnosed T2D were enrolled in each study and randomized 1:1:1 to three treatment groups. The three treatment groups were named HD, MD, and LD groups according to the high, medium, and low doses of the main drug. The course of treatment was 12 weeks. The primary outcomes were the changes in HbA1c. Results In Study 2, the HbA1c decreased by 0.58 (0.87), 0.28 (1.17), and 0.55 (0.85) in the HD, MD, and LD groups, respectively, with no significant difference between treatment groups according to covariance analysis (F=0.66, P=0.5206). In Study 3, the HbA1c decreased by 0.75 (0.82), 0.34 (0.71), and 0.26 (0.79) in the HD, MD, and LD groups respectively. By analysis of covariance, the change values of HbA1c were significantly different among the three groups (F=3.11, P=0.0492). Conclusion The changes in HbA1c were positively correlated with the dose of Coptidis Rhizoma, but not significantly with the dose of Puerariae Lobatae Radix. It demonstrated that the main drug of GQD in treating T2D patients is Coptidis Rhizoma.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, People’s Republic of China
| | - Hangyu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xuedong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yuehong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Liyun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Cunqing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Rongrong Zhou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingying Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuqing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Linlin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xiaolin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
18
|
Cao Z, Wang X, Liu H, Yang Z, Zeng Z. Gut microbiota mediate the alleviation effect of Xiehuo-Guzheng granules on β cell dedifferentiation in type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156151. [PMID: 39437686 DOI: 10.1016/j.phymed.2024.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide public health problem characterized by a progressive decline in β cell function. In traditional Chinese medicine (TCM) theory, 'fire' and 'healthy qi deficiency' are important pathogeneses of T2DM, and purging 'fire' and reinforcing the 'healthy qi' (Pinyin name: Xiehuo-Guzheng, XHGZ) are important method of treatment. Over the years, we have observed its benefit for diabetes. However, the underlying mechanisms remain unclear. PURPOSE To investigate the mechanism of XHGZ granules against β cell dedifferentiation in T2DM based on gut microbiota. METHODS Rats with T2DM, induced by intraperitoneal injection of streptozotocin after eight weeks of high-fat diet, were randomly allocated to receive XHGZ granules, metformin, or distilled water for eight consecutive weeks. Changes in metabolic parameters, β cell dedifferentiation, inflammatory cytokines, gut microbiota, and microbial metabolites (lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs)), were detected. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the anti-diabetic effect of XHGZ granule-regulated gut microbiota in pseudo-germ-free T2DM rats. RESULTS XHGZ granules significantly ameliorated hyperglycaemia, improved islet function and pathology, and reduced β cell dedifferentiation and pro-inflammatory cytokines in T2DM rats. 16S rRNA sequencing revealed that XHGZ granules decreased the LPS-containing microbiota (e.g., Colidextribacter, Desulfovibrionaceae, and Morganella) and increased the SCFAs-producing bacteria (e.g., Prevotella, Alloprevotella, and Muribaculaceae) and Lactobacillus_intestinalis. Correspondingly, it strengthened intestinal barrier, lowered LPS, and elevated acetic and butyric acids. Tax4Fun analysis indicated that XHGZ granules restored abnormal metabolism, lipopolysaccharide biosynthesis, and pantothenate and CoA biosynthesis. Moreover, the XHGZ granule-regulated microbiota also exhibited the effects of anti-diabetes, anti-β cell dedifferentiation, and anti-inflammation along with the reduction of LPS and the increase of SCFAs in pseudo-germ-free T2DM rats. CONCLUSION Our results show that XHGZ granules alleviate β cell dedifferentiation via regulating gut microbiota and their metabolites in T2DM, suggesting its potential as a promising complementary treatment for T2DM. As far as we know, there are very few studies on the alleviation of β cell dedifferentiation by TCM, and investigations into the mechanism from the perspective of intestinal flora and microbial metabolites are yet to be reported.
Collapse
Affiliation(s)
- Zebiao Cao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huijun Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Huangshi Hospital of Traditional Chinese Medicine, Huangshi, Hubei 435000, China
| | - Zhaojun Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhili Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
19
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Araj-Khodaei M, Ayati MH, Azizi Zeinalhajlou A, Novinbahador T, Yousefi M, Shiri M, Mahmoodpoor A, Shamekh A, Namazi N, Sanaie S. Berberine-induced glucagon-like peptide-1 and its mechanism for controlling type 2 diabetes mellitus: a comprehensive pathway review. Arch Physiol Biochem 2024; 130:678-685. [PMID: 37921026 DOI: 10.1080/13813455.2023.2258559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION A growing number of studies have thus far showed the association between type 2 diabetes mellitus (DM) and the intestinal microbiome homoeostasis. As reported, the gut microflora can be significantly different in patients with type 2 DM (T2DM) compared to those in healthy individuals. METHODS The authors collected the relevant articles published until 2022 and these are carefully selected from three scientific databases based on keywords. DISCUSSION This review highlights research on the anti-diabetic properties of berberine (BBR)-induced glucagon-like peptide-1 (GLP-1), as a glucose-lowering factor and a balance regulator in the microbial flora of the intestines, which plays an important role in adjusting the signalling pathways affecting insulin secretion. RESULTS Considering the anti-diabetic characteristics of the BBR-induced GLP-1, BBR makes a promising complementary treatment for reducing the clinical symptoms of DM by reducing the hyperglycaemia. Berberin might be a safe and effective drug for T2DM with little or no adverse effects.
Collapse
Affiliation(s)
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Azizi Zeinalhajlou
- Department of Geriatric Health, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Novinbahador
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shiri
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Namazi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarvin Sanaie
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Xu Z, Tian Y, Wang J, Ma Y, Li Q, Zhou Y, Zhang W, Liu T, Kong L, Wang Y, Xie Z, An Z, Zheng B, Zhang Y, Cao C, Liu C, Tian L, Fan C, Liu J, Yao H, Song J, Duan B, Liu H, Gao R, Sun W, Chen S. Convergent evolution of berberine biosynthesis. SCIENCE ADVANCES 2024; 10:eads3596. [PMID: 39612339 PMCID: PMC11606445 DOI: 10.1126/sciadv.ads3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Berberine is an effective antimicrobial and antidiabetic alkaloid, primarily extracted from divergent botanical lineages, specifically Coptis (Ranunculales, early-diverging eudicot) and Phellodendron (Sapindales, core eudicot). In comparison with its known pathway in Coptis species, its biosynthesis in Phellodendron species remains elusive. Using chromosome-level genome assembly, coexpression matrix, and biochemical assays, we identified six key steps in berberine biosynthesis from Phellodendron amurense, including methylation, hydroxylation, and berberine bridge formation. Notably, we discovered a specific class of O-methyltransferases (NOMT) responsible for N-methylation. Structural analysis and mutagenesis of PaNOMT9 revealed its unique substrate-binding conformation. In addition, unlike the classical FAD-dependent berberine bridge formation in Ranunculales, Phellodendron uses a NAD(P)H-dependent monooxygenase (PaCYP71BG29) for berberine bridge formation, originating from the neofunctionalization of tryptamine 5-hydroxylase. Together, these findings reveal the convergence of berberine biosynthesis between Coptis and Phellodendron and signify the role of the convergent evolution in plant specialized metabolisms.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuanze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanran Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengwei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jiushi Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Haitao Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
22
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X, Li L. Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1504948. [PMID: 39650662 PMCID: PMC11621041 DOI: 10.3389/fimmu.2024.1504948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular carcinoma, a common malignancy of the digestive system, typically progresses through a sequence of hepatitis, liver fibrosis, cirrhosis and ultimately, tumor. The interaction between gut microbiota, the portal venous system and the biliary tract, referred to as the gut-liver axis, is crucial in understanding the mechanisms that contribute to the progression of hepatocellular carcinoma. Mechanisms implicated include gut dysbiosis, alterations in microbial metabolites and increased intestinal barrier permeability. Imbalances in gut microbiota, or dysbiosis, contributes to hepatocellular carcinoma by producing carcinogenic substances, disrupting the balance of the immune system, altering metabolic processes, and increasing intestinal barrier permeability. Concurrently, accumulating evidence suggests that gut microbiota has the ability to modulate antitumor immune responses and affect the efficacy of cancer immunotherapies. As a new and effective strategy, immunotherapy offers significant potential for managing advanced stages of hepatocellular carcinoma, with immune checkpoint inhibitors achieving significant advancements in improving patients' survival. Probiotics play a vital role in promoting health and preventing diseases by modulating metabolic processes, inflammation and immune responses. Research indicates that they are instrumental in boosting antitumor immune responses through the modulation of gut microbiota. This review is to explore the relationship between gut microbiota and the emergence of hepatocellular carcinoma, assess the contributions of probiotics to immunotherapy and outline the latest research findings, providing a safer and more cost-effective potential strategy for the prevention and management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Ren
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingzhi Xu
- Department of General Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuewei Ye
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wang J, Bi C, Xi H, Wei F. Effects of administering berberine alone or in combination on type 2 diabetes mellitus: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1455534. [PMID: 39640489 PMCID: PMC11617981 DOI: 10.3389/fphar.2024.1455534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Despite the availability of multiple therapies for Type 2 diabetes mellitus (T2DM), challenges remain due to side effects and efficacy limitations. Berberine (BBR) has shown broad anti-diabetic effects, prompting a systematic assessment of its efficacy and safety through a meta-analysis. Methods A comprehensive search was conducted across eight database and search engines from inception until 06/09/2024. Only randomized controlled trials (RCTs) meeting inclusion criteria were analyzed. The Cochrane risk of bias assessment tool and Jadad scale were used to evaluate study quality. Meta-analysis was performed using RevMan v5.3 and Stata/SE v15.1. Results Fifty studies involving 4,150 participants were included. BBR alone significantly reduced fasting plasma glucose (FPG) (MD = -0.59 mmol/L, p = 0.048), 2-h postprandial blood glucose (2hPBG) (MD = -1.57 mmol/L, p < 0.01), low-density lipoprotein cholesterol (LDL-C) (MD = -0.30 mmol/L, p < 0.01), total cholesterol (TC) (MD = -0.30 mmol/L, p = 0.034), and triglycerides (TG) (MD = -0.35 mmol/L, p < 0.01). When combined with hypoglycemic drugs, BBR significantly improved FPG (MD = -0.99 mmol/L, p < 0.01), 2hPBG (MD = -1.07 mmol/L, p < 0.01), glycated hemoglobin (HbA1c) (MD = -0.69%, p < 0.01), and other metabolic markers, including fasting insulin (Fins), homeostasis model assessment index for assessing insulin resistance (HOMA-IR), lipid profiles and inflammatory markers. The most common BBR dosage was 0.9-1.5 g/d, with treatment cycles typically lasting 1-3 months. Conclusion Current evidence suggests that BBR alone or in combination has significant potential for treating type 2 diabetes mellitus (T2DM). Future research should encompass a broader scope, including not just the beneficial effects of BBR in head-to-head studies, but more crucially, delving into its mechanisms of action with hypoglycemic drugs to optimize T2DM treatment strategies.
Collapse
Affiliation(s)
- Jiacheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenhao Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbin Xi
- Department of Traditional Chinese Medicine Classics, Tai’an Hospital of Traditional Chinese Medicine, Tai’an, China
| | - Fengqin Wei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
25
|
Dai H, Shan Z, Shi L, Duan Y, An Y, He C, Lyu Y, Zhao Y, Wang M, Du Y, Xie J, Yang Y, Zhao B. Mulberry leaf polysaccharides ameliorate glucose and lipid metabolism disorders via the gut microbiota-bile acids metabolic pathway. Int J Biol Macromol 2024; 282:136876. [PMID: 39490871 DOI: 10.1016/j.ijbiomac.2024.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Mulberry leaf polysaccharides (MLP) are integral components of Mulberry leaves that confer hypoglycemic and hypolipidemic properties. This study investigated the efficacy of MLP in treating Type 2 Diabetes Mellitus (T2DM) and the underlying mechanisms related to gut microbiota-bile acids metabolism in T2DM rats. The findings revealed that MLP apparently reduced fasting blood glucose and lipid levels, ameliorated disorders in glucose and lipid metabolism, and mitigated insulin resistance. MLP enhanced the abundance of Prevotella, Ruminococcus, and Lactobacillus, thereby rectifying the gut microbiota dysbiosis in rats, which effectively restored gut microbiota homeostasis and composition. Furthermore, the data demonstrated that MLP modulated bile acid metabolism, as evidenced by reduced serum cholesterol levels, enhanced mRNA expression of hepatic cholesterol 7α- hydroxylase (Cyp7a1) and cholesterol 12α- hydroxylase (Cyp8b1), and ileal G protein-coupled bile acid receptor (Tgr5), while suppressing hepatic and ileal farnesoid X receptor (Fxr) mRNA expression in T2DM rats. Additionally, MLP upregulated the protein expression of hepatic CYP7A1 and CYP8B1, and ileal TGR5, while inhibiting FXR protein levels in the liver and ileum of T2DM rats. These results suggest that MLP can rectify disorders in glucose and lipid metabolism via the gut microbiota-bile acids metabolic pathway.
Collapse
Affiliation(s)
- Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Operations and Management Department, Ya'an People's Hospital, Ya'an 625099, China
| | - Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Central Laboratories, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinglan Lyu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yige Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
26
|
Zhang J, Gan H, Duan X, Li G. Targeting the Intestinal Microbiota: A Novel Direction in the Treatment of Inflammatory Bowel Disease. Biomedicines 2024; 12:2340. [PMID: 39457652 PMCID: PMC11504502 DOI: 10.3390/biomedicines12102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, there has been a rapid increase in the incidence of inflammatory bowel disease. It has been suggested that multifactorial interactions of environmental factors, genetic factors, immune response and intestinal microbiota are involved in the pathogenesis of inflammatory bowel disease. It is widely recognized that the intestinal microbiota are essential for human metabolism, the immune system and pathogen resistance, and are integral to human health. Therefore, the dysbiosis of the microbiota is a critical step leading to intestinal mucosal damage and a key factor in the pathogenesis of inflammatory bowel disease. Regulating the microbiota through interventions such as enteral nutrition, fecal microbiota transplantation, and probiotic supplementation has the potential to prevent or even reverse intestinal dysbiosis, opening up new perspectives for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| |
Collapse
|
27
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
28
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
29
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
30
|
Donnelly SC, Varela-Mattatall GE, Hassan S, Sun Q, Gelman N, Thiessen JD, Thompson RT, Prato FS, Burton JP, Goldhawk DE. Bacterial association with metals enables in vivo monitoring of urogenital microbiota using magnetic resonance imaging. Commun Biol 2024; 7:1079. [PMID: 39227641 PMCID: PMC11371927 DOI: 10.1038/s42003-024-06783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Bacteria constitute a significant part of the biomass of the human microbiota, but their interactions are complex and difficult to replicate outside the host. Exploiting the superior resolution of magnetic resonance imaging (MRI) to examine signal parameters of selected human isolates may allow tracking of their dispersion throughout the body. Here we investigate longitudinal and transverse MRI relaxation rates and found significant differences between several bacterial strains. Common commensal strains of lactobacilli display notably high MRI relaxation rates, partially explained by elevated cellular manganese content, while other species contain more iron than manganese. Lactobacillus crispatus show particularly high values, 4-fold greater than any other species; up to 60-fold greater signal than relevant tissue background; and a linear relationship between relaxation rate and fraction of live cells. Different bacterial strains have detectable, repeatable MRI relaxation rates that in the future may enable monitoring of their persistence in the human body for enhanced molecular imaging.
Collapse
Affiliation(s)
- Sarah C Donnelly
- Imaging, Lawson Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
- Microbiology & Immunology, Western University, London, Canada
| | - Gabriel E Varela-Mattatall
- Imaging, Lawson Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
| | | | - Qin Sun
- Imaging, Lawson Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
| | - Neil Gelman
- Imaging, Lawson Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | - Jonathan D Thiessen
- Imaging, Lawson Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
- Medical Biophysics, Western University, London, Canada
| | - R Terry Thompson
- Imaging, Lawson Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Physics & Astronomy, Western University, London, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | - Jeremy P Burton
- Microbiology & Immunology, Western University, London, Canada
- Division of Urology and Surgery, Western University, London, Canada
- Centre for Human Microbiome Research, Lawson Research Institute, London, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Research Institute, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
- Medical Biophysics, Western University, London, Canada.
| |
Collapse
|
31
|
Tian YQ, Ren X, Wang J, Li X, Yin YS, Guo ZH, Qin ZL, Zeng XY. Berberine hydrochloride alleviates chronic prostatitis/chronic pelvic pain syndrome by modifying gut microbiome signaling. Asian J Androl 2024; 26:500-509. [PMID: 39012524 PMCID: PMC11449416 DOI: 10.4103/aja202427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is highly prevalent worldwide and poses a significant threat to men's health, particularly affecting young men. However, the exact causes and mechanisms behind CP/CPPS remain unclear, leading to challenges in its treatment. In this research, a CP/CPPS rat model was established with complete Freund's adjuvant (CFA), and berberine hydrochloride was administered through daily gavage to assess its therapeutic effects. The alterations in the gut microbiome induced by CP/CPPS and berberine hydrochloride were investigated through 16S ribosomal RNA sequencing of cecum content and colonic epithelial cells. To investigate the impact of the gut microbiome on CP/CPPS, a pseudo germ-free rat model was established, and fecal microbiome transplantation (FMT) was performed on these rats. In all, berberine hydrochloride demonstrated effective reduction of inflammation and oxidative stress in the prostate, offering significant therapeutic advantages for CP/CPPS. Through analysis of the gut microbiome using 16S ribosome RNA sequencing, distinct differences were observed between CP/CPPS rats and control rats, and Clostridium butyricum was identified as a key bacteria. Pseudo germ-free rats that underwent FMT from CP/CPPS rats or rats treated with berberine hydrochloride displayed varying levels of inflammatory cytokine production, oxidative stress, and activity of associated signaling pathways. In conclusion, the therapeutic potential of berberine hydrochloride in addressing CP/CPPS is highly significant. The gut microbiome has emerged as a critical factor in the development of CP/CPPS and plays a pivotal role in mediating the therapeutic effects of berberine hydrochloride.
Collapse
Affiliation(s)
- Yi-Qun Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xiang Ren
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xing Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Yi-Sheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Zi-Hao Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Zhen-Liang Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xiao-Yong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| |
Collapse
|
32
|
Koneru HM, Sarwar H, Bandi VV, Sinha M, Tarar P, Bishara R, Malasevskaia I. A Systematic Review of Gut Microbiota Diversity: A Key Player in the Management and Prevention of Diabetes Mellitus. Cureus 2024; 16:e69687. [PMID: 39435211 PMCID: PMC11492350 DOI: 10.7759/cureus.69687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Diabetes mellitus represents a significant global health challenge, characterized by impaired insulin production and action, leading to elevated blood glucose levels. This systematic review investigates the association between gut microbiota composition and diversity, along with the structural and functional characteristics of the gut microbiome, and their implications for the risk, prevention, and management of both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, a comprehensive search across multiple databases yielded 16 studies that met the inclusion criteria. The findings highlight the potential of gut microbiota interventions, such as fecal microbiota transplantation and probiotic supplementation, in improving metabolic parameters and glycemic control. Notably, the review underscores the importance of dietary interventions and the role of specific microbial populations in influencing diabetes outcomes. Despite the promising results, the variability in study designs, sample sizes, and methodologies poses challenges for generalizability and interpretation. This review emphasizes the need for further research to elucidate the mechanisms underlying these associations and to explore personalized microbiome-based therapies in diabetes management. The insights gained could pave the way for innovative therapeutic strategies aimed at harnessing gut health to mitigate the burden of diabetes mellitus.
Collapse
Affiliation(s)
- Hema Manvi Koneru
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hooria Sarwar
- Psychiatry, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Venkata Varshitha Bandi
- Medical Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mohit Sinha
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Pakeeza Tarar
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Rafik Bishara
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Iana Malasevskaia
- Obstetrics and Gynecology, Private Clinic 'Yana Alexandr', Sana'a, YEM
- Research and Development, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
33
|
Zhao J, Fang Z. Alterations of the gut microbiota and metabolites by ShenZhu TiaoPi granule alleviates hyperglycemia in GK rats. Front Microbiol 2024; 15:1420103. [PMID: 39372266 PMCID: PMC11451479 DOI: 10.3389/fmicb.2024.1420103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
ShenZhu TiaoPi granule (STG) is a compound prescription that is used in Chinese medicine for the treatment of type 2 diabetes mellitus (T2DM). Previous studies have indicated a hypoglycaemic effect, but the underlying mechanism remains unclear. Goto-Kakizaki (GK) rats were used to establish an in vivo T2DM model (Mod). The metformin (Met) and STG treatment time was 12 weeks. Fasting blood glucose (FBG) and insulin levels and the area under the glucose curve (GAUC) were measured. Intestinal pathology and permeability were observed. Microbial diversity analysis and metabolomics were used to investigate the underlying mechanisms. Compared with the Con group, the T2DM Mod group presented significant differences in weight, FBG, GAUC, and homeostasis model assessment-insulin resistance (HOMA-IR) indices (p < 0.01). Met and STG improved these indicators (p < 0.01). The pathological morphology and zonula occludens 1 protein levels in the intestines of the Mod group of rats were altered, leading to increases in the lipopolysaccharide (LPS) and interleukin-1β (IL-1β) levels. In the Met and STG groups, the intestinal conditions improved, and the LPS and IL-1β levels significantly decreased (p < 0.01). Changes in the gut microbiota and metabolites occurred in the Mod group. In the STG group, the abundance of Intestinimonas increased, and the abundance of Eubacterium coprostanoligenes decreased significantly (p < 0.05). Moreover, STG also altered 2-deoxyglucose, beta-muricholic acid and dioxolithocholic acid production. In addition, the main metabolic pathways affected by STG were bile acid biosynthesis and cholesterol metabolism. Intestinimonas, D-maltose_and_alpha-lactose may be potential biomarkers for the effects of STG. STG alleviates hyperglycaemia via the gut microbiota and metabolites in GK rats.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernizatison of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernizatison of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
34
|
Li C, Yin X, Xie C, Zeng J, Song C, Yang G, Zhang J, Chen S, Wei P, Wang Z, Gu M, Li W, An J, Pan Y. Berberine attenuates TNBS-induced colitis in mice by improving the intestinal microbiota. Front Microbiol 2024; 15:1463005. [PMID: 39268532 PMCID: PMC11392431 DOI: 10.3389/fmicb.2024.1463005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the effects of berberine (BBR) as a treatment on intestinal microecological alterations and enteritis in mice produced by TNBS. Methods There were seven mice per group: seven in the healthy group (Ctrl), seven in the TNBS-induced enteritis group (TNBS), and seven in the berberine treatment group (BBR). The mice were weighed, slaughtered after 7 days, and subjected to high-throughput intestinal microecological analysis by Illumina, as well as haematological detection and imaging evaluation of colon pathology. Results The alterations in colon length, immune cell subpopulations, inflammatory factors, and intestinal microecology of mice induced by BBR were refined using a battery of experiments and observations. According to intestinal microecological studies, BBR can increase the number of bacteria, including Lactobacillus, Verrucomicrobia, Bacteroides, and Akkermansia muciniphila. Conclusion BBR has a therapeutic effect on TNBS-induced colitis in mice, which is associated with modifications in immune cell subpopulations and intestinal microecology. It also offers a viable approach as a prospective probiotic (like Akkermansia muciniphila) to IBD therapy in clinical settings.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinxin Yin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Changpeng Xie
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Jin Zeng
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Chuan Song
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinglei Zhang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Siai Chen
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
35
|
Xia S, Jing R, Shi M, Yang Y, Feng M, Deng L, Luo L. BBR affects macrophage polarization via inhibition of NF-κB pathway to protect against T2DM-associated periodontitis. J Periodontal Res 2024; 59:728-737. [PMID: 38501225 DOI: 10.1111/jre.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is intimately associated with the development of various systemic diseases, among which type 2 diabetes mellitus (T2DM) has a bidirectional relationship with the pathogenesis of periodontitis. The objective of the present work was to investigate the role of berberine (BBR) in periodontitis with T2DM and related mechanisms. METHODS The mRNA expression of macrophage polarization-related factors in the microenvironment of periodontal inflammation was detected using real-time quantitative PCR (RT-qPCR). The experimental periodontitis model was constructed in wild-type (WT) and T2DM (db/db) mice, which were administered BBR after 7 days of modeling. Alveolar bone loss (ABL) in each group of mice was measured utilizing micro-computed tomography images. RT-qPCR was performed to analyze the levels of macrophage polarization-related factors in mouse gingiva. Lastly, using western blotting and RT-qPCR, the signaling pathway of BBR affecting macrophage polarization in the microenvironment of periodontitis was explored. RESULTS BBR inhibited M1 polarization and stimulated M2 polarization in the periodontitis microenvironment. BBR decreased ABL in the WT and T2DM periodontitis models. And BBR reduced the production of proinflammatory cytokines and increased anti-inflammatory cytokine expression in the gingiva of WT and T2DM model mice. Ultimately, BBR mediates its anti-inflammatory effects on periodontitis through inhibition of the NF-κB pathway. CONCLUSIONS BBR had a therapeutic effect on T2DM-associated periodontitis via inhibiting the NF-κB pathway to affect macrophage polarization, which may have implications for the new pharmacological treatment of T2DM-associated periodontitis.
Collapse
Affiliation(s)
- Siying Xia
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui Jing
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Mingyan Shi
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanan Yang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Meiting Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Li Deng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lijun Luo
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
36
|
Rao J, Gao Q, Li N, Wang Y, Wang T, Wang K, Qiu F. Unraveling the enigma: Molecular mechanisms of berberrubine-induced nephrotoxicity reversed by its parent form berberine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155648. [PMID: 38669970 DOI: 10.1016/j.phymed.2024.155648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Berberine is an isoquinoline alkaloid that is extensively applied in the clinic due to its potential therapeutic effects on dysentery and infectious diarrhoea. Its main metabolite, berberrubine, a promising candidate for ameliorating hyperlipidaemia, has garnered more attention than berberine. However, our study revealed that berberrubine induces severe kidney damage, while berberine was proven to be safe. PURPOSE Herein, we explored the opposite biological effects of these two compounds on the kidney and elucidated their underlying mechanisms. METHODS First, integrated metabolomic and proteomic analyses were conducted to identify relevant signalling pathways. Second, a click chemistry method combined with a cellular thermal shiftassay, a drug affinity responsive target stability assay, and microscale thermophoresis were used to identify the direct target proteins. Moreover, a mutation experiment was performed to study the specific binding sites. RESULTS Animal studies showed that berberrubine, but not berberine, induced severe chronic, subchronic, and acute nephrotoxicity. More importantly, berberine reversed the berberrubine-reduced nephrotoxicity. The results indicated that the cPLA2 signalling pathway was highly involved in the nephrotoxicity induced by berberrubine. We further confirmed that the direct target of berberrubine is the BASP1 protein (an upstream factor of cPLA2 signalling). Moreover, berberine alleviated nephrotoxicity by binding cPLA2 and inhibiting cPLA2 activation. CONCLUSION This study is the first to revel the opposite biological effects of berberine and its metabolite berberrubine in inducing kidney injury. Berberrubine, but not berberine, shows strong nephrotoxicity. The cPLA2 signalling pathway can be activated by berberrubine through targeting of BASP1, while berberine inhibits this pathway by directly binding with cPLA2. Our study paves the way for studies on the exact molecular targets of herbal ingredients. We also demonstrated that natural small molecules and their active metabolites can have opposite regulatory roles in vivo through the same signalling pathway.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
37
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
38
|
Nie X, Lu Q, Yin Y, He Z, Bai Y, Zhu C. Microbiome and metabolome analyses reveal significant alterations of gut microbiota and bile acid metabolism in ETEC-challenged weaned piglets by dietary berberine supplementation. Front Microbiol 2024; 15:1428287. [PMID: 38983627 PMCID: PMC11231202 DOI: 10.3389/fmicb.2024.1428287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
This study mainly investigated the effects of berberine (BBR) on the bile acid metabolism in gut-liver axis and the microbial community in large intestine of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) by microbiome and metabolome analyses. Sixty-four piglets were randomly assigned to four groups including Control group, BBR group, ETEC group, and BBR + ETEC group. Dietary BBR supplementation upregulated the colonic mRNA expression of Occludin, Claudin-5, trefoil factor 3 (TFF3), and interleukin (IL)-10, and downregulated colonic IL-1β and IL-8 mRNA expression in piglets challenged with ETEC K88 (p < 0.05). The hepatic non-targeted metabolome results showed that dietary BBR supplementation enriched the metabolic pathways of primary bile acid biosynthesis, tricarboxylic acid cycle, and taurine metabolism. The hepatic targeted metabolome analyses showed that BBR treatment increased the hepatic concentrations of taurocholic acid (TCA) and taurochenodeoxycholic acid (TDCA), but decreased the hepatic cholic acid (CA) concentration (p < 0.05). Further intestinal targeted metabolome analyses indicated that the deoxycholic acid (DCA), hyocholic acid (HCA), 7-ketodeoxycholic acid (7-KDCA), and the unconjugated bile acid concentrations in ileal mucosa was decreased by dietary BBR treatment (p < 0.05). Additionally, BBR treatment significantly upregulated the hepatic holesterol 7 α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) mRNA expression, and upregulated the ileal mRNA expression of farnesoid X receptor (FXR) and apical sodium-dependent bile acid transporter (ASBT) as well as the colonic mRNA expression of FXR, fibroblast growth factor19 (FGF19), takeda G protein-coupled receptor 5 (TGR5) and organic solute transporters beta (OST-β) in piglets (p < 0.05). Moreover, the microbiome analysis showed that BBR significantly altered the composition and diversity of colonic and cecal microbiota community, with the abundances of Firmicutes (phylum), and Lactobacillus and Megasphaera (genus) significantly increased in the large intestine of piglets (p < 0.05). Spearman correlation analysis showed that the relative abundances of Megasphaera (genus) were positively correlated with Claudin-5, Occludin, TFF3, and hepatic TCDCA concentration, but negatively correlated with hepatic CA and glycocholic acid (GCA) concentration (p < 0.05). Moreover, the relative abundances of Firmicute (phylum) and Lactobacillus (genus) were positively correlated with hepatic TCDCA concentration (p < 0.05). Collectively, dietary BBR supplementation could regulate the gut microbiota and bile acid metabolism through modulation of gut-liver axis, and attenuate the decreased intestinal tight junction expression caused by ETEC, which might help maintain intestinal homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yucheng Yin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhentao He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Province Doctoral Workstation, Shanwei Xinsheng Leisure Agriculture Co., Ltd, Shanwei, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
39
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Balleza-Alejandri LR, Peña-Durán E, Beltrán-Ramírez A, Reynoso-Roa AS, Sánchez-Abundis LD, García-Galindo JJ, Suárez-Rico DO. Decoding the Gut Microbiota-Gestational Diabetes Link: Insights from the Last Seven Years. Microorganisms 2024; 12:1070. [PMID: 38930451 PMCID: PMC11205738 DOI: 10.3390/microorganisms12061070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.
Collapse
Affiliation(s)
- Luis Ricardo Balleza-Alejandri
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.R.B.-A.); (A.S.R.-R.)
| | - Emiliano Peña-Durán
- Licenciatura en Médico Cirujano y Partero, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Alberto Beltrán-Ramírez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| | - Africa Samantha Reynoso-Roa
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.R.B.-A.); (A.S.R.-R.)
| | - Luis Daniel Sánchez-Abundis
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Guadalajara 44200, Mexico;
| | - Jesús Jonathan García-Galindo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| |
Collapse
|
41
|
Zhao Z, Ma R, Ma Y, Zhao L, Wang L, Fang Y, Zhang Y, Wu X, Wang X. Discovery of Nine Dipeptidyl Peptidase-4 Inhibitors from Coptis chinensis Using Virtual Screening, Bioactivity Evaluation, and Binding Studies. Molecules 2024; 29:2304. [PMID: 38792165 PMCID: PMC11123979 DOI: 10.3390/molecules29102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 μM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 μM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Ruonan Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Yuqing Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Liqiang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Lele Wang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuzhen Fang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuxin Zhang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| |
Collapse
|
42
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
43
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
44
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
45
|
Gao Y, Li W, Huang X, Lyu Y, Yue C. Advances in Gut Microbiota-Targeted Therapeutics for Metabolic Syndrome. Microorganisms 2024; 12:851. [PMID: 38792681 PMCID: PMC11123306 DOI: 10.3390/microorganisms12050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Previous investigations have illuminated the significant association between the gut microbiome and a broad spectrum of health conditions, including obesity, diabetes, cardiovascular diseases, and psychiatric disorders. Evidence from certain studies suggests that dysbiosis of the gut microbiota may play a role in the etiology of obesity and diabetes. Moreover, it is acknowledged that dietary habits, pharmacological interventions, psychological stress, and other exogenous factors can substantially influence the gut microbial composition. For instance, a diet rich in fiber has been demonstrated to increase the population of beneficial bacteria, whereas the consumption of antibiotics can reduce these advantageous microbial communities. In light of the established correlation between the gut microbiome and various pathologies, strategically altering the gut microbial profile represents an emerging therapeutic approach. This can be accomplished through the administration of probiotics or prebiotics, which aim to refine the gut microbiota and, consequently, mitigate the manifestations of associated diseases. The present manuscript evaluates the recent literature on the relationship between gut microbiota and metabolic syndrome published over the past three years and anticipates future directions in this evolving field.
Collapse
Affiliation(s)
- Yu Gao
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| |
Collapse
|
46
|
Chai Y, Liu X, Bai G, Zhou N, Liu D, Zhang X, Li M, Li K, Lei H. Gut microbiome, T cell subsets, and cytokine analysis identify differential biomarkers in tuberculosis. Front Immunol 2024; 15:1323723. [PMID: 38650928 PMCID: PMC11033455 DOI: 10.3389/fimmu.2024.1323723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The gut microbiota, T cell subsets, and cytokines participate in tuberculosis (TB) pathogenesis. To date, the mechanisms by which these factors interactively promote TB development at different time points remain largely unclear. In the context of this study, We looked into the microorganisms in the digestive tract, T cell types, and cytokines related to tuberculosis. Methods According to QIIME2, we analyzed 16SrDNA sequencing of the gut microbiome on the Illumina MiSeq. Enzyme-linked immunosorbent assay was used to measure the concentrations of cytokines. Results We showed the presence of 26 identifiable differential microbiomes in the gut and 44 metabolic pathways between healthy controls and the different time points in the development of TB in patients. Five bacterial genera (Bacteroides, Bifidobacterium, Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4/CD8, whereas three bacterial taxa (Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4. Three bacterial taxa (Faecalibacterium, Ruminococcus, and Dorea) were most closely associated with IL-4. Ruminococcus was most closely associated with IL-2 and IL-10. Conclusion Diverse microorganisms, subsets of T cells, and cytokines, exhibiting varying relative abundances and structural compositions, were observed in both healthy controls and patients throughout distinct phases of tuberculosis. Gaining insight into the function of the gut microbiome, T cell subsets, and cytokines may help modulate therapeutic strategies for TB.
Collapse
Affiliation(s)
- Yinghui Chai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangliang Bai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nannan Zhou
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Danfeng Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaomeng Zhang
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Min Li
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Kang Li
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
47
|
Ma W, Long J, Dong L, Zhang J, Wang A, Zhang Y, Yan D. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117752. [PMID: 38216099 DOI: 10.1016/j.jep.2024.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.
Collapse
Affiliation(s)
- Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Linjie Dong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jian Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
48
|
Yang Y, Yan J, Li S, Liu M, Han R, Wang Y, Wang Z, Wang D. Efficacy of fecal microbiota transplantation in type 2 diabetes mellitus: a systematic review and meta-analysis. Endocrine 2024; 84:48-62. [PMID: 38001323 DOI: 10.1007/s12020-023-03606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases worldwide, and studies have found significant differences in the composition and ratio of intestinal flora between patients with T2DM and normal glucose tolerance, and fecal microbiota transplantation (FMT) may modulate the composition of the intestinal microbiota thereby alleviating the hyperglycemic state. We conducted a meta-analysis and systematic review of existing randomized controlled trials (RCTs) to assess the efficacy of FMT in T2DM. METHODS We conducted a computer search of PubMed, Embase, The Cochrane Library, and Web of Science to screen randomized controlled trials studies on FMT treatment for T2DM and extracted data from studies that met inclusion criteria. RevMan 5.4 software and Stata 11 software was used for meta-analysis. The indexes of Hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), body mass index (BMI), Aspartate Aminotransferase (AST), Alanine Transaminase (ALT), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) were mainly evaluated after FMT treatment of T2DM patients, and the changes of intestinal flora were evaluated. RESULTS Four RCTs met the inclusion criteria and were included in the meta-analysis. Results of the meta-analysis showed that compared with the non-FMT group, FMT combined treatment could significantly reduce the PBG level in patients with type 2 diabetes (MD = -0.51, 95% CI: -1.42-0.40, P = 0.27). Compared with single FMT treatment, FMT combined treatment could reduce TG levels in patients with type 2 diabetes (MD = -0.60, 95% CI: -1.12~-0.07, P = 0.03). The levels of TG (MD = -0.26, 95% CI: -0.51~-0.02, P = 0.03), HOMA-IR (MD = -2.73, 95% CI: -4.71~0.75, P = 0.007) and HDL (MD = -0.06,95% CI: -0.10~-0.02, P = 0.003) were significantly decreased after treatment in the single FMT group. The level of TC (MD = -0.65, 95% CI: -1.00~-0.31, P = 0.0002) was significantly decreased after FMT combined treatment. Compared with before treatment, ALT (MD = -2.52, 95% CI: -3.86~-1.17, P = 0.0002) and DBP (MD = -2, 95% CI: -3.32~0.68, P = 0.003) levels decreased after treatment in the single FMT group and the FMT combined group. FPG (MD = -0.94, 95% CI: -1.86~-0.02, P = 0.04), TG (MD = -0.73, 95% CI: -1.42~-0.04, P = 0.04) and TC (MD = -0.94, 95% CI: -1.45~-0.43, P = 0.0003) were significantly decreased after combined drug and diet therapy. Secondly, FMT can promote the colonization and growth of donor-related flora in patients with type 2 diabetes. CONCLUSION In patients with type 2 diabetes mellitus, FMT treatment can reduce the levels of PBG, TG, HOMA-IR, TC, ALT, and DBP, especially in the combined treatment regimen. In addition, FMT can reshape the intestinal flora and establish the balance of dominant flora.
Collapse
Affiliation(s)
- Yan Yang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Jingjing Yan
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Shuo Li
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Mengru Liu
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Ruimin Han
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Yinping Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Zhen Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China.
| | - Defeng Wang
- Endocrinology Department of Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056000, China.
| |
Collapse
|
49
|
Wang D, Qin L, Jing C, Wang G, Zhou H, Deng P, Zhang S, Wang Y, Ding Y, Zhang Z, Wu Z, Liu Y. Biologically active isoquinoline alkaloids covering 2019-2022. Bioorg Chem 2024; 145:107252. [PMID: 38437763 DOI: 10.1016/j.bioorg.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Isoquinoline alkaloids are an important class of natural products that are abundant in the plant kingdom and exhibit a wide range of structural diversity and biological activities. With the deepening of research in recent years, more and more isoquinoline alkaloids have been isolated and identified and proved to contain a variety of biological activities and pharmacological effects. In this review, we introduce the research progress of isoquinoline alkaloids from 2019 to 2022, mainly in the part of biological activities, including antitumor, antimicrobial, antidiabetic, antiviral, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, analgesic, and other activities. This study provides a clear direction for the rational development and utilization of isoquinoline alkaloids, suggesting that these alkaloids have great potential in the field of drug research.
Collapse
Affiliation(s)
- Dengtuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Lulu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chenxin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guanghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yirong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanyan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
50
|
Ren H, Shi Z, Yang F, Wang S, Yuan F, Li T, Li M, Zhu J, Li J, Wu K, Zhang Y, Ning G, Kristiansen K, Wang W, Gu Y, Zhong H. Deciphering unique and shared interactions between the human gut microbiota and oral antidiabetic drugs. IMETA 2024; 3:e179. [PMID: 38882498 PMCID: PMC11170963 DOI: 10.1002/imt2.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 06/18/2024]
Abstract
The administration of oral antidiabetic drugs (OADs) to patients with type 2 diabetes elicits distinct and shared changes in the gut microbiota, with acarbose and berberine exhibiting greater impacts on the gut microbiota than metformin, vildagliptin, and glipizide. The baseline gut microbiota strongly associates with treatment responses of OADs.
Collapse
Affiliation(s)
- Huahui Ren
- BGI Research Shenzhen China
- Department of Biology Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | | | | | - Shujie Wang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fengyi Yuan
- Department of Endocrinology and Metabolism Shenzhen People's Hospital Shenzhen China
| | - Tingting Li
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Min Li
- BGI Research Shenzhen China
| | | | - Junhua Li
- BGI Research Shenzhen China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research Shenzhen China
| | - Kui Wu
- BGI Research Shenzhen China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research Shenzhen China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Karsten Kristiansen
- BGI Research Shenzhen China
- Department of Biology Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | | |
Collapse
|