1
|
Deng Y, Zhang L, Dai C, Xu Y, Gan Q, Cheng J. SLAMF7 predicts prognosis and correlates with immune infiltration in serous ovarian carcinoma. J Gynecol Oncol 2024; 35:e79. [PMID: 38606823 PMCID: PMC11543254 DOI: 10.3802/jgo.2024.35.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE Signaling lymphocytic activation molecule family members (SLAMFs) play a critical role in immune regulation of malignancies. This study aims to investigate the prognostic value and function of SLAMFs in ovarian cancer (OC). METHODS The expression analysis of SLAMFs was conducted based on The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) and Gene Expression Omnibus (GEO) databases. Immunohistochemistry (IHC) was further performed on tissue arrays (n=98) to determine the expression of SLAMF7. Kaplan-Meier plotter and multivariate Cox regression model were used to evaluate the correlation of SLAMF7 expression with survival outcomes of patients. The molecular function of SLAMF7 in OC was further investigated using Gene Set Enrichment Analysis (GSEA). RESULTS SLAMF7 mRNA expression were significantly upregulated in OC tumor tissue compared to normal tissue. IHC revealed that SLAMF7 expression was located in the interstitial parts of tumor tissue, and higher SLAMF7 expression was associated with favorable survival outcomes. GSEA demonstrated that SLAMF7 is involved immune-related pathways. Further analysis showed that SLAMF7 had a strong correlation with the T cell-specific biomarker (CD3) but not with the B cell (CD19, CD22, and CD23) and natural killer cell-specific biomarkers (CD85C, CD336, and CD337). Furthermore, IHC analysis confirmed that SLAMF7 was expressed in tumor-infiltrating T cells, and the IHC score of SLAMF7 was positively correlated with CD3 (r=0.85, p<0.001). CONCLUSION SLAMF7 is expressed in the interstitial components of clinical OC tissue, and higher SLAMF7 expression indicated a favorable prognosis for patients with OC. Additionally, SLAMF7 is involved in T-cell immune infiltration in OC.
Collapse
MESH Headings
- Humans
- Female
- Signaling Lymphocytic Activation Molecule Family/genetics
- Signaling Lymphocytic Activation Molecule Family/metabolism
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Prognosis
- Lymphocytes, Tumor-Infiltrating/immunology
- Middle Aged
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Up-Regulation
- Aged
- Gene Expression Regulation, Neoplastic
- Kaplan-Meier Estimate
- Adult
- Immunohistochemistry
Collapse
Affiliation(s)
- Yalong Deng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Zhang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyuan Dai
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Xu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, Jiangxi, China.
| |
Collapse
|
2
|
Lingel H, Fischer L, Remstedt S, Kuropka B, Philipsen L, Han I, Sander JE, Freund C, Arra A, Brunner-Weinzierl MC. SLAMF7 (CD319) on activated CD8 + T cells transduces environmental cues to initiate cytotoxic effector cell responses. Cell Death Differ 2024:10.1038/s41418-024-01399-y. [PMID: 39390117 DOI: 10.1038/s41418-024-01399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
CD8+ T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8+ T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8+ T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8+ T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8+ T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8+ T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.
Collapse
Affiliation(s)
- Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Fischer
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sven Remstedt
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Multi-parametric bioimaging and cytometry (MPBIC) core facility, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Cellular and Molecular Immunology, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Irina Han
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jan-Erik Sander
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
3
|
Zhu M, Wu Y, Zhu T, Chen J, Chen Z, Ding H, Tan S, He J, Zeng Q, Huang X. Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity. Cancer Immunol Res 2024; 12:1007-1021. [PMID: 38819238 DOI: 10.1158/2326-6066.cir-23-1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.
Collapse
Affiliation(s)
- Manman Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Kingcell Regenerative Medicine (Guangdong) Co., Zhuhai, China
| | - Hanxi Ding
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyi Tan
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
Shu L, Xu H, Ji J, Xu Y, Dong Z, Wu Y, Guo Y. Long-Term Accumulation of T Cytotoxic 1, T Cytotoxic 17, and T Cytotoxic 17/1 Cells in the Brain Contributes to Microglia-Mediated Chronic Neuroinflammation After Ischemic Stroke. Neuromolecular Med 2024; 26:17. [PMID: 38684592 DOI: 10.1007/s12017-024-08786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Post-stroke neuroinflammation affects the damage and recovery of neurological functions. T cells including CD8+ T cells were present in the ipsilateral hemisphere in the subacute and late phases of ischemic stroke. However, the potential roles of CD8+ T cell subsets in the progression of neuroinflammation have not been characterized. In the current mouse transient middle cerebral artery occlusion model, we investigated the existence of CD8+ T cell subsets in the ipsilateral hemisphere in the subacute and late phases of stroke. We found that ipsilateral CD8+ T cells were present on post-stroke day 3 and increased on post-stroke day 30. The day-3 ipsilateral CD8+ T cells predominantly produced interferon-γ (IFN-γ), while the day-30 ipsilateral CD8+ T cells co-expressed IFN-γ and interleukin-17A (IL-17A). In addition, evaluation of cytokines and transcription factors of the day-30 ipsilateral CD8+ T cells revealed the presence of T cytotoxic 1 (Tc1), T cytotoxic 17 (Tc17), and T cytotoxic 17/1 (Tc17/1) cells. Furthermore, based on the expression of a series of chemokine/cytokine receptors, viable ipsilateral Tc1, Tc17, and Tc17.1 cells were identified and enriched from the day-30 ipsilateral CD8+ T cells, respectively. Co-culture of microglia with ipsilateral Tc1, Tc17, or Tc17.1 cells indicated that the three CD8+ T cell subsets up-regulated the expression of pro-inflammatory mediators by microglia, with Tc17.1 cells being the most potent cell in doing so. Collectively, this study sheds light on the contributions of Tc1, Tc17, and Tc17.1 cells to long-term neuroinflammation after ischemic stroke.
Collapse
Affiliation(s)
- Long Shu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- The Department of Neurology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443000, Hubei Province, China
| | - Hui Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiale Ji
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuhan Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Ziyue Dong
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuchen Wu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yijing Guo
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
5
|
Lobão B, Lourenço D, Giga A, Mendes-Bastos P. From PsO to PsA: the role of T RM and Tregs in psoriatic disease, a systematic review of the literature. Front Med (Lausanne) 2024; 11:1346757. [PMID: 38405187 PMCID: PMC10884248 DOI: 10.3389/fmed.2024.1346757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Psoriasis (PsO) is a chronic skin condition driven by immune mediators like TNFα, INFγ, IL-17, and IL-23. Psoriatic arthritis (PsA) can develop in PsO patients. Although psoriatic lesions may apparently resolve with therapy, subclinical cutaneous inflammation may persist. The role of tissue-resident memory T-cells (TRM), and regulatory T cells (Tregs) that also contribute to chronic inflammation are being explored in this context. This systematic review explores TRM and Tregs in psoriatic disease (PsD) and its progression. Methods A systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed using Pubmed® and Web of Science™ databases on June 3rd 2023, using patient/population, intervention, comparison, and outcomes (PICO) criteria limited to the English language. Results A total of 62 reports were identified and included. In PsO, chronic inflammation is driven by cytokines including IL-17 and IL-23, and cellular mediators such as CD8+ and CD4+ T cells. TRM contributes to local inflammation, while Tregs may be dysfunctional in psoriatic skin lesions. Secukinumab and guselkumab, which target IL-17A and the IL-23p19 subunit, respectively, have different effects on CD8+ TRM and Tregs during PsO treatment. Inhibition of IL-23 may provide better long-term results due to its impact on the Treg to CD8+ TRM ratio. IL-23 may contribute to inflammation persisting even after treatment. In PsA, subclinical enthesitis is perceived as an early occurence, and Th17 cells are involved in this pathogenic process. Recent EULAR guidelines highlight the importance of early diagnosis and treatment to intercept PsA. In PsA, CD8+ TRM cells are present in synovial fluid and Tregs are reduced in peripheral blood. The progression from PsO to PsA is marked by a shift in immune profiles, with specific T-cells subsets playing key roles in perpetuating inflammation. Early intervention targeting TRM cells may hold promising, but clinical studies are limited. Ongoing studies such as IVEPSA and PAMPA aim to improve our knowledge regarding PsA interception in high-risk PsO patients, emphasizing the need for further research in this area. Conclusion Early intervention is crucial for PsO patients at high risk of PsA; T cells, particularly type 17 helper T cells, and CD8+ cells are key in the progression from PsO-to-PsA. Early targeting of TRM in PsD shows promise but more research is needed.
Collapse
Affiliation(s)
- Bárbara Lobão
- Instituto Português de Reumatologia, Lisboa, Portugal
- Centro Hospitalar de Setúbal, Setúbal, Portugal
| | | | - Ana Giga
- Janssen Portugal, Oeiras, Portugal
| | | |
Collapse
|
6
|
Myachikova V, Kudryavtsev I, Rubinstein A, Aquino A, Isakov D, Golovkin A, Maslyanskiy A. Deep Immunophenotyping of Circulating T and B Cells in Relapsing Adult-Onset Still's Disease. Curr Issues Mol Biol 2024; 46:1177-1191. [PMID: 38392193 PMCID: PMC10887416 DOI: 10.3390/cimb46020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Adult-onset Still's disease (AOSD) is a complex systemic inflammatory disorder, categorized as an 'IL-1 driven' inflammasomapathy. Despite this, the interaction between T and B cells remains poorly understood. We conducted a study, enrolling 7 patients with relapsing AOSD and 15 healthy control subjects, utilizing deep flow cytometry analysis to examine peripheral blood T- and B-cell subsets. T-cell and B-cell subsets were significantly altered in patients with AOSD. Within CD4+ T cells, Th2 cells were decreased. Additionally, Th17 cell and follicular Th cell subsets were altered within CD45RA-CD62L+ and CD45RA-CD62L- Th cells in patients with AOSD compared to healthy controls. We identified changes in CD8+ T cell maturation and 'polarization' in AOSD patients, with an elevated presence of the TEMRA CD8+ T cell subset. Furthermore, the percentage of Tc1 cells was decreased, while the frequency of CCR6-CXCR3- Tc2 cells was elevated. Finally, we determined that the frequency of CD5+CD27- B cells was dramatically decreased in patients with AOSD compared to healthy controls. Further investigations on a large group of patients with AOSD are required to evaluate these adaptive immunity cells in the disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Myachikova
- Rheumatology and Immunopathology Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
- Autoimmune and Autoinflammatory Diseases Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
| | - Igor Kudryavtsev
- Autoimmune and Autoinflammatory Diseases Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
- Laboratory of Cellular Immunology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Artem Rubinstein
- Autoimmune and Autoinflammatory Diseases Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
- Laboratory of Cellular Immunology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Arthur Aquino
- Autoimmune and Autoinflammatory Diseases Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
| | - Dmitry Isakov
- Department of Immunology, First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Alexey Golovkin
- Autoimmune and Autoinflammatory Diseases Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
| | - Alexey Maslyanskiy
- Rheumatology and Immunopathology Research Laboratory, Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, 197341 St. Petersburg, Russia
- Scientific, Clinical and Educational Centre of Gastroenterology and Hepatology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Wang Y, Mei X, Lin Z, Yang X, Cao J, Zhong J, Wang J, Cheng L, Wang Z. Virus infection pattern imprinted and diversified the differentiation of T-cell memory in transcription and function. Front Immunol 2024; 14:1334597. [PMID: 38264657 PMCID: PMC10803622 DOI: 10.3389/fimmu.2023.1334597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Memory T (Tm) cells are a subpopulation of immune cells with great heterogeneity. Part of this diversity came from T cells that were primed with different viruses. Understanding the differences among different viral-specific Tms will help develop new therapeutic strategies for viral infections. Methods In this study, we compared the transcriptome of Tm cells that primed with CMV, EBV and SARS-CoV-2 with single-cell sequencing and studied the similarities and differences in terms of subpopulation composition, activation, metabolism and transcriptional regulation. Results We found that CMV is marked by plentiful cytotoxic Temra cells, while EBV is more abundant in functional Tem cells. More importantly, we found that CD28 and CTLA4 can be used as continuous indicators to interrogate the antiviral ability of T cells. Furthermore, we proposed that REL is a main regulatory factor for CMV-specific T cells producing cytokines and plays an antiviral role. Discussion Our data gives deep insight into molecular characteristics of Tm subsets from different viral infection, which is important to understand T cell immunization. Furthermore, our results provide basic background knowledges for T cell based vaccine development in future.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jinpeng Cao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Cheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Gordon H, Wichmann K, Lewis A, Sanders T, Wildemann M, Hoti I, Hornsby E, Kok KB, Silver A, Lindsay JO, Stagg AJ. Human Intestinal Dendritic Cells Can Overcome Retinoic Acid Signaling to Generate Proinflammatory CD4 T Cells with Both Gut and Skin Homing Properties. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:96-106. [PMID: 37955427 DOI: 10.4049/jimmunol.2300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023]
Abstract
Retinoic acid, produced by intestinal dendritic cells (DCs), promotes T cell trafficking to the intestinal mucosa by upregulating α4β7 integrin and inhibiting the generation of cutaneous leukocyte Ag (CLA) required for skin entry. In the present study, we report that activation of human naive CD4 T cells in an APC-free system generates cells expressing α4β7 alone; in contrast, activation by intestinal DCs that produce retinoic acid and induce high levels of α4β7 also results in CLA expression, generating CLA+α4β7+ "dual tropic" cells, with both gut and skin trafficking potential, that also express high levels of α4β1 integrin. DC generation of CLA+α4β7+ T cells is associated with upregulation of FUT7, a fucosyltransferase involved in CLA generation; requires cell contact; and is enhanced by IL-12/IL-23. The blood CD4+ T cell population contains CLA+α4β7+ cells, which are significantly enriched for cells capable of IFN-γ, IL-17, and TNF-α production compared with conventional CLA-α4β7+ cells. Dual tropic lymphocytes are increased in intestinal tissue from patients with Crohn's disease, and single-cell RNA-sequencing analysis identifies a transcriptionally distinct cluster of FUT7-expressing cells present only in inflamed tissue; expression of genes associated with cell proliferation suggests that these cells are undergoing local activation. The expression of multiple trafficking molecules by CLA+α4β7+ T cells can enable their recruitment by alternative pathways to both skin and gut; they may contribute to both intestinal and cutaneous manifestations of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hannah Gordon
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Katherine Wichmann
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Theodore Sanders
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Martha Wildemann
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Inva Hoti
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Eve Hornsby
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - K Bel Kok
- Department of Gastroenterology, Barts Health NHS Trust, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
- Department of Gastroenterology, Barts Health NHS Trust, London, United Kingdom
| | - Andrew J Stagg
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Sabat R, Gudjonsson JE, Brembilla NC, van Straalen KR, Wolk K. Biology of Interleukin-17 and Novel Therapies for Hidradenitis Suppurativa. J Interferon Cytokine Res 2023; 43:544-556. [PMID: 37824200 DOI: 10.1089/jir.2023.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Skin disorders affect ∼40% of the human population. One of the most debilitating cutaneous disorders is Hidradenitis suppurativa (HS), a noncommunicable chronic inflammatory disease with an estimated global prevalence of 0.4% to 2.5%. In January 2011, high levels of IL-17 were discovered in skin lesions of HS patients. In the following years, translational and clinical research led to a better understanding of the pathogenesis of HS. In June 2023, more than 12 years after the initial note, secukinumab, an anti-IL-17A monoclonal antibody, was approved for the treatment of moderate to severe HS. This is the next milestone in improving the treatment of these patients after the approval of the anti-TNF-α monoclonal antibody adalimumab in 2015. In this review article, we present the IL-17 pathway in HS and discuss the use of secukinumab as a therapeutic option for this disease. Our review starts with a description of the epidemiology, clinical features, etiology, and pathogenesis of HS. An overview of the IL-17/IL-17 receptor system in general and a detailed description of the known facts about the expression and action of IL-17 in HS follow. Afterward, we consider the results of clinical trials evaluating the safety and efficacy of IL-17 inhibitors in HS. Finally, a comparison is made between secukinumab and adalimumab and the characteristics of the patients that may be particularly suitable for each of these biologics are described.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johann Eli Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Kelsey R van Straalen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
11
|
Liu J, Peng H, Yu T, Huang Y, Tan N, Pang L, Wu Y, Wang L. Increased SLAMF7 +CD8 + T cells are associated with the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreatology 2023; 23:767-776. [PMID: 37661465 DOI: 10.1016/j.pan.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IgG4-related autoimmune pancreatitis (AIP) is considered to be a T cell-mediated autoimmune disease. However, CD8+ T cells have only received brief mention, and have yet to be completely studied. The study aimed to investigate the expression of signaling lymphocytic activation molecule family 7 (SLAMF7) on CD8+ T cells and the features of SLAMF7+CD8+ T cells in MRL/Mp mice with AIP. METHODS A murine model of AIP was established by intraperitoneal injection with polyinosinic:polycytidylic acid (poly I:C) for 8 weeks. Dexamethasone treatment was daily administrated for the last 2 weeks during a 6-week course of poly I:C. SLAMF7 expression on CD8+ T cells in the spleen and pancreas was detected by flow cytometry. Granzyme B (GZMB) and cytokines including IFN-γ, TNF-α, and IL-2, were monitored in an in vitro T cell activation assay. Dexamethasone suppression assays were performed to downregulate SLAMF7 expression on T cells upon T cell receptor stimulation. RESULTS AIP in MRL/Mp mice was induced by repeated intraperitoneal administration of poly I:C and CD8+ T cells were increased in the inflamed pancreas. SLAMF7+CD8+ T cells were elevated in the spleen and pancreas of AIP mice. SLAMF7+CD8+ T subsets produced more GZMB, IFN-γ, TNF-α and IL-2 than SLAMF7-CD8+ T subsets. Dexamethasone treatment ameliorated pancreatic inflammatory and fibrosis of AIP. Dexamethasone could downregulate SLAMF7+CD8+ T cells and reduce GZMB, IFN-γ and TNF-α levels both in vitro and in vivo. CONCLUSIONS Increased SLAMF7+CD8+ T cells exhibit enhanced cytotoxicity and cytokines secretion capacity, which may be involved in the pathogenesis of AIP.
Collapse
Affiliation(s)
- Jia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Peng
- Department of Pathology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tingfeng Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanlin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Pang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongtong Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Kudryavtsev I, Benevolenskaya S, Serebriakova M, Grigor'yeva I, Kuvardin E, Rubinstein A, Golovkin A, Kalinina O, Zaikova E, Lapin S, Maslyanskiy A. Circulating CD8+ T Cell Subsets in Primary Sjögren's Syndrome. Biomedicines 2023; 11:2778. [PMID: 37893153 PMCID: PMC10604770 DOI: 10.3390/biomedicines11102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, multiple studies have indicated that CD8+ T lymphocytes play a role in causing damage to the exocrine glands through acinar injury in primary Sjögren's syndrome (pSS). The aim of this research was to assess the imbalance of circulating CD8+ T cell subsets. We analyzed blood samples from 34 pSS patients and 34 healthy individuals as controls. We used flow cytometry to enumerate CD8+ T cell maturation stages, using as markers CD62L, CD28, CD27, CD4, CD8, CD3, CD45RA and CD45. For immunophenotyping of 'polarized' CD8+ T cell subsets, we used the following monoclonal antibodies: CXCR5, CCR6, CXCR3 and CCR4. The findings revealed that both the relative and absolute numbers of 'naïve' CD8+ T cells were higher in pSS patients compared to the healthy volunteers. Conversely, the proportions of effector memory CD8+ T cells were notably lower. Furthermore, our data suggested that among patients with pSS, the levels of cytotoxic Tc1 CD8+ T cells were reduced, while the frequencies of regulatory cytokine-producing Tc2 and Tc17 CD8+ T cells were significantly elevated. Simultaneously, the Tc1 cell subsets displayed a negative correlation with immunoglobulin G, rheumatoid factor, the Schirmer test and unstimulated saliva flow. On the other hand, the Tc2 cell subsets exhibited a positive correlation with these parameters. In summary, our study indicated that immune dysfunction within CD8+ T cells, including alterations in Tc1 cells, plays a significant role in the development of pSS.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Stanislava Benevolenskaya
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Maria Serebriakova
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Irina Grigor'yeva
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Evgeniy Kuvardin
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Artem Rubinstein
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Alexey Golovkin
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Olga Kalinina
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Ekaterina Zaikova
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Sergey Lapin
- Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation, St. Petersburg 197022, Russia
| | - Alexey Maslyanskiy
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| |
Collapse
|
13
|
Hausmann F, Ergen C, Khatri R, Marouf M, Hänzelmann S, Gagliani N, Huber S, Machart P, Bonn S. DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state detection. Genome Biol 2023; 24:212. [PMID: 37730638 PMCID: PMC10510283 DOI: 10.1186/s13059-023-03049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Single-cell sequencing provides detailed insights into biological processes including cell differentiation and identity. While providing deep cell-specific information, the method suffers from technical constraints, most notably a limited number of expressed genes per cell, which leads to suboptimal clustering and cell type identification. RESULTS Here, we present DISCERN, a novel deep generative network that precisely reconstructs missing single-cell gene expression using a reference dataset. DISCERN outperforms competing algorithms in expression inference resulting in greatly improved cell clustering, cell type and activity detection, and insights into the cellular regulation of disease. We show that DISCERN is robust against differences between batches and is able to keep biological differences between batches, which is a common problem for imputation and batch correction algorithms. We use DISCERN to detect two unseen COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper cells, with a potential role in adverse disease outcome. We utilize T cell fraction information of patient blood to classify mild or severe COVID-19 with an AUROC of 80% that can serve as a biomarker of disease stage. DISCERN can be easily integrated into existing single-cell sequencing workflow. CONCLUSIONS Thus, DISCERN is a flexible tool for reconstructing missing single-cell gene expression using a reference dataset and can easily be applied to a variety of data sets yielding novel insights, e.g., into disease mechanisms.
Collapse
Affiliation(s)
- Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Can Ergen
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Mohamed Marouf
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Pierre Machart
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Kudryavtsev I, Zinchenko Y, Serebriakova M, Akisheva T, Rubinstein A, Savchenko A, Borisov A, Belenjuk V, Malkova A, Yablonskiy P, Kudlay D, Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel) 2023; 13:2961. [PMID: 37761328 PMCID: PMC10528134 DOI: 10.3390/diagnostics13182961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The main role in the control of tuberculosis infection is played by macrophages and Th1 and CD8+ T cells. The study aimed to identify the most diagnostically significant CD8+ T cell subsets in tuberculosis patients. METHODS Peripheral blood samples from patients with clinical, radiological, and bacteriologically confirmed pulmonary tuberculosis (TB, n = 32) and healthy subjects (HC, n = 31) were collected and analyzed using 10-color flow cytometry. RESULTS The frequency of the EM4 CD3+CD8+ cells was reduced in the peripheral blood of patients with pulmonary tuberculosis, while the relative and absolute number of EM1 CD3+CD8+ cells increased compared to the control group. CD57 expression was reduced in patients with pulmonary tuberculosis on EM1, EM2, and pE1 CD3+CD8+ cells, whereas the EM3 cells had a high level of CD57 expression. The relative and absolute number of Tc2 (CCR6-CXCR3-) cells in peripheral blood in patients with pulmonary tuberculosis was increased, while the frequency of Tc1 (CCR6-CXCR3+) was decreased, compared to healthy donors. CONCLUSIONS Patients with pulmonary tuberculosis have an abnormal CD3+CD8+ cell profile and demonstrate their impaired maturation and functional activity.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Yulia Zinchenko
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
| | - Maria Serebriakova
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Tatiana Akisheva
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Artem Rubinstein
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Andrei Savchenko
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Alexandr Borisov
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Vasilij Belenjuk
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Anna Malkova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Piotr Yablonskiy
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St-Petersburg, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| |
Collapse
|
15
|
van der Ploeg EK, Krabbendam L, Vroman H, van Nimwegen M, de Bruijn MJW, de Boer GM, Bergen IM, Kool M, Tramper-Standers GA, Braunstahl GJ, Huylebroeck D, Hendriks RW, Stadhouders R. Type-2 CD8 + T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat Commun 2023; 14:5137. [PMID: 37612281 PMCID: PMC10447424 DOI: 10.1038/s41467-023-40820-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
CD4+ T helper 2 (Th2) cells and group 2 innate lymphoid cells are considered the main producers of type-2 cytokines that fuel chronic airway inflammation in allergic asthma. However, CD8+ cytotoxic T (Tc) cells - critical for anti-viral defense - can also produce type-2 cytokines (referred to as 'Tc2' cells). The role of Tc cells in asthma and virus-induced disease exacerbations remains poorly understood, including which micro-environmental signals and cell types promote Tc2 cell formation. Here we show increased circulating Tc2 cell abundance in severe asthma patients, reaching peak levels during exacerbations and likely emerging from canonical IFNγ+ Tc cells through plasticity. Tc2 cell abundance is associated with increased disease burden, higher exacerbations rates and steroid insensitivity. Mouse models of asthma recapitulate the human disease by showing extensive type-2 skewing of lung Tc cells, which is controlled by conventional type-1 dendritic cells and IFNγ. Importantly, we demonstrate that the alarmin interleukin-33 (IL-33) critically promotes type-2 cytokine production by lung Tc cells in experimental allergic airway inflammation. Our data identify Tc cells as major producers of type-2 cytokines in severe asthma and during exacerbations that are remarkably sensitive to alterations in their inflammatory tissue micro-environment, with IL-33 emerging as an important regulator of Tc2 formation.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lisette Krabbendam
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Ingrid M Bergen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gerdien A Tramper-Standers
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Neonatology, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
17
|
Zhang Y, Zhang Q, Han X, Han L, Wang T, Hu J, Li L, Ding Z, Shi X, Qian X. SLAMF8, a potential new immune checkpoint molecule, is associated with the prognosis of colorectal cancer. Transl Oncol 2023; 31:101654. [PMID: 36931016 PMCID: PMC10036734 DOI: 10.1016/j.tranon.2023.101654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs), such as programmed cell death 1 (PD-1) monoclonal antibodies (mAbs), have revolutionized the treatment of malignant tumors. Therefore, the number of studies aiming to screen and identify new immune checkpoint molecules for antitumor immunotherapy is increasing. Signaling lymphocytic activation molecule (SLAM) family members are mainly expressed by and regulate the functions of immune cells. Recent studies have shown that several SLAM family members are involved in the regulation of the tumor immune microenvironment and are promising targets for antitumor immunotherapy. Signaling lymphocytic activation molecule family member 8 (SLAMF8) is a type I cell surface glycoprotein and is encoded on chromosome 1q21. To further illustrate the clinical value of SLAMF8 in colorectal cancer (CRC), we retrospectively analyzed the relationship between SLAMF8 expression and the prognosis of CRC patients and the associations between SLAMF8 expression and the expression levels of other SLAM family members and other classic immune checkpoint molecules using The Cancer Genome Atlas (TCGA) data, RNA sequencing data, tissue immunohistochemistry staining, and systematic follow-up analysis. Here, high SLAMF8 expression was associated with poor overall survival (OS) in CRC. The mRNA expression level of SLAMF8 was positively correlated with the expression levels of multiple classic immune checkpoints and other SLAM family members. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the pathways enriched in CRC tissues with high SLAMF8 expression were associated with the regulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yaping Zhang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Qun Zhang
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xingzhi Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lu Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Wang
- Department of Pathology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jing Hu
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Li Li
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhou Ding
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiao Shi
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
18
|
Zhang S, Zhou Y, Yang P, Jia S, Peng C, Hu H, Liu W. Characterization of pathogenic synovial IL-17A-producing CD8 + T cell subsets in collagen-induced arthritis. Cell Immunol 2023; 383:104655. [PMID: 36516652 DOI: 10.1016/j.cellimm.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Using a murine collagen-induced arthritis model, we characterized the heterogeneity of synovial CD8+ T cells based on the expression of chemokine receptors, cytokines, and nuclear transcription factors. Four subsets, i.e. CXCR3-CCR4- cells, CXCR3+CCR4- cells, CXCR3+CCR4+ cells, and CXCR3-CCR4+ cells, were present in synovial CD8+CD62L-CCR6+IL-23R+CCR10- T cells. CXCR3-CCR4- cells belonged to exhausted CD8+ T cells. CXCR3+CCR4- cells were Tc17.1 cells expressing both IL-17A and IFN-γ. CXCR3+CCR4+ cells were transitional Tc17.1 cells expressing IL-17A but lower IFN-γ, and CXCR3-CCR4+ cells were Tc17 cells expressing IL-17A but no IFN-γ. Transitional Tc17.1 cells can differentiate into Tc17.1 cells in vitro under the instruction of IL-12. Tc17.1 cells and transitional Tc17.1 cells strongly induced the expression of pro-inflammatory mediators in synovial fibroblasts, whereas Tc17 cells were less potent in doing so. IFN-γ was involved in the higher pathogenicity of Tc17.1 cells and transitional Tc17.1 cells on synovial fibroblasts. This study expands the understanding of Tc17 biology by unveiling the phenotypic and functional heterogeneity of synovial IL-17A-expressing CD8+ T cells. These heterogeneous IL-17A-expressing CD8+ T cells could be novel therapeutic targets in future arthritis treatment.
Collapse
Affiliation(s)
- Song Zhang
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Yanbo Zhou
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Pu Yang
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Shuo Jia
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Cheng Peng
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Haiqing Hu
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Wei Liu
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China.
| |
Collapse
|
19
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
20
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
21
|
Meyer-Arndt L, Braun J, Fauchere F, Vanshylla K, Loyal L, Henze L, Kruse B, Dingeldey M, Jürchott K, Mangold M, Maraj A, Braginets A, Böttcher C, Nitsche A, de la Rosa K, Ratswohl C, Sawitzki B, Holenya P, Reimer U, Sander LE, Klein F, Paul F, Bellmann-Strobl J, Thiel A, Giesecke-Thiel C. SARS-CoV-2 mRNA vaccinations fail to elicit humoral and cellular immune responses in patients with multiple sclerosis receiving fingolimod. J Neurol Neurosurg Psychiatry 2022; 93:960-971. [PMID: 35835468 PMCID: PMC9380499 DOI: 10.1136/jnnp-2022-329395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-β, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florent Fauchere
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Beate Kruse
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuela Dingeldey
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karsten Jürchott
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ardit Maraj
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andre Braginets
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christoph Ratswohl
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
22
|
Kudryavtsev IV, Arsentieva NA, Korobova ZR, Isakov DV, Rubinstein AA, Batsunov OK, Khamitova IV, Kuznetsova RN, Savin TV, Akisheva TV, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Sharapova MA, Pevtsov DE, Totolian AA. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses 2022; 14:1906. [PMID: 36146713 PMCID: PMC9504186 DOI: 10.3390/v14091906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptive antiviral immune response requires interaction between CD8+ T cells, dendritic cells, and Th1 cells for controlling SARS-CoV-2 infection, but the data regarding the role of CD8+ T cells in the acute phase of COVID-19 and post-COVID-19 syndrome are still limited. METHODS . Peripheral blood samples collected from patients with acute COVID-19 (n = 71), convalescent subjects bearing serum SARS-CoV-2 N-protein-specific IgG antibodies (n = 51), and healthy volunteers with no detectable antibodies to any SARS-CoV-2 proteins (HC, n = 46) were analyzed using 10-color flow cytometry. RESULTS Patients with acute COVID-19 vs. HC and COVID-19 convalescents showed decreased absolute numbers of CD8+ T cells, whereas the frequency of CM and TEMRA CD8+ T cells in acute COVID-19 vs. HC was elevated. COVID-19 convalescents vs. HC had increased naïve and CM cells, whereas TEMRA cells were decreased compared to HC. Cell-surface CD57 was highly expressed by the majority of CD8+ T cells subsets during acute COVID-19, but convalescents had increased CD57 on 'naïve', CM, EM4, and pE1 2-3 months post-symptom onset. CXCR5 expression was altered in acute and convalescent COVID-19 subjects, whereas the frequencies of CXCR3+ and CCR4+ cells were decreased in both patient groups vs. HC. COVID-19 convalescents had increased CCR6-expressing CD8+ T cells. Moreover, CXCR3+CCR6- Tc1 cells were decreased in patients with acute COVID-19 and COVID-19 convalescents, whereas Tc2 and Tc17 levels were increased compared to HC. Finally, IL-27 negatively correlated with the CCR6+ cells in acute COVID-19 patients. CONCLUSIONS We described an abnormal CD8+ T cell profile in COVID-19 convalescents, which resulted in lower frequencies of effector subsets (TEMRA and Tc1), higher senescent state (upregulated CD57 on 'naïve' and memory cells), and higher frequencies of CD8+ T cell subsets expressing lung tissue and mucosal tissue homing molecules (Tc2, Tc17, and Tc17.1). Thus, our data indicate that COVID-19 can impact the long-term CD8+ T cell immune response.
Collapse
Affiliation(s)
- Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Zoia R. Korobova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Dmitry V. Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Irina V. Khamitova
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Raisa N. Kuznetsova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tikhon V. Savin
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tatiana V. Akisheva
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Smorodintsev Research Institute of Influenza, Prof. Popov St. 15/17, 197376 Saint Petersburg, Russia
| | - Aleksandra A. Lebedeva
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Evgeny A. Vorobyov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Snejana V. Vorobyova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Alexander N. Kulikov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Maria A. Sharapova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Dmitrii E. Pevtsov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| |
Collapse
|
23
|
Activated-memory T cells influence naïve T cell fate: a noncytotoxic function of human CD8 T cells. Commun Biol 2022; 5:634. [PMID: 35768564 PMCID: PMC9243096 DOI: 10.1038/s42003-022-03596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
T cells are endowed with the capacity to sense their environment including other T cells around them. They do so to set their numbers and activation thresholds. This form of regulation has been well-studied within a given T cell population - i.e., within the naïve or memory pool; however, less is known about the cross-talk between T cell subsets. Here, we tested whether memory T cells interact with and influence surrounding naïve T cells. We report that human naïve CD8 T cells (TN) undergo phenotypic and transcriptional changes in the presence of autologous activated-memory CD8 T cells (TMem). Following in vitro co-culture with activated central memory cells (TCM), ~3% of the TN acquired activation/memory canonical markers (CD45RO and CD95) in an MHC-I dependent-fashion. Using scRNA-seq, we also observed that ~3% of the TN acquired an activated/memory signature, while ~84% developed a unique activated transcriptional profile hybrid between naïve and activated memory. Pseudotime trajectory analysis provided further evidence that TN with an activated/memory or hybrid phenotype were derived from TN. Our data reveal a non-cytotoxic function of TMem with potential to activate autologous TN into the activated/memory pool. These findings may have implications for host-protection and autoimmunity that arises after vaccination, infection or transplantation.
Collapse
|
24
|
Blaye C, Darbo É, Debled M, Brouste V, Vélasco V, Pinard C, Larmonier N, Pellegrin I, Tarricone A, Arnedos M, Commeny J, Bonnefoi H, Larmonier C, MacGrogan G. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open 2022; 7:100502. [PMID: 35759853 PMCID: PMC9434232 DOI: 10.1016/j.esmoop.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background When triple-negative breast cancer (TNBC) patients have residual disease after neoadjuvant chemotherapy (NACT), they have a high risk of metastatic relapse. With immune infiltrate in TNBC being prognostic and predictive of response to treatment, our aim was to develop an immunologic transcriptomic signature using post-NACT samples to predict relapse. Materials and methods We identified 115 samples of residual tumors from post-NACT TNBC patients. We profiled the expression of 770 genes related to cancer microenvironment using the NanoString PanCancer IO360 panel to develop a prognostic transcriptomic signature, and we describe the immune microenvironments of the residual tumors. Results Thirty-eight (33%) patients experienced metastatic relapse. Hierarchical clustering separated patients into five clusters with distinct prognosis based on pathways linked to immune activation, epithelial-to-mesenchymal transition and cell cycle. The immune microenvironment of the residual disease was significantly different between patients who experienced relapse compared to those who did not, the latter having significantly more effector antitumoral immune cells, with significant differences in lymphoid subpopulations. We selected eight genes linked to immunity (BLK, GZMM, CXCR6, LILRA1, SPIB, CCL4, CXCR4, SLAMF7) to develop a transcriptomic signature which could predict relapse in our cohort. This signature was validated in two external cohorts (KMplot and METABRIC). Conclusions Lack of immune activation after NACT is associated with a high risk of distant relapse. We propose a prognostic signature based on immune infiltrate that could lead to targeted therapeutic strategies to improve patient prognosis. Infiltrate of cytotoxic cells is higher in the residual disease of TNBC patients who will not experience metastatic relapse. Underexpression of immune-related pathways is associated with metastatic relapse in residual disease of TNBC patients. An immune gene-based signature can predict metastatic relapse in TNBC patients after NACT.
Collapse
Affiliation(s)
- C Blaye
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France; Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - É Darbo
- Univ. Bordeaux, INSERM U1218, ACTION Laboratory, Bordeaux, France
| | - M Debled
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - V Brouste
- Departments of Clinical Research and Medical Information, Bordeaux, France
| | - V Vélasco
- Biopathology, Institut Bergonié, Bordeaux, France
| | - C Pinard
- Pathology Laboratory, University Hospital of Martinique, Fort de France
| | - N Larmonier
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France; Univ. Bordeaux, Bordeaux, France
| | - I Pellegrin
- Service d'Immunologie et Immunogénétique, University Hospital of Bordeaux, Bordeaux, France; Centre de Ressources Biologiques Plurithématique, University Hospital of Bordeaux, Bordeaux, France
| | - A Tarricone
- Service d'Immunologie et Immunogénétique, University Hospital of Bordeaux, Bordeaux, France
| | - M Arnedos
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - J Commeny
- Department of Surgery, Institut Bergonié, Bordeaux, France
| | - H Bonnefoi
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France; Univ. Bordeaux, INSERM U1218, ACTION Laboratory, Bordeaux, France; Univ. Bordeaux, Bordeaux, France
| | - C Larmonier
- Biopathology, Institut Bergonié, Bordeaux, France
| | - G MacGrogan
- Univ. Bordeaux, INSERM U1218, ACTION Laboratory, Bordeaux, France; Biopathology, Institut Bergonié, Bordeaux, France.
| |
Collapse
|
25
|
Džopalić T, Tomić S, Bekić M, Vučević D, Mihajlović D, Eraković M, Čolić M. Ex vivo study of IL-6 expression and function in immune cell subsets from human periapical lesions. Int Endod J 2022; 55:480-494. [PMID: 35150455 DOI: 10.1111/iej.13704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
AIM Even though IL-6 is a key inflammatory cytokine in periapical lesions (PLs), its function in stable periapical disease is unknown. Therefore, the aim of this study was to investigate following: first, the ex vivo production of IL-6 by clinically different PLs; next, subsets of immune cells expressing IL-6 in PLs according to their inflammatory status and finally, modulatory effect of IL-6 on T-cell cytokine production in cell cultures. METHODOLOGY Inflammatory cells were isolated from a total of 95 human PLs. Detection of IL-6+ cells within the myeloid and lymphoid populations was performed by multicolour flow cytometry. ELISA and FlowCytomix Microbeads Assay were used to measure cytokine levels in culture supernatants. To study the role of IL-6 in PLs, mononuclear cells (MNC) from symptomatic (Sy) or asymptomatic (Asy) PLs were treated with IL-6 or Tocilizumab, an IL-6R blocking antibody. The differences between groups were tested by unpaired t-test, Mann-Whitney or Friedman tests. RESULTS The levels of IL-6 in PL MNC culture supernatants were significantly higher compared to total PL cells and PL granulocytes (p<0.001). MNC from Sy PLs produced significantly hihger levels of IL-6 than MNC from Asy PLs (p<0.001). Flow cytometry analysis showed that NKT cells, CD8+ T cells and M2 macrophages (MØ), were dominant IL-6+ cells, in contrast to CD4+ T cells. However, CD8+ and CD4+ T cells contributed the most to IL-6 production. IL-6hi producing MNC cultures had higher levels of Th1 (IFN-γ), Th17 (IL-17A), Tfh (IL-21) and RANKL, whereas Th2 (IL-4) and Tregs cytokines (IL-10, TGF-β) were lower, compared to IL-6low producing cultures. Exogenous IL-6 stimulated 17A, IL-21 and RANKL, independently of PL activation status, but decreased IFN-γ, IL-4 and IL-33 levels in IL-6hi producing cultures. Tocilizumab increased IL-10 and TGF-β in IL-6low producing cultures. All differences were p<0.05. CONCLUSIONS Most immune cells from Sy PLs expressed higher levels of IL-6 compared to Asy PLs, which correlated with IL-6 production in culture. Analysis of cytokines suggested a dominant pro-inflammatory T-cell response and osteodestructive function of IL-6 in PLs judging by Th17/Tfh cell activation, Tregs inhibition and increased RANKL/OPG ratio. Excessive IL-6 production decreased Th1/Th2 responses.
Collapse
Affiliation(s)
- T Džopalić
- University of Niš, Medical Faculty, Niš, Serbia.,University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - S Tomić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia
| | - M Bekić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia
| | - D Vučević
- University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - D Mihajlović
- University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - M Eraković
- Clinic for Stomatology, Military Medical Academy, Belgrade, Serbia
| | - M Čolić
- University of Belgrade, Institute for the Application of Nuclear Energy, Belgrade, Serbia.,University of East Sarajevo, Medical Faculty Foča, Foča R. Srpska Bosnia and Herzegovina
| |
Collapse
|
26
|
Zandhuis ND, Nicolet BP, Wolkers MC. RNA-Binding Protein Expression Alters Upon Differentiation of Human B Cells and T Cells. Front Immunol 2021; 12:717324. [PMID: 34867946 PMCID: PMC8635512 DOI: 10.3389/fimmu.2021.717324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
B cells and T cells are key players in the defence against infections and malignancies. To exert their function, B cells and T cells differentiate into effector and memory cells. Tight regulation of these differentiation processes is key to prevent their malfunction, which can result in life-threatening disease. Lymphocyte differentiation relies on the appropriate timing and dosage of regulatory molecules, and post-transcriptional gene regulation (PTR) is a key player herein. PTR includes the regulation through RNA-binding proteins (RBPs), which control the fate of RNA and its translation into proteins. To date, a comprehensive overview of the RBP expression throughout lymphocyte differentiation is lacking. Using transcriptome and proteome analyses, we here catalogued the RBP expression for human B cells and T cells. We observed that even though the overall RBP expression is conserved, the relative RBP expression is distinct between B cells and T cells. Differentiation into effector and memory cells alters the RBP expression, resulting into preferential expression of different classes of RBPs. For instance, whereas naive T cells express high levels of translation-regulating RBPs, effector T cells preferentially express RBPs that modulate mRNA stability. Lastly, we found that cytotoxic CD8+ and CD4+ T cells express a common RBP repertoire. Combined, our study reveals a cell type-specific and differentiation-dependent RBP expression landscape in human lymphocytes, which will help unravel the role of RBPs in lymphocyte function.
Collapse
Affiliation(s)
- Nordin D. Zandhuis
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Benoit P. Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Monika C. Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
27
|
CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep 2021; 36:109696. [PMID: 34525366 PMCID: PMC8466141 DOI: 10.1016/j.celrep.2021.109696] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
CD4 T cells are essential for immunity to tuberculosis because they produce cytokines, including interferon-γ. Whether CD4 T cells act as "helper" cells to promote optimal CD8 T cell responses during Mycobacterium tuberculosis is unknown. Using two independent models, we show that CD4 T cell help enhances CD8 effector functions and prevents CD8 T cell exhaustion. We demonstrate synergy between CD4 and CD8 T cells in promoting the survival of infected mice. Purified helped, but not helpless, CD8 T cells efficiently restrict intracellular bacterial growth in vitro. Thus, CD4 T cell help plays an essential role in generating protective CD8 T cell responses against M. tuberculosis infection in vitro and in vivo. We infer vaccines that elicit both CD4 and CD8 T cells are more likely to be successful than vaccines that elicit only CD4 or CD8 T cells.
Collapse
|
28
|
Multiomics Profiling and Clustering of Low-Grade Gliomas Based on the Integrated Stress Status. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5554436. [PMID: 34368351 PMCID: PMC8343268 DOI: 10.1155/2021/5554436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 07/10/2021] [Indexed: 12/30/2022]
Abstract
Background Although the prognosis of low-grade glioma is better than that of glioblastoma, there are still some groups with poor prognosis. The integrated stress response contributes to the malignant progress of tumors. As there had limited research focused on the integrated stress status in LGG, it is urgent to profile and reclassify LGG based on the integrated stress response. Methods Information of glioma patients was obtained from the Chinese Glioma Genome Atlas, The Cancer Genome Atlas, and the GSE16011 cohorts. Statistical analyses were conducted using GraphPad Prism 8 and R language. Results We summarized and quantified four types of integrated stress responses. Relationships between these four types of stress states and the clinical characteristics were analyzed in low-grade glioma. We then reclassified the patients based on these four scores and found that cluster 2 had the worst prognosis, while cluster 1 had the best prognosis. We also established an accurate integrated stress response risk signature for predicting cluster 2. We found that immune response and suppressive immune cell components were more enriched in the high-risk group. We also profiled the genomic differences between the low- and high-risk groups, including the nonmissense mutation of driver genes and the copy number variations. Conclusion Low-grade glioma patients were divided into three clusters based on the integrated stress status, with cluster 2 exhibiting malignant transformation trends. The signature adequately reflected the traits of cluster 2, while a high risk score indicated a worse prognosis and an enriched inhibitory immune microenvironment.
Collapse
|
29
|
Pritzl CJ, Daniels MA, Teixeiro E. Interplay of Inflammatory, Antigen and Tissue-Derived Signals in the Development of Resident CD8 Memory T Cells. Front Immunol 2021; 12:636240. [PMID: 34234771 PMCID: PMC8255970 DOI: 10.3389/fimmu.2021.636240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
CD8 positive, tissue resident memory T cells (TRM) are a specialized subset of CD8 memory T cells that surveil tissues and provide critical first-line protection against tumors and pathogen re-infection. Recently, much effort has been dedicated to understanding the function, phenotype and development of TRM. A myriad of signals is involved in the development and maintenance of resident memory T cells in tissue. Much of the initial research focused on the roles tissue-derived signals play in the development of TRM, including TGFß and IL-33 which are critical for the upregulation of CD69 and CD103. However, more recent data suggest further roles for antigenic and pro-inflammatory cytokines. This review will focus on the interplay of pro-inflammatory, tissue and antigenic signals in the establishment of resident memory T cells.
Collapse
Affiliation(s)
| | | | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
30
|
Mölder F, Stervbo U, Loyal L, Bacher P, Babel N, Rahmann S. Rapid T cell receptor interaction grouping with ting. Bioinformatics 2021; 37:3444-3448. [PMID: 33983394 DOI: 10.1093/bioinformatics/btab361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Clustering T cell receptor repertoire (TCRR) sequences according to antigen specificity is challenging. The previously published tool GLIPH needs several days to weeks for clustering large repertoires, making its use impractical in larger studies. In addition, the methodology used in GLIPH suffers from shortcomings, including non-determinism, potential loss of significant antigen-specific sequences or inclusion of too many unspecific sequences. RESULTS We present an algorithm for clustering TCRR sequences that scales efficiently to large repertoires. We clustered 36 real datasets with up to 62 000 unique CDR3β sequences using both an implementation of our method called ting, GLIPH and its successsor GLIPH2. While GLIPH required multiple weeks, ting only needed about one minute for the same task. GLIPH2 is comparably fast, but uses a different grouping paradigm. In addition, we found that in naïve repertoires, where no or very few antigen-specific CDR3 sequences or clusters should exist, our method indeed selects much fewer motifs and produces smaller clusters. AVAILABILITY Our method has been implemented in Python as a tool called ting. It is available from GitHub (https://github.com/FelixMoelder/ting) or PyPI under the MIT license.
Collapse
Affiliation(s)
- Felix Mölder
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, 45147 Essen, Germany.,Institute of Pathology, University of Duisburg-Essen, 45147, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, Ruhr-University Bochum, 44623 Herne, Germany
| | - Lucie Loyal
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.,Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, Ruhr-University Bochum, 44623 Herne, Germany.,Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.,Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
31
|
Trombke J, Loyal L, Braun J, Pleyer U, Thiel A, Pohlmann D. Analysis of peripheral inflammatory T cell subsets and their effector function in patients with Birdshot Retinochoroiditis. Sci Rep 2021; 11:8604. [PMID: 33883633 PMCID: PMC8060342 DOI: 10.1038/s41598-021-88013-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
Birdshot Retinochoroiditis (BSRC) is a progressive non-infectious intraocular inflammation that affects choroid and retina. Inflammatory processes have adverse effects on vision by affecting photoreceptor-bearing cells that do not regenerate. This study aimed at characterizing inflammatory CD4+ and CD8+ T cell subsets in the peripheral blood of active and inactive BSRCs. Furthermore, we correlated phenotypical and functional immunological analyses with clinical data. We observed a slight increase of terminally differentiated effector memory CD8+ T cells expressing CD45RA (TEMRA) in blood of inactive, compared to active BSRCs. Moreover, we identified a trend for a decreased population of TH2 cells and increased TH1 frequencies in active BSRCs, a typical sign of ongoing autoimmune processes. Functional assays demonstrated severe and overall impairment of effector function of both, CD4+ and CD8+ inflammatory T cells, which might reflect T cell exhaustion. Although the eye is the main site of inflammation in BSRC, we observed altered T cell subset compositions in the peripheral blood, dependent on the disease status. Our results indicate that T cells may play a major role in BSRC pathology, although our cohort size is too limited for definitve conclusions. Future studies with larger BSRCs have to be performed.
Collapse
Affiliation(s)
- Janine Trombke
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Braun
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Pleyer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominika Pohlmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
32
|
Nikolaou C, Muehle K, Schlickeiser S, Japp AS, Matzmohr N, Kunkel D, Frentsch M, Thiel A. High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. IMMUNITY & AGEING 2021; 18:20. [PMID: 33879187 PMCID: PMC8056611 DOI: 10.1186/s12979-021-00230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.
Collapse
Affiliation(s)
- Christos Nikolaou
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany. .,Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Kerstin Muehle
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Alberto Sada Japp
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|