1
|
Chung WH, Tan NSL, Kim M, Pojtanabuntoeng T, Howieson J. Exploring the functional properties and utilisation potential of mollusca shell by-products through an interdisciplinary approach. Sci Rep 2024; 14:28274. [PMID: 39550421 PMCID: PMC11569229 DOI: 10.1038/s41598-024-79595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Molluscan shellfish aquaculture contributes to 42.6% of global aquaculture production. With a continued increase in shellfish production, disposal of shell waste during processing is emerging as an environmental and financial concern. Whilst major commercial species such as Crassostrea spp. has been extensively investigated on usage of its shell, with information that are crucial for valorisation, e.g. safety and crystal polymorphs, evaluated. There is currently little understanding of utilisation opportunities of shell in several uprising Australian commercially harvested species including Akoya Oyster (Pinctada fucata), Roe's Abalone (Haliotis roei) and Greenlip Abalone (Haliotis levigata), making it challenging to identify ideal usages based on evidence-based information. Therefore, in this study, an interdisciplinary approach was employed to characterise the shells, and thereafter suggest some potential utilisation opportunities. This characterisation included crude mineral content, elemental profiling and food safety evaluation. As well, physical, chemical, and thermal stability of the shell products was assessed. TGA result suggests that all shells investigated have high thermal stability, suggesting the possibility of utilisation as a functional filler in engineering applications. Subsequent FTIR, SEM and XRD analyses identified that CaCO3 was the main compositions with up to 77.6% of it found to be aragonite. The spectacular high aragonite content compared to well-investigated Crassostrea spp. suggested an opportunity for the utilisation of refined abalone shell as a source of biomedical engineering due to its potent biocompatibility. Additionally, safety evaluations on whole shell also outlined that all investigated samples were safe when utilised as a crude calcium supplement for populations > 11 years old, which could be another viable options of utilisation. This article could underpin abalone and akoya industries actions to fully utilise existing waste streams to achieve a more sustainable future.
Collapse
Affiliation(s)
- Wing H Chung
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, 6102, Australia.
- End Food Waste Cooperative Research Centre, Wine Innovation Central Building, Level 1, Waite Campus, Urrbrae, 5064, Australia.
| | | | - Manjin Kim
- X-Ray Diffraction and Scattering Facility, John de Laeter Centre, Curtin University, Bentley, WA, 6102, Australia
| | | | - Janet Howieson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, 6102, Australia
| |
Collapse
|
2
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Zhao C, Lu H, Wang H, Liu X, Fang ZZ, Hou C, Song X. Seeding ductile nanophase in ceramic grains. MATERIALS HORIZONS 2024; 11:1908-1922. [PMID: 38334032 DOI: 10.1039/d3mh02233a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transgranular brittle fracture is the dominant failure mode of brittle materials, including ceramics and ceramic matrix composites. However, strengthening these materials without sacrificing their toughness has been a big challenge. In this study, an innovative approach is proposed to achieve coordinated strengthening and toughening of ceramics-based composites by introducing specific ductile coherent nanoparticles into ceramic grains. As an example, the WC-Co cemented tungsten carbides were used to demonstrate how this brittle material can achieve ultrahigh strength without losing toughness by seeding metallic nanoparticles inside WC grains. The mechanisms for inducing the formation and modulating the amount, size, and distribution of such nanophase within the ceramic grains were disclosed. The fraction of transgranular ruptures of the brittle ceramic phase was reduced significantly due to the presence of the ductile coherent in-grain nanoparticles. Both the strength and strain limit of the cemented carbides were remarkably increased compared to their counterparts reported in the literature. The coordinated strengthening and toughening strategy proposed in this work is applicable to a broad range of ceramics and ceramic matrix composites to obtain superior comprehensive mechanical properties.
Collapse
Affiliation(s)
- Chong Zhao
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hao Lu
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Haibin Wang
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xuemei Liu
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Zhigang Zak Fang
- Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Chao Hou
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiaoyan Song
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
4
|
López AV, Choi S, Park Y, Hanley D, Lee JW, Honza M, Bolmaro RE. Avian obligate brood parasitic lineages evolved variable complex polycrystalline structures to build tougher eggshells. iScience 2023; 26:108552. [PMID: 38144448 PMCID: PMC10746509 DOI: 10.1016/j.isci.2023.108552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Avian brood parasites and their hosts display varied egg-puncture behaviors, exerting asymmetric co-evolutionary selection pressures on eggshells' breaking strength. We investigated eggshell structural and textural characteristics that may improve its mechanical performance. Parasitic eggshell calcified layers showed complex ultra- and microstructural patterns. However, stronger parasitic eggshells are not due to lower textural severity (characterized by lower preferred crystallographic orientation, larger local grain misorientation and smaller Kearns factor), but rather to grain boundary (GB) microstructure characteristics within the eggshell outermost layer (palisade layer, PL). Accordingly, the thicker the PL and the more complex the GB pathways are, the tougher the parasitic eggshells will be. These characteristics, which we can identify as a "GB Engineering" driven co-evolutionary process, further improve eggshell breaking strength in those parasitic species that suffer relatively high frequencies of egg-puncturing by congeneric or hosts. Overall, plain textural patterns are not suitable predictors for comparing mechanical performance of bioceramic materials.
Collapse
Affiliation(s)
- Analía V. López
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Seung Choi
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Yong Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Jin-Won Lee
- Department of Biology, Kyung Hee University, Seoul 02447, South Korea
- Korea Institute of Ornithology, Kyung Hee University, Seoul 02447, South Korea
| | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Raúl E. Bolmaro
- Instituto de Física Rosario, CONICET-UNR, Rosario, Prov. de Santa Fe S2000EKF, Argentina
| |
Collapse
|
5
|
Adams A, Daval D, Baumgartner LP, Bernard S, Vennemann T, Cisneros-Lazaro D, Stolarski J, Baronnet A, Grauby O, Guo J, Meibom A. Rapid grain boundary diffusion in foraminifera tests biases paleotemperature records. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:144. [PMID: 38665181 PMCID: PMC11041775 DOI: 10.1038/s43247-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2024]
Abstract
The oxygen isotopic compositions of fossil foraminifera tests constitute a continuous proxy record of deep-ocean and sea-surface temperatures spanning the last 120 million years. Here, by incubating foraminifera tests in 18O-enriched artificial seawater analogues, we demonstrate that the oxygen isotopic composition of optically translucent, i.e., glassy, fossil foraminifera calcite tests can be measurably altered at low temperatures through rapid oxygen grain-boundary diffusion without any visible ultrastructural changes. Oxygen grain boundary diffusion occurs sufficiently fast in foraminifera tests that, under normal upper oceanic sediment conditions, their grain boundaries will be in oxygen isotopic equilibrium with the surrounding pore fluids on a time scale of <100 years, resulting in a notable but correctable bias of the paleotemperature record. When applied to paleotemperatures from 38,400 foraminifera tests used in paleoclimate reconstructions, grain boundary diffusion can be shown to bias prior paleotemperature estimates by as much as +0.86 to -0.46 °C. The process is general and grain boundary diffusion corrections can be applied to other polycrystalline biocarbonates composed of small nanocrystallites (<100 nm), such as those produced by corals, brachiopods, belemnites, and molluscs, the fossils of which are all highly susceptible to the effects of grain boundary diffusion.
Collapse
Affiliation(s)
- Arthur Adams
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Damien Daval
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38058 Grenoble, France
| | - Lukas P. Baumgartner
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Bernard
- Museum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Torsten Vennemann
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Deyanira Cisneros-Lazaro
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - Alain Baronnet
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Grauby
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Jinming Guo
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, CH−1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Rodriguez-Navarro C, Monasterio-Guillot L, Burgos-Ruiz M, Ruiz-Agudo E, Elert K. Unveiling the secret of ancient Maya masons: Biomimetic lime plasters with plant extracts. SCIENCE ADVANCES 2023; 9:eadf6138. [PMID: 37075113 PMCID: PMC10115411 DOI: 10.1126/sciadv.adf6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g., shells). To test the hypothesis that the organics could play a similar toughening role as (bio)macromolecules in calcium carbonate biominerals, we prepared plaster replicas adding polysaccharide-rich bark extracts from Copan's local trees following an ancient Maya building tradition. We show that the replicas display similar features as the organics-containing ancient Maya plasters and demonstrate that, as in biominerals, in both cases, their calcite cement includes inter- and intracrystalline organics that impart a marked plastic behavior and enhanced toughness while increasing weathering resistance. Apparently, the lime technology developed by ancient Maya, and likely other ancient civilizations that used natural organic additives to prepare lime plasters, fortuitously exploited a biomimetic route for improving carbonate binders performance.
Collapse
|
7
|
Patterns of crystal organization and calcite twin formation in planktonic, rotaliid, foraminifera shells and spines. J Struct Biol 2023; 215:107898. [PMID: 36379353 DOI: 10.1016/j.jsb.2022.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022]
Abstract
The foraminiferal order Rotaliida represents one third of the extant genera of foraminifers. The shells of these organisms are extensively used to decipher characteristics of marine ecosystems and global climate events. It was shown that shell calcite of benthic Rotaliida is twinned. We extend our previous work on microstructure and texture characterization of benthic Rotaliida and investigate shell calcite organization for planktonic rotaliid species. Based on results gained from electron backscattered diffraction (EBSD) and field emission electron microscopy (FESEM) imaging of chemically etched/fixed shell surfaces we show for the planktonic species Globigerinoides sacculifer, Pulleniatina obliquiloculata, Orbulina universa (belonging to the two main planktonic, the globigerinid and globorotaliid, clades): very extensive 60°-{001}-twinning of the calcite and describe a new and specific microstructure for the twinned crystals. We address twin and crystal morphology development from nucleation within a biopolymer template (POS) to outermost shell surfaces. We demonstrate that the calcite of the investigated planktonic Rotaliida forms through competitive growth. We complement the structural knowledge gained on the clade 1 and clade 2 species with EBSD results of Globigerinita glutinata and Candeina nitida shells (clade 3 planktonic species). The latter are significantly less twinned and have a different shell calcite microstructure. We demonstrate that the calcite of all rotaliid species is twinned, however, to different degrees. We discuss for the species of the three planktonic clades characteristics of the twinned calcite and of other systematic misorientations. We address the strong functionalization of foraminiferal calcite and indicate how the twinning affects biocalcite material properties.
Collapse
|
8
|
Deng Z, Chen L, Li L. Comparative nanoindentation study of biogenic and geological calcite. J Mech Behav Biomed Mater 2023; 137:105538. [PMID: 36343519 DOI: 10.1016/j.jmbbm.2022.105538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Biogenic minerals are often reported to be harder and tougher than their geological counterparts. However, quantitative comparison of their mechanical properties, particularly fracture toughness, is still limited. Here we provide a systematic comparison of geological and biogenic calcite (mollusk shell Atrina rigida prisms and Placuna placenta laths) through nanoindentation under both dry and 90% relative humidity conditions. Berkovich nanoindentation is used to reveal the mechanical anisotropy of geological calcite when loaded on different crystallographic planes, i.e., reduced modulus Er{104} ≥ Er{108} > Er{001} and hardness H{001} ≥ H{104} ≥ H{108}, and biogenic calcite has comparable modulus but increased hardness than geological calcite. Based on conical nanoindentation, we elucidate that plastic deformation is activated in geological calcite at the low-load regime (<20 mN), involving r{104} and f{012} dislocation slips as well as e{018} twinning, while cleavage fracture dominates under higher loads by cracking along {104} planes. In comparison, biogenic calcite tends to undergo fracture, while the intercrystalline organic interfaces contribute to damage confinement. In addition, increased humidity does not show a significant influence on the properties of geological calcite and the single-crystal A. rigida prisms, however, the laminate composite of P. placenta laths (layer thickness, ∼250-300 nm) exhibits increased toughness and decreased hardness and modulus. We believe the results of this study can provide a benchmark for future investigations on biominerals and bio-inspired materials.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Liuni Chen
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
9
|
Deng Z, Jia Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103524. [PMID: 35315243 PMCID: PMC9108615 DOI: 10.1002/advs.202103524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Indexed: 05/02/2023]
Abstract
Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio-inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio-inspired synthesis.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Zian Jia
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Ling Li
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| |
Collapse
|
10
|
Yang T, Chen H, Jia Z, Deng Z, Chen L, Peterman EM, Weaver JC, Li L. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus. Science 2022; 375:647-652. [PMID: 35143308 DOI: 10.1126/science.abj9472] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular solids (e.g., foams and honeycombs) are widely found in natural and engineering systems because of their high mechanical efficiency and tailorable properties. While these materials are often based on polycrystalline or amorphous constituents, here we report an unusual dual-scale, single-crystalline microlattice found in the biomineralized skeleton of the knobby starfish, Protoreaster nodosus. This structure has a diamond-triply periodic minimal surface geometry (lattice constant, approximately 30 micrometers), the [111] direction of which is aligned with the c-axis of the constituent calcite at the atomic scale. This dual-scale crystallographically coaligned microlattice, which exhibits lattice-level structural gradients and dislocations, combined with the atomic-level conchoidal fracture behavior of biogenic calcite, substantially enhances the damage tolerance of this hierarchical biological microlattice, thus providing important insights for designing synthetic architected cellular solids.
Collapse
Affiliation(s)
- Ting Yang
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hongshun Chen
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Liuni Chen
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Emily M Peterman
- Earth and Oceanographic Science, Bowdoin College, Brunswick, ME 04011, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Huang J, Liu Y, Liu C, Xie L, Zhang R. Heterogeneous distribution of shell matrix proteins in the pearl oyster prismatic layer. Int J Biol Macromol 2021; 189:641-648. [PMID: 34425123 DOI: 10.1016/j.ijbiomac.2021.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Shell formation in molluscan bivalves is regulated by organic matrices composed of biological macromolecules, but how these macromolecules assemble in vitro remains elusive. Prismatic layer in the pearl oyster Pinctada fucata consists of polygonal prisms enveloped by thick organic matrices. In this study, we found that the organic matrices were heterogeneously distributed, with highly acidic fractions (EDTA-soluble and EDTA-insoluble) embedded inside the prism columns, while basic EDTA-insoluble faction as inter-column framework enveloping the prisms. The intra-column matrix was enriched in aspartic acid whereas the inter-column matrix was enriched in glycine, tyrosine and phenylalanine. Moreover, the intra-column matrix contained sulfo group further contributing to its acidic property. Proteomics data showed that the intra-column proteins mainly consisted of acidic proteins, while some typical matrix proteins were absent. The absent matrix proteins such as shematrin family and KRMP family were highly basic and contained aromatic amino acids, suggesting that electric charge and hydrophobic effect might play a role in the matrix heterogeneity. Interestingly, chitin metabolism related proteins were abundant in the inter-column matrix, which may be involved in reconstructing the prism organic matrix. Overall, our study suggests that each single prism grew in an enclosed organic envelope and the organic matrix undergoes rearrangement, thus leading to the peculiar growth of the prismatic layer.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China.
| |
Collapse
|
12
|
Abstract
A pearl's distinguished beauty and toughness are attributable to the periodic stacking of aragonite tablets known as nacre. Nacre has naturally occurring mesoscale periodicity that remarkably arises in the absence of discrete translational symmetry. Gleaning the inspiring biomineral design of a pearl requires quantifying its structural coherence and understanding the stochastic processes that influence formation. By characterizing the entire structure of pearls (∼3 mm) in a cross-section at high resolution, we show that nacre has medium-range mesoscale periodicity. Self-correcting growth mechanisms actively remedy disorder and topological defects of the tablets and act as a countervailing process to long-range disorder. Nacre has a correlation length of roughly 16 tablets (∼5.5 µm) despite persistent fluctuations and topological defects. For longer distances (>25 tablets , ∼8.5 µm), the frequency spectrum of nacre tablets follows [Formula: see text] behavior, suggesting that growth is coupled to external stochastic processes-a universality found across disparate natural phenomena, which now includes pearls.
Collapse
|
13
|
Deng Z, Li L. Intrinsic Mechanical Properties of Individual Biogenic Mineral Units in Biomineralized Skeletons. ACS Biomater Sci Eng 2021. [DOI: 10.1021/acsbiomaterials.0c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, Virginia 24060, United States
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, Virginia 24060, United States
| |
Collapse
|