1
|
Ferrer-Roda M, Paramio MT, Vila-Beltrán J, Izquierdo D. Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats. Theriogenology 2025; 234:164-173. [PMID: 39709802 DOI: 10.1016/j.theriogenology.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both. To determine cumulus-oocyte communication, transzonal projections (TZP) density at 0h, 6h, 12h and 24h of IVM were evaluated. After IVM, mitochondrial activity, intracellular ROS and glutathione (GSH) levels, the epidermal growth factor receptor (EGFR) expression in oocytes and cumulus cells, and cumulus expansion were assessed. Blastocyst production and quality were evaluated after parthenogenetic activation (PA) and IVF. IVM supplementation with BMP15 increased the TZP density during the first 6 h of culture. After IVM, BMP15 increased mitochondrial activity, EGFR expression in oocytes and cumulus cells, and cumulus expansion compared to control, but ROS and GSH levels were similar to control. BMP15 improved blastocyst production following PA (15.5 % vs 6.3 %) and the number of cells in the blastocyst inner cell mass. No differences were observed on blastocyst production or quality following IVF. IVM supplementation with GDF9 did not improve results from control group in any parameters studied. Additionally, GDF9 in combination with BMP15 only improved mitochondrial activity and cumulus expansion over control. In conclusion, IVM medium supplementation with BMP15 (100 ng/ml) improves COCs quality parameters and PA-blastocyst production and quality of prepubertal goat oocytes. However, GDF9 (100 ng/mL) did not have any beneficial effect in this study and was possibly antagonistic to BMP15.
Collapse
Affiliation(s)
- Mònica Ferrer-Roda
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Judith Vila-Beltrán
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Dolors Izquierdo
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
2
|
Du H, Song L, Zhao M, Zhao X, Mu R, Gao S, Zhang B, Wang J. Prenatal Perfluorooctanoic Acid (PFOA) exposure causes reproductive toxicity by disrupting the formation of transzonal projections (TZPs) and down-regulating Wnt4/β-catenin signaling pathway in progeny. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117816. [PMID: 39889476 DOI: 10.1016/j.ecoenv.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Perfluorooctanoic acid (PFOA) has been recognized as a novel persistent organic pollutant, playing a significant role in global environmental contamination. Recent evidence indicates that exposure to PFOA detrimentally affects reproductive function, notably through a progressive decline in ovarian function. However, there is a notable lack of research specifically examining its impact on the reproductive potential of female offspring. In this study, we report that prenatal exposure to PFOA impairs the competence of maturing oocytes and reduces the yield of oocytes in the progeny. Mechanistically, prenatal exposure to PFOA leads to a reduced expression of Wnt4, which subsequently impairs the integrity of the ovarian follicle basement membrane and decreases the expression of proteins related to adherent junctions in granulosa cells. This cascade of events results in a compromised reduction of transzonal projections (TZPs) within ovarian follicles, ultimately leading to mitochondrial dysfunction and diminished ATP synthesis in oocytes. This study offers comprehensive insights into the underlying mechanisms of PFOA-induced reproductive toxicity and furnishes scientific evidence to support initiatives focused on preventing and mitigating reproductive harm associated with perfluorinated compounds.
Collapse
Affiliation(s)
- Hua Du
- Department of Pathology, Basic Medical College/Affifiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lishuang Song
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Min Zhao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ren Mu
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Shengtao Gao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| | - Jiapeng Wang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Islam MN, Ebara F, Konno T, Tatemoto H, Yamanaka K. Melatonin improves the in vitro growth of bovine oocytes collected from early antral follicles by maintaining oocyte-cumulus cell communication. Reprod Med Biol 2025; 24:e12629. [PMID: 39877759 PMCID: PMC11774242 DOI: 10.1002/rmb2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes. Methods Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.5°C in 5% CO2 humidified air. Melatonin (10-7, 10-9, or 10-11 M) was added to the culture medium. Results Oocyte diameter increased on day 5 from its initial value in all groups. The antrum formation rate was significantly higher in the 10-9 M melatonin-treated group than in the control. The melatonin-treated group showed reduced oxidative stress and increased gap junction communication compared with the control. ER stress-related genes in OGCs were significantly downregulated in the 10-9 M melatonin-treated group compared with those in the control. No significant changes were found in subsequent maturation among groups; however, 10-9 M melatonin treatment during IVG and IVM increased the maturation rate compared with that in the control. Conclusions Melatonin reduces oxidative stress, which attenuates ER stress in OGCs during IVG of bovine oocytes and may improve IVG efficiency in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Fumio Ebara
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Toshihiro Konno
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Ken‐ichi Yamanaka
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
4
|
Cheng X, Xue Y, Wang H, Ma Z, Hu N, Zhang C, Gao Y, Fan R, Hu L, Li J, Zhang D, Huang J, Fang S, Xiao R, He Y, Luo T, Zheng L. Maternal exposure to polystyrene nanoplastics during gestation and lactation caused fertility decline in female mouse offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117632. [PMID: 39755092 DOI: 10.1016/j.ecoenv.2024.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.5 gestation day (GD) to 21 days postpartum (dpp). Increased rates of miscarriage and premature delivery were observed, as well as reduced litter size, indicating potential permanent reproductive injury in mice of PS-NPs group. Maternal exposure to PS-NPs impaired fertility of the female offsprings. Decreased primordial and increased growing follicles were observed in the ovaries of offspring at 1 dpp and 7 dpp in PS-NPs group, indicating premature activation of primordial follicles. This premature activation is likely due to the PS-NPs'induction of the AKT-FOXO3a signaling pathway by downregulating AMPK phosphorylation level and enhancing mTOR activity. Furthermore, a significant reduction in transzonal projections (TZPs) was noted in the ovaries of adult offspring mice in PS-NPs group. RNA sequencing of the ovaries from adult offspring female mice revealed that the TZPs related genes may be linked to CAMKIIβ, with a corresponding downregulation in expression levels. Overall, maternal exposure to PS-NPs induced profound and enduring effects on the reproductive functions of female offspring, raising critical alarms regarding the multigenerational reproductive toxicity risks associated with nanoplastic exposure in mammals.
Collapse
Affiliation(s)
- Xiu Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Yue Xue
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China
| | - Houpeng Wang
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Zhangqiang Ma
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Na Hu
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Chenchen Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Yu Gao
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Ruihong Fan
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Liaoliao Hu
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jia Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dalei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China
| | - Jian Huang
- Clinical Medical Experimental Center, Jiangxi Medical College, Nanchang University, China
| | - Sitian Fang
- HuanKui College, Nanchang University, Nanchang 330031, China
| | - Runting Xiao
- HuanKui College, Nanchang University, Nanchang 330031, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China; Nanchang Royo Biotech Co,. Ltd, China
| | - Tao Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liping Zheng
- School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Maria da Silva Rosa P, Bridi A, de Ávila Ferronato G, Nociti RP, Camargo Dos Santos A, Cataldi TR, Santos GD, Chiaratti MR, Silva LA, Pugliesi G, Sangalli JR, Meirelles FV, Perecin F, Coelho da Silveira J. Corpus luteum proximity alters molecular signature of the small extracellular vesicles and cumulus cells in the bovine ovarian follicle environment. Mol Cell Endocrinol 2024; 592:112347. [PMID: 39181310 DOI: 10.1016/j.mce.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.
Collapse
Affiliation(s)
- Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Thaís Regiani Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gislaine Dos Santos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Luciano Andrade Silva
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
6
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
7
|
Walter J, Colleoni S, Lazzari G, Fortes C, Grossmann J, Roschitzki B, Laczko E, Naegeli H, Bleul U, Galli C. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'. Mol Hum Reprod 2024; 30:gaae033. [PMID: 39288330 PMCID: PMC11444741 DOI: 10.1093/molehr/gaae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Colleoni
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Claudia Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| |
Collapse
|
8
|
Wang H, Huang Z, Shen X, Lee Y, Song X, Shu C, Wu LH, Pakkiri LS, Lim PL, Zhang X, Drum CL, Zhu J, Li R. Rejuvenation of aged oocyte through exposure to young follicular microenvironment. NATURE AGING 2024; 4:1194-1210. [PMID: 39251866 DOI: 10.1038/s43587-024-00697-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xingyu Shen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chang Shu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Lik Hang Wu
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh Leong Lim
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chester Lee Drum
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Dvoran M, Iyyappan R, Masek T, Pospisek M, Kubelka M, Susor A. Assessment of active translation in cumulus-enclosed and denuded oocytes during standard in vitro maturation and early embryo development. Hum Reprod 2024; 39:1752-1766. [PMID: 38876973 DOI: 10.1093/humrep/deae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
STUDY QUESTION Which actively translated maternal transcripts are differentially regulated between clinically relevant in vitro and in vivo maturation (IVM) conditions in mouse oocytes and zygotes? SUMMARY ANSWER Our findings uncovered significant differences in the global transcriptome as well as alterations in the translation of specific transcripts encoding components of energy production, cell cycle regulation, and protein synthesis in oocytes and RNA metabolism in zygotes. WHAT IS KNOWN ALREADY Properly regulated translation of stored maternal transcripts is a crucial factor for successful development of oocytes and early embryos, particularly due to the transcriptionally silent phase of meiosis. STUDY DESIGN, SIZE, DURATION This is a basic science study utilizing an ICR mouse model, best suited for studying in vivo maturation. In the treatment group, fully grown germinal vesicle oocytes from stimulated ovaries were in vitro matured to the metaphase II (MII) stage either as denuded without gonadotropins (IVM DO), or as cumulus-oocyte complexes (IVM COC) in the presence of 0.075 IU/ml recombinant FSH (rFSH) and 0.075 IU/ml recombinant hCG (rhCG). To account for changes in developmental competence, IVM COC from non-stimulated ovaries (IVM COC-) were included. In vivo matured MII oocytes (IVO) from stimulated ovaries were used as a control after ovulation triggering with rhCG. To simulate standard IVM conditions, we supplemented media with amino acids, vitamins, and bovine serum albumin. Accordingly, in vitro pronuclear zygotes (IMZ) were generated by IVF from IVM DO, and were compared to in vivo pronuclear zygotes (IVZ). All experiments were performed in quadruplicates with samples collected for both polyribosome fractionation and total transcriptome analysis. Samples were collected over three consecutive months. PARTICIPANTS/MATERIALS, SETTING, METHODS All ICR mice were bred under legal permission for animal experimentation (no. MZE-24154/2021-18134) obtained from the Ministry of Agriculture of the Czech Republic. Actively translated (polyribosome occupied) maternal transcripts were detected in in vitro and in vivo matured mouse oocytes and zygotes by density gradient ultracentrifugation, followed by RNA isolation and high-throughput RNA sequencing. Bioinformatic analysis was performed and subsequent data validation was done by western blotting, radioactive isotope, and mitotracker dye labelling. MAIN RESULTS AND THE ROLE OF CHANCE Gene expression analysis of acquired polysome-derived high-throughput RNA sequencing data revealed significant changes (RPKM ≥ 0.2; P ≤ 0.005) in translation between in vitro and in vivo matured oocytes and respectively produced pronuclear zygotes. Surprisingly, the comparison between IVM DO and IVM COC RNA-seq data of both fractionated and total transcriptome showed very few transcripts with more than a 2-fold difference. Data validation by radioactive isotope labelling revealed a decrease in global translation bof20% in IVM DO and COC samples in comparison to IVO samples. Moreover, IVM conditions compromised oocyte energy metabolism, which was demonstrated by both changes in polysome recruitment of each of 13 mt-protein-coding transcripts as well as by validation using mitotracker red staining. LARGE SCALE DATA The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE241633 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241633). LIMITATIONS, REASONS FOR CAUTION It is extremely complicated to achieve in vivo consistency in animal model systems such as porcine or bovine. To achieve a high reproducibility of in vivo stimulations, the ICR mouse model was selected. However, careful interpretation of our findings with regard to assisted reproductive techniques has to be made by taking into consideration intra-species differences between the mouse model and humans. Also, the sole effect of the cumulus cells' contribution could not be adequately addressed by comparing IVM COC and IVM DO, because the IVM DO were matured without gonadotropin supplementation. WIDER IMPLICATIONS OF THE FINDINGS Our findings confirmed the inferiority of standard IVM technology compared with the in vivo approach. It also pointed at compromised biological processes employed in the critical translational regulation of in vitro matured MII oocytes and pronuclear zygotes. By highlighting the importance of proper translational regulation during in vitro oocyte maturation, this study should prompt further clinical investigations in the context of translation. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Czech Grant Agency (22-27301S), Charles University Grant Agency (372621), Ministry of Education, Youth and Sports (EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE), and Institutional Research Concept RVO67985904. No competing interest is declared.
Collapse
Affiliation(s)
- M Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
- Laboratory of RNA Biochemistry, Faculty of Science, Charles University in Prague, Praha 2, Czech Republic
| | - R Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - T Masek
- Laboratory of RNA Biochemistry, Faculty of Science, Charles University in Prague, Praha 2, Czech Republic
| | - M Pospisek
- Laboratory of RNA Biochemistry, Faculty of Science, Charles University in Prague, Praha 2, Czech Republic
| | - M Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - A Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
10
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Adele L Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsay E Wu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Robert B Gilchrist
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
11
|
Huang R, Kratka CE, Pea J, McCann C, Nelson J, Bryan JP, Zhou LT, Russo DD, Zaniker EJ, Gandhi AH, Shalek AK, Cleary B, Farhi SL, Duncan FE, Goods BA. Single-cell and spatiotemporal profile of ovulation in the mouse ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594719. [PMID: 38826447 PMCID: PMC11142086 DOI: 10.1101/2024.05.20.594719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.
Collapse
|
12
|
Xu R, Wen D, Yin L, Tang Y, Lu S, Gao Y, Pan MH, Han B, Ma B. Estrogen influences the transzonal projection assembly of cumulus-oocyte complexes through G protein-coupled estrogen receptor during goat follicle development. Mol Reprod Dev 2024; 91:e23763. [PMID: 38895803 DOI: 10.1002/mrd.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.
Collapse
Affiliation(s)
- Rui Xu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Lu Yin
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, China
| | - Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
13
|
Singh A, Tripathi R, Gupta RK, Rashid R, Jha RK. Gonadotropin upregulates intraovarian calpains-1 and -2 during ovarian follicular recruitment in the SD rat model. Reprod Biol 2024; 24:100862. [PMID: 38402721 DOI: 10.1016/j.repbio.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Calpain role has been shown in the cumulus cell-oocyte complexes and, corpus luteum. We investigated the association of calpains-1 and -2 in ovarian folliculogenesis using the Sprague-Dawley (SD) rat model and steroidogenesis in the human granulosa cells (hGCs). We induced PCOS in 42-day-old SD rats by letrozole oral gavage for 21 days. Premature ovarian failure (POF) was induced in 21-day-old SD rats by 4-vinylcyclohexene diepoxide (VCD). Ovulation and ovarian hyperstimulatory (OHS) syndrome were induced by pregnant mare gonadotropin (PMSG) + human chorionic gonadotropin (hCG) treatments in 21 days SD rats, respectively. Steroidogenesis is stimulated in human granulosa cells (hGCs) by forskolin and the response of 17-beta-estradiol (E2) on calpains expression was checked in hGCs. The protein expression by immunoblotting and activity by biochemical assay of calpains-1 and -2 showed an oscillating pattern in the ovarian cycle. PMSG-induced follicular recruitment showed upregulation of calpains-1 and -2, but with no change during ovarian function cessation (POF). Upregulated calpain-2 expression and calpain activity was found in the hCG +PMSG-induced ovulation. Letrozole-induced PCOS showed downregulation of calpain-1, but upregulation of calpain-2. PMSG+hCG-induced OHS led to the upregulation of calpain-1. Letrozole and metformin separately increased the expression level of calpains-1 and -2 in the hGCs during luteinization. In conclusion, the expression levels of calpains -1 and -2 are increased with ovarian follicular recruitment by PMSG and calpain-1 is decreased in the PCOS condition, and letrozole and metformin upregulate the expression of calpains-1 and -2 during luteinization in the hGCs possibly via E2 action.
Collapse
Affiliation(s)
- Akanksha Singh
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rupal Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rakesh Kumar Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR), Lucknow, India
| | - Rumaisa Rashid
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR), Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
14
|
Feng J, Zeng L, He CY, Liu ZQ, Yuan Q, Zhao C, Cheng L. Mechanism of Cnidii Fructus in the Treatment of Infertility Based on Network Pharmacology and Molecular Docking Analysis Technology. Biochem Genet 2024:10.1007/s10528-024-10827-0. [PMID: 38806972 DOI: 10.1007/s10528-024-10827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Infertility is a condition characterized by a low fertility rate, which significantly affects the physical and mental health of women of reproductive age. Typically, the treatment duration is prolonged, and the therapeutic outcomes are often unsatisfactory. Professor Cheng-yao He, a renowned expert in traditional Chinese medicine, commonly uses the herb Cnidii Fructus (SCZ) for the treatment of infertility. However, the exact mechanism remains unclear, and there is limited research available on this topic. The active ingredients of SCZ were obtained from the traditional chinese medicine system pharmacology (TCMSP) database and screened for pharmacokinetics (PK), involving absorption, distribution, metabolism, and excretion (ADME). Target prediction was performed by SwissTargetPrediction database, and infertility-related disease targets were searched in GeneCards, TTD, DrugBank, and OMIM database. The protein-protein interaction (PPI) network was constructed using the STRING database (Version 11.5) and analyzed by Cytoscape software (Version 3.9.1). Additionally, the target genes were subjected to biological enrichment analysis in the Metascape database, including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and the "Disease-Ingredient-pathway-target" network was constructed using Cytoscape software. With the assistance of AutoDockVina, Ligplot, and PyMOL software, a validation of Molecular docking results and a visualization of the results were performed. This study identified 11 retained active ingredients of SCZ, 447 drug targets, 233 of which were related to infertility, and 5393 disease targets. GO enrichment analysis mainly involved 221 biological processes such as cellular response to chemical stress and gland development. KEGG enrichment analysis mainly involved 68 pathways such as thyroid hormone signaling pathway, estrogen signaling pathway, FOXO signaling pathway, and PI3K/Akt signaling pathway. Molecular docking showed that the core active ingredients of SCZ, including Ammidin, Diosmetin, Xanthoxylin N, and Prangenidin, had strong binding abilities with core targets such as MDM2, MTOR, CCND1, EGFR, and AKT1. This study preliminarily demonstrated that SCZ may act on the PI3K/Akt signaling pathway, exerting its therapeutic effects on infertility by improving energy metabolism disorders and endometrial receptivity, inducing primordial follicle activation, regulating oocyte proliferation, differentiation, and apoptosis, and promoting the release of dominant follicles.
Collapse
Affiliation(s)
- Jun Feng
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li Zeng
- Department of Gynaecology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Cheng-Yao He
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zheng-Qi Liu
- Department of Gynaecology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qin Yuan
- Department of Gynaecology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chao Zhao
- Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, China.
| | - Li Cheng
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
15
|
Hu R, Huang Y, Geng Y, Liu Z, Li F, Zhang Z, Ma W, Song K, Dong H, Song Y, Zhang M. Jiawei Buzhong Yiqi decoction ameliorates polycystic ovary syndrome via oocyte-granulosa cell communication. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117654. [PMID: 38158097 DOI: 10.1016/j.jep.2023.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Buzhong Yiqi Decoction (JWBZYQ), from records of FuqingzhuNvke, is a classical formula for treating obese women related infertility. JWBZYQ has been shown to be effective in treating polycystic ovary syndrome (PCOS) in both clinical studies and practical practice, with the pharmacological mechanism remaining unknown. AIM OF THE STUDY To explore the potential therapeutic effects and mechanistic insights of JWBZYQ in PCOS. MATERIALS AND METHODS An overweight PCOS rat model was established via testosterone propionate (TP) injection and 45% high-fat diet (HFD). Then they were categorized into five distinct groups: Control group, Model group, low-dose of JWBZYQ (JWBZYQ1) group, high-dose of JWBZYQ (JWBZYQ2) group, and metformin (Met) group. Body weight, estrous cycle, and sex hormone levels were observed. Hematoxylin-Eosin staining was employed to investigate the histological characteristics of the ovaries. To identify the pathways that changed significantly, transcriptome analysis was performed. The protein and mRNA levels of key molecules in ovarian zona pellucida (ZP) organization, transzonal projections (TZPs) assembly, steroid hormone receptors, and steroidogenesis were assessed using phalloidin staining, immunohistochemistry, Western blot, and polymerase chain reaction. RESULTS RNA-seq analysis demonstrated that regulation of hormone secretion, cilium assembly, cell projection assembly, and ZP production may all have crucial impact on the etiology of PCOS and therapeutic effect of JWBZYQ. In particular, PCOS rats exhibited elevated expressions of ZP1-3, which can be reversed by JWBZYQ2 particularly. Simultaneously, TZPs assembly was totally disrupted in PCOS rats, evidenced by the phalloidin staining, upregulated calcium-/calmodulin-dependent protein kinase II beta (CaMKIIβ), and deficient p-CaMKIIβ, myosin X (MYO10), proline-rich tyrosine kinase 2 (PTK2), and Fascin. Nonetheless, JWBZYQ or metformin treatment revived the disturbance, repairing the oocyte-granulosa cell communication, regulating steroidogenesis in PCOS rats. In this way, JWBZYQ and metformin exerted remarkable effects in alleviating altered ovarian morphology and function in PCOS rats, with JWBZYQ2 revealing the best effect. CONCLUSIONS JWBZYQ restored the altered ovarian morphology and function by regulating the oocyte-granulosa cell communication, which was related with ZP organization and TZPs assembly in the ovary.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhuo Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kunkun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Haoxu Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Khatun H, Yamanaka KI, Sugimura S. Antioxidant sericin averts the disruption of oocyte-follicular cell communication triggered by oxidative stress. Mol Hum Reprod 2024; 30:gaae001. [PMID: 38244573 DOI: 10.1093/molehr/gaae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Antioxidants are free radical scavengers that increase oocyte quality and improve female fertility by suppressing oxidative stress. However, the related mechanisms remain unclear. The present study was designed to examine whether a reduction of oxidative stress from using the antioxidant sericin led to expanded cumulus cell (CC)-oocyte communication and oocyte developmental acquisition in a bovine model. We found that cumulus-oocyte complexes (COCs) matured in the presence of sericin showed a significantly increased oocyte meiotic maturation rate (P < 0.01) and accelerated subsequent blastocyst formation, as more blastocysts were found at the hatched stage (P < 0.05) compared to that in the control group. In contrast to the control group, sericin suppressed H2O2 levels in COCs, resulting in a markedly enhanced CC-oocyte gap junction communication index and number of transzonal projections, which were preserved until 18 h of oocyte maturation. These findings indicate that sericin reduces disruption of oocyte-follicular cell communication induced by oxidative stress. Sericin consistently increased intra-oocyte glutathione (GSH) levels and reduced oocyte H2O2 levels (P < 0.05), both of which were ablated when GSH synthesis was inhibited by buthionine sulfoximide (an inhibitor of GSH synthesis). Furthermore, the inhibition of GSH synthesis counteracted the positive effects of sericin on subsequent embryo developmental competence (P < 0.01). Intra-oocyte GSH levels were positively associated with blastocyst development and quality. These outcomes demonstrate new perspectives for the improvement of oocyte quality in assisted reproductive technology and may contribute to developing treatment strategies for infertility and cancer.
Collapse
Affiliation(s)
- Hafiza Khatun
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
17
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Ezoe K, Takahashi T, Miki T, Kato K. Developmental perturbation in human embryos: Clinical and biological significance learned from time-lapse images. Reprod Med Biol 2024; 23:e12593. [PMID: 38983691 PMCID: PMC11232294 DOI: 10.1002/rmb2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Time-lapse technology (TLT) has gained widespread adoption worldwide. In addition to facilitating the undisturbed culture of embryos, TLT offers the unique capability of continuously monitoring embryos to detect spatiotemporal changes. Although these observed phenomena play a role in optimal embryo selection/deselection, the clinical advantages of introducing TLT remain unclear. However, manual annotation of embryo perturbation could facilitate a comprehensive assessment of developmental competence. This process requires a thorough understanding of embryo observation and the biological significance associated with developmental dogma and variation. This review elucidates the typical behavior and variation of each phenomenon, exploring their clinical significance and research perspectives. Methods The MEDLINE database was searched using PubMed for peer-reviewed English-language original articles concerning human embryo development. Main findings TLT allows the observation of consecutive changes in embryo morphology, serving as potential biomarkers for embryo assessment. In assisted reproductive technology laboratories, several phenomena have not revealed their mechanism, posing difficulties such as fertilization deficiency and morula arrest. Conclusion A profound understanding of the biological mechanisms and significance of each phenomenon is crucial. Further collaborative efforts between the clinical and molecular fields following translational studies are required to advance embryonic outcomes and assessment.
Collapse
|
19
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
20
|
Xu R, Pan M, Yin L, Zhang Y, Tang Y, Lu S, Gao Y, Wei Q, Han B, Ma B. C-Type Natriuretic Peptide Pre-Treatment Improves Maturation Rate of Goat Oocytes by Maintaining Transzonal Projections, Spindle Morphology, and Mitochondrial Function. Animals (Basel) 2023; 13:3880. [PMID: 38136917 PMCID: PMC10740921 DOI: 10.3390/ani13243880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
C-type natriuretic peptide (CNP) is a peptide molecule naturally found in follicles and can be used to extend meiotic resumption and enhance the potential for oocytes to develop. However, the mechanism by which CNP improves goat oocyte quality remains unclear. In this study, cumulus-oocyte complexes (COCs) from goats were pre-treated with CNP prior to IVM, and the results showed that pre-treatment with CNP enhanced goat oocyte maturation. First, we discovered that CNP maintained communication between cumulus cells and oocytes by regulating the transzonal projections (TZPs). We then found that CNP treatment reduced abnormal spindle formation and increased the expression of genes associated with spindle assembly and the spindle assembly checkpoint. Moreover, further analysis showed that oocytes exhibited better antioxidant ability in the CNP treatment group, which mainly manifested in higher glutathione (GSH) and lower reactive oxygen species (ROS) concentrations. Enhanced mitochondrial activity was signified via the augmented expression of mitochondrial oxidative metabolism and fusion and fission-related genes, thus diminishing the apoptosis of the oocytes. Overall, these results provide novel insights into the potential mechanism by which CNP treatment before IVM can improve oocyte quality.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Lu Yin
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yiqian Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| |
Collapse
|
21
|
Yin L, Wang W, Pang W, Yang G, Gao L, Chu G. Insulin regulates gap junction intercellular communication in porcine granulosa cells through modulation of connexin43 protein expression. Theriogenology 2023; 212:172-180. [PMID: 37738821 DOI: 10.1016/j.theriogenology.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Gap junction intercellular communication (GJIC) among granulosa cells plays an important role in folliculogenesis, and it is temporal-spatially regulated during follicular development. Connexin (Cx) proteins predominantly form the basal structure of gap junctions in granulosa cells. In our study, immunohistochemical analysis revealed that Cx43 is the most widely expressed connexin in porcine follicles, especially among the large antral follicles. With application of insulin on porcine granulosa cells, we found that insulin significantly facilitated the protein level of Cx43, not mRNA level. This process is dependent on the phosphorylated activities of AKT and Erk since selective AKT and Erk inhibitors, LY294002 and U0126, respectively, hampered the potential of insulin to up-regulate Cx43 protein expression. As a consequence, the insulin-enhanced Cx43-couple GJIC activity in porcine granulosa cells was corresponding attenuated by the administration of LY294002 and U0126. Our findings provide a new insight into the molecular mechanisms by which insulin mediates cell-cell communication in porcine granulosa cells and sheds light on nutrition-reproduction interactions.
Collapse
Affiliation(s)
- Lin Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wusu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
22
|
Amargant F, Zhou LT, Yuan Y, Nahar A, Krisher RL, Spate LD, Roberts RM, Prather RS, Rowell EE, Laronda MM, Duncan FE. FGF2, LIF, and IGF1 (FLI) supplementation during human in vitro maturation enhances markers of gamete competence. Hum Reprod 2023; 38:1938-1951. [PMID: 37608600 DOI: 10.1093/humrep/dead162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
STUDY QUESTION Does a chemically defined maturation medium supplemented with FGF2, LIF, and IGF1 (FLI) improve in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) obtained from children, adolescents, and young adults undergoing ovarian tissue cryopreservation (OTC)? SUMMARY ANSWER Although FLI supplementation did not increase the incidence of oocyte meiotic maturation during human IVM, it significantly improved quality outcomes, including increased cumulus cell expansion and mitogen-activated protein kinase (MAPK) expression as well as enhanced transzonal projection retraction. WHAT IS KNOWN ALREADY During OTC, COCs, and denuded oocytes from small antral follicles are released into the processing media. Recovery and IVM of these COCs is emerging as a complementary technique to maximize the fertility preservation potential of the tissue. However, the success of IVM is low, especially in the pediatric population. Supplementation of IVM medium with FLI quadruples the efficiency of pig production through improved oocyte maturation, but whether a similar benefit occurs in humans has not been investigated. STUDY DESIGN, SIZE, DURATION This study enrolled 75 participants between January 2018 and December 2021 undergoing clinical fertility preservation through the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago. Participants donated OTC media, accumulated during tissue processing, for research. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants who underwent OTC and include a pediatric population that encompassed children, adolescents, and young adults ≤22 years old. All participant COCs and denuded oocytes were recovered from media following ovarian tissue processing. IVM was then performed in either a standard medium (oocyte maturation medium) or one supplemented with FLI (FGF2; 40 ng/ml, LIF; 20 ng/ml, and IGF1; 20 ng/ml). IVM outcomes included meiotic progression, cumulus cell expansion, transzonal projection retraction, and detection of MAPK protein expression. MAIN RESULTS AND THE ROLE OF CHANCE The median age of participants was 6.3 years, with 65% of them classified as prepubertal by Tanner staging. Approximately 60% of participants had been exposed to chemotherapy and/or radiation prior to OTC. On average 4.7 ± 1 COCs and/or denuded oocytes per participant were recovered from the OTC media. COCs (N = 41) and denuded oocytes (N = 29) were used for IVM (42 h) in a standard or FLI-supplemented maturation medium. The incidence of meiotic maturation was similar between cohorts (COCs: 25.0% vs 28.6% metaphase II arrested eggs in Control vs FLI; denuded oocytes: 0% vs 5.3% in Control vs FLI). However, cumulus cell expansion was 1.9-fold greater in COCs matured in FLI-containing medium relative to Controls and transzonal projection retraction was more pronounced (2.45 ± 0.50 vs 1.16 ± 0.78 projections in Control vs FLIat 16 h). Additionally, MAPK expression was significantly higher in cumulus cells obtained from COCs matured in FLI medium for 16-18 h (chemiluminescence corrected area 621,678 vs 2,019,575 a.u., P = 0.03). LIMITATIONS, REASONS FOR CAUTION Our samples are from human participants who exhibited heterogeneity with respect to age, diagnosis, and previous treatment history. Future studies with larger sample sizes, including adult participants, are warranted to determine the mechanism by which FLI induces MAPK expression and activation. Moreover, studies that evaluate the developmental competence of eggs derived from FLI treatment, including assessment of embryos as outcome measures, will be required prior to clinical translation. WIDER IMPLICATIONS OF THE FINDINGS FLI supplementation may have a conserved beneficial effect on IVM for children, adolescents, and young adults spanning the agricultural setting to clinical fertility preservation. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Department of Obstetrics and Gynecology startup funds (F.E.D.), Department of Surgery Faculty Practice Plan Grant and the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago (M.M.L. and E.E.R.). M.M.L. is a Gesualdo Foundation Research Scholar. Y.Y.'s research is supported by the internal research funds provided by Colorado Center of Reproductive Medicine. Y.Y., L.D.S., R.M.R., and R.S.P. have a patent pending for FLI. The remaining authors have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Asrafun Nahar
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | | | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Erin E Rowell
- Division of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Chakravarthi VP, Hung WT, Yellapu NK, Gunewardena S, Christenson LK. LH/hCG Regulation of Circular RNA in Mural Granulosa Cells during the Periovulatory Period in Mice. Int J Mol Sci 2023; 24:13078. [PMID: 37685885 PMCID: PMC10488058 DOI: 10.3390/ijms241713078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian follicles undergo a series of dynamic changes following the ovulatory surge of luteinizing hormone including cumulus expansion, oocyte maturation, ovulation, and luteinization. Post-transcriptional gene regulatory events are critical for mediating LH follicular responses, and among all RNA isoforms, circular RNA (circRNA) is one of the most abundant forms present in cells, yet they remain the least studied. Functionally, circRNA can act as miRNA sponges, protein sponges/decoys, and regulators of transcription and translation. In the context of ovarian follicular development, the identity and roles of circRNA are relatively unknown. In the present study, high throughput RNA sequencing of granulosa cells immediately prior to and 4-h after the LH/hCG surge identified 42,381 circRNA originating from 7712 genes. A total of 54 circRNA were identified as differentially expressed between 0-h and 4-h time points (Fold Change ± 1.5, FDR ≤ 0.1), among them 42 circRNA were upregulated and 12 circRNA were downregulated. All differentially expressed circRNA between the 0-h and 4-h groups were subjected to circinteractome analysis and identified networks of circRNA-protein and circRNA-miRNA were further subjected to "micro-RNA target filter analysis" in Ingenuity Pathway Analyses, which resulted in the identification of miRNA targeted mRNAs. A comparison of these circRNA target mRNAs with LH-induced mRNAs identified Runx2, Egfr, Areg, Sult1el, Cyp19a1, Cyp11a1, and Hsd17b1 as targets of circKif2, circVcan, circMast4, and circMIIt10. These newly identified LH/hCG-induced circRNA, their target miRNA and protein networks provide new insights into the complex interactions associated with periovulatory follicular development.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Wei-Ting Hung
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Lane K. Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| |
Collapse
|
24
|
Fan W, Yuan Z, Li M, Zhang Y, Nan F. Decreased oocyte quality in patients with endometriosis is closely related to abnormal granulosa cells. Front Endocrinol (Lausanne) 2023; 14:1226687. [PMID: 37664845 PMCID: PMC10469306 DOI: 10.3389/fendo.2023.1226687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility and menstrual abnormalities in endometriosis patients are frequently caused by aberrant follicular growth or a reduced ovarian reserve. Endometriosis typically does not directly harm the oocyte, but rather inhibits the function of granulosa cells, resulting in a decrease in oocyte quality. Granulosa cells, as oocyte nanny cells, can regulate meiosis, provide the most basic resources required for oocyte development, and influence ovulation. Endometriosis affects oocyte development and quality by causing granulosa cells apoptosis, inflammation, oxidative stress, steroid synthesis obstacle, and aberrant mitochondrial energy metabolism. These aberrant states frequently interact with one another, however there is currently relatively little research in this field to understand the mechanism of linkage between abnormal states.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Muzhen Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yingjie Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fengjuan Nan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
25
|
Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. J Biol Chem 2023; 299:104950. [PMID: 37354972 PMCID: PMC10366548 DOI: 10.1016/j.jbc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Collapse
Affiliation(s)
- Alain Martoriati
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Molinaro
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Marchand
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ingrid Fliniaux
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Marin
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean-François Bodart
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yoshiko Takeda-Uchimura
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Katia Cailliau
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
26
|
Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet 2023; 40:1961-1971. [PMID: 37204638 PMCID: PMC10371970 DOI: 10.1007/s10815-023-02822-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi, Reproductive Medicine Centre, Monza, Italy
- Clinica EUGIN, Milan, Italy
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Paula Fernanda de Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | | | | | - Christopher A. Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| |
Collapse
|
27
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
28
|
Liu C, Zuo W, Yan G, Wang S, Sun S, Li S, Tang X, Li Y, Cai C, Wang H, Liu W, Fang J, Zhang Y, Zhou J, Zhen X, Feng T, Hu Y, Wang Z, Li C, Bian Q, Sun H, Ding L. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. NATURE AGING 2023:10.1038/s43587-023-00419-9. [PMID: 37188792 DOI: 10.1038/s43587-023-00419-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
With aging, abnormalities during oocyte meiosis become more prevalent. However, the mechanisms of aging-related oocyte aneuploidy are not fully understood. Here we performed Hi-C and SMART-seq of oocytes from young and old mice and reveal decreases in chromosome condensation and disrupted meiosis-associated gene expression in metaphase I oocytes from aged mice. Further transcriptomic analysis showed that meiotic maturation in young oocytes was correlated with robust increases in mevalonate (MVA) pathway gene expression in oocyte-surrounding granulosa cells (GCs), which was largely downregulated in aged GCs. Inhibition of MVA metabolism in GCs by statins resulted in marked meiotic defects and aneuploidy in young cumulus-oocyte complexes. Correspondingly, supplementation with the MVA isoprenoid geranylgeraniol ameliorated oocyte meiotic defects and aneuploidy in aged mice. Mechanically, we showed that geranylgeraniol activated LHR/EGF signaling in aged GCs and enhanced the meiosis-associated gene expression in oocytes. Collectively, we demonstrate that the MVA pathway in GCs is a critical regulator of meiotic maturation and euploidy in oocytes, and age-associated MVA pathway abnormalities contribute to oocyte meiotic defects and aneuploidy.
Collapse
Affiliation(s)
- Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wu Zuo
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Simin Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyi Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Changjun Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Tianxiang Feng
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, China.
- Clinical Center for Stem Cell Research, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
29
|
Dai Y, Lin X, Liu N, Shi L, Zhuo F, Huang Q, Gu W, Zhao F, Zhang Y, Zhang Y, Pan Y, Zhang S. Integrative analysis of transcriptomic and metabolomic profiles reveals abnormal phosphatidylinositol metabolism in follicles from endometriosis‐associated infertility patients. J Pathol 2023. [PMID: 36992523 DOI: 10.1002/path.6079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/15/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Endometriosis is a common gynecological disorder that causes female infertility. Our recent research found that excessive oxidative stress in ovaries of endometriosis patients induced senescence of cumulus granulosa cells. Here, we analyzed the transcriptomic and metabolomics profiles of follicles in a mouse model of endometriosis and in patients with endometriosis and investigated the potential function of changed metabolites in granulosa cells. RNA-sequencing indicated that both endometriosis lesions and oxidative stress in mice induced abnormalities of reactive oxidative stress, steroid hormone biosynthesis, and lipid metabolism. The mouse model and women with endometriosis showed altered lipid metabolism. Nontargeted metabolite profiling of follicular fluid from endometriosis and male-factor infertility patients by liquid chromatography mass spectrometry identified 55 upregulated and 67 downregulated metabolites. These differential metabolites were mainly involved in steroid hormone biosynthesis and glycerophospholipid metabolism. Phosphatidylinositol (PI 16:0/18:2) was significantly elevated in follicular fluid from endometriosis patients compared with controls (p < 0.05), while lysophosphatidylinositol (LPI 18:2, 20:2, 18:1, 20:3 and 18:3) was reduced (p < 0.05). Upregulated PI and downregulated LPI correlated with oocyte retrieval number and mature oocyte number. LPI inhibited cellular reactive oxidative stress induced by hemin in granulosa cells. Cell proliferation inhibition, senescence, and apoptosis induced by hemin were partially reversed by LPI. Moreover, LPI administration rescued hemin blocking of cumulus-oocyte complex expansion and stimulated expression of ovulation-related genes. Transcriptomic Switching mechanism at 5' end of the RNA transcript sequencing and western blot revealed that LPI effects on granulosa cells were associated with its regulation of MAPK-ERK1/2 signaling, which was suppressed in the presence of hemin. In conclusion, our results revealed the dysregulation of lipid metabolism in endometriotic follicles. LPI may represent a novel agent for in vitro follicular culture that reverses the excessive oxidative stress from endometriotic lesions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Na Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feng Zhuo
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Qianmeng Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weijia Gu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Fanxuan Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Yinbin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
30
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
31
|
Nagamatsu G. Oocyte aging in comparison to stem cells in mice. FRONTIERS IN AGING 2023; 4:1158510. [PMID: 37114094 PMCID: PMC10126682 DOI: 10.3389/fragi.2023.1158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
To maintain homeostasis, many tissues contain stem cells that can self-renew and differentiate. Based on these functions, stem cells can reconstitute the tissue even after injury. In reproductive organs, testes have spermatogonial stem cells that generate sperm in men throughout their lifetime. However, in the ovary, oocytes enter meiosis at the embryonic stage and maintain sustainable oogenesis in the absence of stem cells. After birth, oocytes are maintained in a dormant state in the primordial follicle, which is the most premature follicle in the ovary, and some are activated to form mature oocytes. Thus, regulation of dormancy and activation of primordial follicles is critical for a sustainable ovulatory cycle and is directly related to the female reproductive cycle. However, oocyte storage is insufficient to maintain a lifelong ovulation cycle. Therefore, the ovary is one of the earliest organs to be involved in aging. Although stem cells are capable of proliferation, they typically exhibit slow cycling or dormancy. Therefore, there are some supposed similarities with oocytes in primordial follicles, not only in their steady state but also during aging. This review aims to summarise the sustainability of oogenesis and aging phenotypes compared to tissue stem cells. Finally, it focuses on the recent breakthroughs in vitro culture and discusses future prospects.
Collapse
Affiliation(s)
- Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Yamanashi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- *Correspondence: Go Nagamatsu,
| |
Collapse
|
32
|
Lin X, Tong X, Zhang Y, Gu W, Huang Q, Zhang Y, Zhuo F, Zhao F, Jin X, Li C, Huang D, Zhang S, Dai Y. Decreased Expression of EZH2 in Granulosa Cells Contributes to Endometriosis-Associated Infertility by Targeting IL-1R2. Endocrinology 2022; 164:6916877. [PMID: 36524678 PMCID: PMC9825353 DOI: 10.1210/endocr/bqac210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The mechanism by which endometriosis, a common gynecological disease characterized by chronic pelvic pain and infertility, causes infertility remains elusive. Luteinized unruptured follicle syndrome, the most common type of ovulatory dysfunction, is a cause of endometriosis-associated infertility involving reduced numbers of retrieved and mature oocytes. Ovulation is controlled by luteinizing hormone and paracrine signals produced within the follicle microenvironment. Generally, interleukin (IL)-1β is elevated in endometriosis follicular fluid, whereby it amplifies ovulation signals by activating extracellular-regulated kinase 1/2 and CCAAT/enhancer binding protein β pathways. However, this amplification of ovulation by IL-1β does not occur in patients with endometriosis. To illuminate the mechanism of ovulatory dysfunction in endometriosis, we analyzed the effect of oxidative stress and IL-1β expression on endometriosis follicles. We found that oxidative stress decreased EZH2 expression and reduced H3K27Me3 levels in endometriosis ovarian granulosa cells (GCs). Selective Ezh2 depletion in mice ovarian GCs reduced fertility by disturbing cumulus-oocyte complex expansion and reducing epidermal growth factor-like factor expression. Gene expression and H3K27Me3 ChIP-sequencing (ChIP-Seq) of GCs revealed IL-1 receptor 2 (IL-1R2), a high-affinity IL-1β-receptor that suppresses IL-1β-mediated inflammatory cascades during ovulation, as a crucial target gene of the EZH2-H3K27Me3 axis. Moreover, IL-1β addition did not restore ovulation upon Ezh2 knockdown, indicating a vital function of IL-1R2 in endometriosis. Thus, our findings show that reducing EZH2 and H3K27Me3 in GCs suppressed ovulatory signals by increasing IL-1R2 expression, which may ultimately contribute to endometriosis-associated infertility.
Collapse
Affiliation(s)
| | | | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Weijia Gu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Qianmeng Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 Xueyuan WestRoad, Lucheng District, Wenzhou 325000, China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Feng Zhuo
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Fanxuan Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Songying Zhang
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| | - Yongdong Dai
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| |
Collapse
|
33
|
Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation. Theriogenology 2022; 194:133-143. [DOI: 10.1016/j.theriogenology.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
34
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Dellaqua TT, Vígaro RA, Janini LCZ, Dal Canto M, Renzini MM, Lodde V, Luciano AM, Buratini J. Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development. Theriogenology 2022; 195:209-216. [DOI: 10.1016/j.theriogenology.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
36
|
N-Acetyl cysteine reduces the levels of reactive oxygen species and improves in vitro maturation of oocytes from medium-sized bovine antral follicles. ZYGOTE 2022; 30:882-890. [PMID: 36148786 DOI: 10.1017/s0967199422000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study aims to evaluate the effects of N-acetylcysteine (NAC) on bovine oocyte maturation, mitochondrial activity and transzonal projections (TZP), as well as on the levels of reactive oxygen species (ROS) and messenger RNA (mRNA) for catalase (CAT) superoxide dismutase (SOD), periredoxin-6 (Prdx6), glutathione peroxidase (GPx), growth and differentiation factor-9 (GDF9), histone H1Foo, cyclin B1 (CCNB1) and c-Mos. Bovine cumulus-oocyte complexes (COC) of medium-sized antral follicles (3.0-6.0 mm) were prematured in TCM-199 for 8 h at 38.5°C in 5% CO2. After prematuration in the presence of forskolin and C-type natriuretic peptide, COCs were matured in TCM-199 alone or with 0.1, 0.5 or 2.5 mM NAC. Then, oocytes were classified according to the stage of chromatin. Furthermore, mitochondrial activity and intracellular levels of ROS and TZP were also evaluated. The levels of mRNAs for CAT, SOD, Prdx6, GPx, GDF9, H1Foo, CCNB1 and c-Mos were evaluated using real-time polymerase chain reaction (RT-PCR). The results showed that NAC significantly increased the percentages of oocytes with resumption of meiosis when compared with those oocytes matured in control medium. Oocytes had homogeneous mitochondrial distribution, and those cultured with 0.1 and 0.5 mM NAC had lower levels of ROS when compared with the control. In addition, 0.5 mM NAC reduced TZP and the levels of mRNA for CCNB1. In contrast, NAC did not influence the expression of CAT, GPx, Prdx6, SOD, GDF9, H1Foo, and c-Mos. In conclusion, 0.5 mM NAC reduced the levels of ROS, TZP and mRNA for CCNB1, and improved in vitro resumption of meiosis in oocytes from medium-sized bovine antral follicles.
Collapse
|
37
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Choi H, Oh D, Lee G, Hyun SH. Physiological and Functional Roles of Neurotrophin-4 During In Vitro Maturation of Porcine Cumulus–Oocyte Complexes. Front Cell Dev Biol 2022; 10:908992. [PMID: 35898394 PMCID: PMC9310091 DOI: 10.3389/fcell.2022.908992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4), a granulosa cell-derived factor and a member of the neurotrophin family, is known to promote follicular development and oocyte maturation in mammals. However, the physiological and functional roles of NT-4 in porcine ovarian development are not yet known. The aim of this study was to investigate the physiological role of NT-4-related signaling in the in vitro maturation (IVM) of porcine cumulus–oocyte complexes (COCs). The NT-4 protein and its receptors were detected in matured porcine COCs via immunofluorescence analysis. NT-4 was shown to promote the maturation of COCs by upregulating NFKB1 transcription via the neurotrophin/p75NTR signaling pathway. Notably, the mRNA expression levels of the oocyte-secreted factors GDF9 and BMP15, sperm–oocyte interaction regulator CD9, and DNA methylase DNMT3A were significantly upregulated in NT-4-treated than in untreated porcine oocytes. Concurrently, there were no significant differences in the levels of total and phosphorylated epidermal growth factor receptor and p38 mitogen-activated protein kinase between NT-4-treated and untreated cumulus cells (CCs); however, the level of phosphorylated ERK1/2 was significantly higher in NT-4-treated CCs. Both total and phosphorylated ERK1/2 levels were significantly higher in NT-4-treated than in untreated oocytes. In addition, NT-4 improved subsequent embryonic development after in vitro fertilization and somatic cell nuclear transfer. Therefore, the physiological and functional roles of NT-4 in porcine ovarian development include the promotion of oocyte maturation, CC expansion, and ERK1/2 phosphorylation in porcine COCs during IVM.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Junchul David Yoon
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun,
| |
Collapse
|
39
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
40
|
Granados-Aparici S, Volodarsky-Perel A, Yang Q, Anam S, Tulandi T, Buckett W, Son WY, Younes G, Chung JT, Jin S, Terret MÉ, Clarke HJ. MYO10 promotes transzonal projection (TZP)-dependent germ line-somatic contact during mammalian folliculogenesis. Biol Reprod 2022; 107:474-487. [PMID: 35470858 PMCID: PMC9382396 DOI: 10.1093/biolre/ioac078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Granulosa cells of growing ovarian follicles elaborate filopodia-like structures termed transzonal projections (TZPs) that supply the enclosed oocyte with factors essential for its development. Little is known, however, of the mechanisms underlying the generation of TZPs. We show in mouse and human that filopodia, defined by an actin backbone, emerge from granulosa cells in early-stage primary follicles and that actin-rich TZPs become detectable as soon as a space corresponding to the zona pellucida appears. mRNA encoding Myosin10 (MYO10), a motor protein that accumulates at the base and tips of filopodia and has been implicated in their initiation and elongation, is present in granulosa cells and oocytes of growing follicles. MYO10 protein accumulates in foci located mainly between the oocyte and innermost layer of granulosa cells, where it co-localizes with actin. In both mouse and human, the number of MYO10 foci increases as oocytes grow, corresponding to the increase in the number of actin-TZPs. RNAi-mediated depletion of MYO10 in cultured mouse granulosa cell-oocyte complexes is associated with a 52% reduction in the number of MYO10 foci and a 28% reduction in the number of actin-TZPs. Moreover, incubation of cumulus-oocyte complexes in the presence of epidermal growth factor, which triggers a 93% reduction in the number of actin-TZPs, is associated with a 55% reduction in the number of MYO10 foci. These results suggest that granulosa cells possess an ability to elaborate filopodia, which when directed towards the oocyte become actin-TZPs, and that MYO10 increases the efficiency of formation or maintenance of actin-TZPs.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Alexander Volodarsky-Perel
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Qin Yang
- Research Institute of the McGill University Health Center, Montreal, Canada
| | - Sibat Anam
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Togas Tulandi
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Weon-Young Son
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Grace Younes
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Jin-Tae Chung
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Shaoguang Jin
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | | | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Buratini J, Soares ACS, Barros RG, Dellaqua TT, Lodde V, Franciosi F, Dal Canto M, Renzini MM, Luciano AM. Physiological parameters related to oocyte nuclear differentiation for the improvement of IVM/IVF outcomes in women and cattle. Reprod Fertil Dev 2022; 34:27-35. [PMID: 35231269 DOI: 10.1071/rd21278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro maturation (IVM) has been applied in numerous different contexts and strategies in humans and animals, but in both cases it represents a challenge still far from being overcome. Despite the large dataset produced over the last two decades on the mechanisms that govern antral follicular development and oocyte metabolism and differentiation, IVM outcomes are still unsatisfactory. This review specifically focuses on data concerning the potential consequences of using supraphysiological levels of FSH during IVM, as well as on the regulation of oocyte chromatin dynamics and its utility as a potential marker of oocyte developmental competence. Taken together, the data revisited herein indicate that a significant improvement in IVM efficacy may be provided by the integration of pre-OPU patient-specific protocols preparing the oocyte population for IVM and more physiological culture systems mimicking more precisely the follicular environment that would be experienced by the recovered oocytes until completion of metaphase II.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy; and Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | | | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| |
Collapse
|
43
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
44
|
Zhang JH, Zhan L, Zhao MY, Wang JJ, Xie FF, Xu ZY, Xu Q, Cao YX, Liu QW. Role of EGFR expressed on the granulosa cells in the pathogenesis of polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2022; 13:971564. [PMID: 36440230 PMCID: PMC9691951 DOI: 10.3389/fendo.2022.971564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most common endocrinological disorders affecting between 6 to 20% of reproductive aged women. However, the etiology of PCOS is still unclear. Epidermal growth factor receptor (EGFR) plays a critical role in the growth and development of ovarian follicles. In our previous study, we showed that the expression level of EGFR was significantly higher in the cumulus granulosa cells from women with PCOS than that of normal women, suggesting that EGFR may play a potential role in the pathogenesis of PCOS. The present study further evaluated the association between EGFR and PCOS through both in clinical observation and animal experiments. We firstly validated the differential expression of EGFR in cumulus granulosa cells between PCOS patients and normal subjects by qRT-PCR and immunofluorescence staining. Then we generated a mouse model (n=20) of PCOS by injecting dehydroepiandrosterone (DHEA). The PCOS mice were then injected with an E corpus GFR inhibitor (AG1478) (n=10), which significantly improved the sex hormone levels in the estrous cycle stage, and the serum levels of LH, FSH and testosterone were compared with the PCOS mice without EGFR inhibitor treatment (n=10). Decreasing the expression level of EGFR in the PCOS mice also improved the ovulatory function of their ovaries which was indicated by the multifarious follicle stage in these mice as compared with the PCOS mice without EGFR inhibitor treatment. Also, the number of corpopa lutea were higher in the control group and the EGFR inhibitor treated group than in the PCOS group. The sex hormone levels and reproductive function were not significantly different between the control mice and the PCOS mice treated with the EGFR inhibitor. Our results demonstrated that EGF/EGFR signaling affected the proliferation of cumulus granulosa cells, oocyte maturation and meiosis, and played a potential role in the pathogenesis of PCOS. Therefore, the selective inhibition of EGFR may serve as a novel strategy for the clinical management of PCOS.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming-Ye Zhao
- Interventional Operating Room, Weihai Central Hospital, Weihai, Shandong, China
| | - Jin-Juan Wang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fen-Fen Xie
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui, China
| | - Zu-Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| | - Qian Xu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- *Correspondence: Yun-Xia Cao, ; Qi-Wei Liu,
| | - Qi-Wei Liu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yun-Xia Cao, ; Qi-Wei Liu,
| |
Collapse
|
45
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
46
|
Doherty CA, Amargant F, Shvartsman SY, Duncan FE, Gavis ER. Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila. Trends Cell Biol 2021; 32:311-323. [PMID: 34922803 DOI: 10.1016/j.tcb.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
In most animals, the oocyte is the largest cell by volume. The oocyte undergoes a period of large-scale growth during its development, prior to fertilization. At first glance, tissues that support the development of the oocyte in different organisms have diverse cellular characteristics that would seem to prohibit functional comparisons. However, these tissues often act with a common goal of establishing dynamic forms of two-way communication with the oocyte. We propose that this bidirectional communication between oocytes and support cells is a universal phenomenon that can be directly compared across species. Specifically, we highlight fruit fly and mouse oogenesis to demonstrate that similarities and differences in these systems should be used to inform and design future experiments in both models.
Collapse
Affiliation(s)
- Caroline A Doherty
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
47
|
Robert C. Nurturing the egg: the essential connection between cumulus cells and the oocyte. Reprod Fertil Dev 2021; 34:149-159. [PMID: 35231386 DOI: 10.1071/rd21282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The determinants of oocyte quality remain uncertain. Under suitable conditions, which have yet to be defined, the gamete grows and acquires the competence to resume meiosis, be fertilised and undergo embryonic development at least beyond genome activation, after which the blastomere is autonomous enough to adapt to the specificity of its environment. This review describes the central role played by the oocyte in reproductive success and how communication between cumulus cells and the oocyte are essential to proper oogenesis and the quality of the resulting gamete. While most attempts to improve oocyte quality have been directed at gonadotrophin-based systemic endocrine signalling, it is proposed that parallel control of fertility may act locally within ovarian follicles through intimate cooperation between somatic cells and the oocyte via the network of transzonal projections. This intercellular communication may prove to be more sensitive to environmental conditions than systemic endocrine signalling, which is essential for many non-reproductive tissues.
Collapse
Affiliation(s)
- Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|
48
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
49
|
Kandasamy H, Yang Q, Clarke HJ. Contact-dependent cleavage of Jagged1 in oocytes reveals potential bidirectional notch signaling during follicular growth in the mouse. Biol Reprod 2021; 105:1375-1377. [PMID: 34476461 DOI: 10.1093/biolre/ioab162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Herthana Kandasamy
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Qin Yang
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Hugh J Clarke
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| |
Collapse
|
50
|
Turathum B, Gao EM, Chian RC. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells 2021; 10:cells10092292. [PMID: 34571941 PMCID: PMC8470117 DOI: 10.3390/cells10092292] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cumulus cells (CCs) originating from undifferentiated granulosa cells (GCs) differentiate in mural granulosa cells (MGCs) and CCs during antrum formation in the follicle by the distribution of location. CCs are supporting cells of the oocyte that protect the oocyte from the microenvironment, which helps oocyte growth and maturation in the follicles. Bi-directional communications between an oocyte and CCs are necessary for the oocyte for the acquisition of maturation and early embryonic developmental competence following fertilization. Follicle-stimulation hormone (FSH) and luteinizing hormone (LH) surges lead to the synthesis of an extracellular matrix in CCs, and CCs undergo expansion to assist meiotic resumption of the oocyte. The function of CCs is involved in the completion of oocyte meiotic maturation and ovulation, fertilization, and subsequent early embryo development. Therefore, understanding the function of CCs during follicular development may be helpful for predicting oocyte quality and subsequent embryonic development competence, as well as pregnancy outcomes in the field of reproductive medicine and assisted reproductive technology (ART) for infertility treatment.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Er-Meng Gao
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
- Correspondence: ; Tel.: +86-18917687092
| |
Collapse
|