1
|
Tosato T, Dumas G, Rohenkohl G, Fries P. Performance modulations phase-locked to action depend on internal state. iScience 2025; 28:111691. [PMID: 39877072 PMCID: PMC11773486 DOI: 10.1016/j.isci.2024.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/16/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Previous studies have shown that perceptual performance can be modulated at specific frequencies phase-locked to self-paced motor actions, but findings have been inconsistent. To investigate this effect at the population level, we tested 50 participants who performed a self-paced button press followed by a threshold-level detection task, using both fixed- and random-effects analyses. Contrary to expectations, the aggregated data showed no significant action-related modulation. However, when accounting for internal states, we found that trials during periods of low performance or following a missed detection exhibited significant modulation at approximately 17 Hz. Additionally, participants with no false alarms showed similar modulation. These effects were significant in random effects tests, suggesting that they generalize to the population. Our findings indicate that action-related perceptual modulations are not always detectable but may emerge under specific internal conditions, such as lower attentional engagement or higher decision criteria, particularly in the beta-frequency range.
Collapse
Affiliation(s)
- Tommaso Tosato
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montréal, QC, Canada
- Department of Psychiatry and Addictology, University of Montréal, Montréal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC H2S 3H1, Canada
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Guillaume Dumas
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montréal, QC, Canada
- Department of Psychiatry and Addictology, University of Montréal, Montréal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Gustavo Rohenkohl
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ 22281-010, Brazil
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tübingen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
2
|
Cruz G, Melcón M, Sutandi L, Matias Palva J, Palva S, Thut G. Oscillatory Brain Activity in the Canonical Alpha-Band Conceals Distinct Mechanisms in Attention. J Neurosci 2025; 45:e0918242024. [PMID: 39406514 PMCID: PMC11694399 DOI: 10.1523/jneurosci.0918-24.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 01/03/2025] Open
Abstract
Brain oscillations in the alpha-band (8-14 Hz) have been linked to specific processes in attention and perception. In particular, decreases in posterior alpha-amplitude are thought to reflect activation of perceptually relevant brain areas for target engagement, while alpha-amplitude increases have been associated with inhibition for distractor suppression. Traditionally, these alpha-changes have been viewed as two facets of the same process. However, recent evidence calls for revisiting this interpretation. Here, we recorded MEG/EEG in 32 participants (19 females) during covert visuospatial attention shifts (spatial cues) and two control conditions (neutral cue, no-attention cue), while tracking fixational eye movements. In disagreement with a single, perceptually relevant alpha-process, we found the typical alpha-modulations contra- and ipsilateral to the attention focus to be triple dissociated in their timing, topography, and spectral features: Ipsilateral alpha-increases occurred early, over occipital sensors, at a high alpha-frequency (10-14 Hz) and were expressed during spatial attention (alpha spatial cue > neutral cue). In contrast, contralateral alpha-decreases occurred later, over parietal sensors, at a lower alpha-frequency (7-10 Hz) and were associated with attention deployment in general (alpha spatial and neutral cue < no-attention cue). Additionally, the lateralized early alpha-increases but not alpha-decreases during spatial attention coincided in time with directionally biased microsaccades. Overall, this suggests that the attention-related early alpha-increases and late alpha-decreases reflect distinct, likely reflexive versus endogenously controlled attention mechanisms. We conclude that there is more than one perceptually relevant posterior alpha-oscillation, which need to be dissociated for a detailed account of their roles in perception and attention.
Collapse
Affiliation(s)
- Gabriela Cruz
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - María Melcón
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - Leonardo Sutandi
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Department of Neuroscience and Biomedical engineering, Aalto University, Helsinki 02150, Finland
| | - Satu Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Centre de Recherche Cerveau et Cognition (Cerco), CNRS UMR5549 and Université de Toulouse, Toulouse 31059, France
| |
Collapse
|
3
|
Liu N, Avidan G, Turchi JN, Hadj-Bouziane F, Behrmann M. A Possible Neural Basis for Attentional Capture of Faces Revealed by Functional Magnetic Resonance Imaging and Causal Pharmacological Inactivation in Macaques. J Cogn Neurosci 2024; 36:2761-2779. [PMID: 38940721 DOI: 10.1162/jocn_a_02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In primates, the presence of a face in a visual scene captures attention and rapidly directs the observer's gaze to the face, even when the face is not relevant to the task at hand. Here, we explored a neural circuit that might potentially play a causal role in this powerful behavior. In our previous research, two monkeys received microinfusions of muscimol, a γ-aminobutyric acid type A (GABAA)-receptor agonist, or saline (as a control condition) in separate sessions into individual or pairs of four inferotemporal face patches (middle and anterior lateral and fundal), as identified by an initial localizer experiment. Then, using fMRI, we measured the impact of each inactivation condition on responses in the other face patches relative to the control condition. In this study, we used the same method and measured the impact of each inactivation condition on responses in the FEF and the lateral intraparietal area, two regions associated with attentional processing, while face and nonface object stimuli were viewed. Our results revealed potential relationships between inferotemporal face patches and these two attention-related regions: The inactivation of the middle lateral and anterior fundal face patches had a pronounced impact on FEF, whereas the inactivation of the middle and anterior lateral face patches had a noticeable influence on LIP. Together, these initial exploratory findings document a circuit that potentially underlies the attentional capture of faces. Confirmation of the role of this circuit remains to be accomplished in the context of a paradigm that explicitly tests the attentional capture of faces.
Collapse
Affiliation(s)
- Ning Liu
- Institute of Biophysics, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
4
|
Zang F, Liu X, Fan D, He C, Zhang Z, Xie C. Dynamic functional network connectivity and its association with lipid metabolism in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e70029. [PMID: 39302036 PMCID: PMC11413920 DOI: 10.1111/cns.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS The study aims to examine the changing trajectory characteristics of dynamic functional network connectivity (dFNC) and its correlation with lipid metabolism-related factors across the Alzheimer's disease (AD) spectrum populations. METHODS Data from 242 AD spectrum subjects, including biological, neuroimaging, and general cognition, were obtained from the Alzheimer's Disease Neuroimaging Initiative for this cross-sectional study. The study utilized a sliding-window approach to assess whole-brain dFNC, investigating group differences and associations with biological and cognitive factors. Abnormal dFNC was used in the classification of AD spectrum populations by support vector machine. Mediation analysis was performed to explore the relationships between lipid-related indicators, dFNC, cerebrospinal fluid (CSF) biomarkers, and cognitive performance. RESULTS Significant group difference concerning were observed in relation to APOE-ε4 status, CSF biomarkers, and cognitive scores. Two reoccurring connectivity states were identified: state-1 characterized by frequent but weak connections, and state-II characterized by less frequent but strong connections. Pre-AD subjects exhibited a preference for spending more time in state-I, whereas AD patients tended remain in state-II for longer periods. Group difference in dFNC was primarily found between AD and non-AD participants within each state. The dFNC of state-I yielded strong power to distinguish AD from other groups compared with state-II. APOE-ε4+, high polygenic score, and high serum lipid group were strongly associated with network disruption between association cortex system and sensory cortex system that characterized elevation of cognitive function, which may suggest a compensatory mechanism of dFNC in state-I, whereas differential connections of state-II mediated the relationships between APOE-ε4 genotype and CSF biomarkers, and cognitive indicators. CONCLUSION The dysfunction of dFNC temporal-spatial patterns and increased cognition in individuals with APOE-ε4, high polygenic score, and higher serum lipid levels shed light on the lipid-related mechanisms of dynamic network reorganization in AD.
Collapse
Affiliation(s)
- Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of NeuropsychiatryAffiliated ZhongDa Hospital, Southeast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of NeuropsychiatryAffiliated ZhongDa Hospital, Southeast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of NeuropsychiatryAffiliated ZhongDa Hospital, Southeast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| | | | | |
Collapse
|
5
|
Cicero NG, Klimova M, Lewis LD, Ling S. Differential cortical and subcortical visual processing with eyes shut. J Neurophysiol 2024; 132:54-60. [PMID: 38810261 PMCID: PMC11381112 DOI: 10.1152/jn.00073.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar blood oxygenation level-dependent (BOLD) responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitatively distinct pattern of visual processing when the eyes are closed-one that is not simply an overall attenuation but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserve information about stimuli but are then gated off downstream in visual cortex.NEW & NOTEWORTHY When we close our eyes coarse luminance information is still accessible by the visual system. Using functional magnetic resonance imaging, we examined whether eyelid closure plays a unique role in visual processing. We discovered that while the LGN and V1 show equivalent responses when the eyes are open or closed, extrastriate cortex exhibited attenuated responses with eye closure. This suggests that when the eyes are closed, downstream visual processing is blind to this information.
Collapse
Affiliation(s)
- Nicholas G Cicero
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Michaela Klimova
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Sam Ling
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Zhou Y, Yang B, Wang C. Multiband task related components enhance rapid cognition decoding for both small and similar objects. Neural Netw 2024; 175:106313. [PMID: 38640695 DOI: 10.1016/j.neunet.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
The cortically-coupled target recognition system based on rapid serial visual presentation (RSVP) has a wide range of applications in brain computer interface (BCI) fields such as medical and military. However, in the complex natural environment backgrounds, the identification of event-related potentials (ERP) of both small and similar objects that are quickly presented is a research challenge. Therefore, we designed corresponding experimental paradigms and proposed a multi-band task related components matching (MTRCM) method to improve the rapid cognitive decoding of both small and similar objects. We compared the areas under the receiver operating characteristic curve (AUC) between MTRCM and other 9 methods under different numbers of training sample using RSVP-ERP data from 50 subjects. The results showed that MTRCM maintained an overall superiority and achieved the highest average AUC (0.6562 ± 0.0091). We also optimized the frequency band and the time parameters of the method. The verification on public data sets further showed the necessity of designing MTRCM method. The MTRCM method provides a new approach for neural decoding of both small and similar RSVP objects, which is conducive to promote the further development of RSVP-BCI.
Collapse
Affiliation(s)
- Yusong Zhou
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Banghua Yang
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
7
|
Misselhorn J, Fiene M, Radecke JO, Engel AK, Schneider TR. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. J Neurosci 2024; 44:e1510232024. [PMID: 38729759 PMCID: PMC11209665 DOI: 10.1523/jneurosci.1510-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Collapse
Affiliation(s)
- Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck 23562, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
8
|
Williams JG, Harrison WJ, Beale HA, Mattingley JB, Harris AM. Effects of neural oscillation power and phase on discrimination performance in a visual tilt illusion. Curr Biol 2024; 34:1801-1809.e4. [PMID: 38569544 DOI: 10.1016/j.cub.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.
Collapse
Affiliation(s)
- Jessica G Williams
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia
| | - William J Harrison
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Henry A Beale
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Anthony M Harris
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Di Dona G, Zamfira DA, Battista M, Battaglini L, Perani D, Ronconi L. The role of parietal beta-band activity in the resolution of visual crowding. Neuroimage 2024; 289:120550. [PMID: 38382861 DOI: 10.1016/j.neuroimage.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| | - Denisa Adina Zamfira
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Martina Battista
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca LU, Italy
| | - Luca Battaglini
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova PD, Italy
| | - Daniela Perani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| |
Collapse
|
10
|
García-Rosales F, Schaworonkow N, Hechavarria JC. Oscillatory Waveform Shape and Temporal Spike Correlations Differ across Bat Frontal and Auditory Cortex. J Neurosci 2024; 44:e1236232023. [PMID: 38262724 PMCID: PMC10919256 DOI: 10.1523/jneurosci.1236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
11
|
Bi Z, Li H, Tian L. Top-down generation of low-resolution representations improves visual perception and imagination. Neural Netw 2024; 171:440-456. [PMID: 38150870 DOI: 10.1016/j.neunet.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Perception or imagination requires top-down signals from high-level cortex to primary visual cortex (V1) to reconstruct or simulate the representations bottom-up stimulated by the seen images. Interestingly, top-down signals in V1 have lower spatial resolution than bottom-up representations. It is unclear why the brain uses low-resolution signals to reconstruct or simulate high-resolution representations. By modeling the top-down pathway of the visual system using the decoder of a variational auto-encoder (VAE), we reveal that low-resolution top-down signals can better reconstruct or simulate the information contained in the sparse activities of V1 simple cells, which facilitates perception and imagination. This advantage of low-resolution generation is related to facilitating high-level cortex to form geometry-respecting representations observed in experiments. Furthermore, we present two findings regarding this phenomenon in the context of AI-generated sketches, a style of drawings made of lines. First, we found that the quality of the generated sketches critically depends on the thickness of the lines in the sketches: thin-line sketches are harder to generate than thick-line sketches. Second, we propose a technique to generate high-quality thin-line sketches: instead of directly using original thin-line sketches, we use blurred sketches to train VAE or GAN (generative adversarial network), and then infer the thin-line sketches from the VAE- or GAN-generated blurred sketches. Collectively, our work suggests that low-resolution top-down generation is a strategy the brain uses to improve visual perception and imagination, which inspires new sketch-generation AI techniques.
Collapse
Affiliation(s)
- Zedong Bi
- Lingang Laboratory, Shanghai 200031, China.
| | - Haoran Li
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| | - Liang Tian
- Department of Physics, Hong Kong Baptist University, Hong Kong, China; Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China; Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Hüer J, Saxena P, Treue S. Pathway-selective optogenetics reveals the functional anatomy of top-down attentional modulation in the macaque visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2304511121. [PMID: 38194453 PMCID: PMC10801865 DOI: 10.1073/pnas.2304511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Collapse
Affiliation(s)
- Janina Hüer
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt60528, Germany
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen37073, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen37077, Germany
- Bernstein Center for Computational Neuroscience, Göttingen37073, Germany
| |
Collapse
|
13
|
Di Dona G, Ronconi L. Beta oscillations in vision: a (preconscious) neural mechanism for the dorsal visual stream? Front Psychol 2023; 14:1296483. [PMID: 38155693 PMCID: PMC10753839 DOI: 10.3389/fpsyg.2023.1296483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Raposo I, Szczepanski SM, Haaland K, Endestad T, Solbakk AK, Knight RT, Helfrich RF. Periodic attention deficits after frontoparietal lesions provide causal evidence for rhythmic attentional sampling. Curr Biol 2023; 33:4893-4904.e3. [PMID: 37852264 PMCID: PMC10842514 DOI: 10.1016/j.cub.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Contemporary models conceptualize spatial attention as a blinking spotlight that sequentially samples visual space. Hence, behavior fluctuates over time, even in states of presumed "sustained" attention. Recent evidence has suggested that rhythmic neural activity in the frontoparietal network constitutes the functional basis of rhythmic attentional sampling. However, causal evidence to support this notion remains absent. Using a lateralized spatial attention task, we addressed this issue in patients with focal lesions in the frontoparietal attention network. Our results revealed that frontoparietal lesions introduce periodic attention deficits, i.e., temporally specific behavioral deficits that are aligned with the underlying neural oscillations. Attention-guided perceptual sensitivity was on par with that of healthy controls during optimal phases but was attenuated during the less excitable sub-cycles. Theta-dependent sampling (3-8 Hz) was causally dependent on the prefrontal cortex, while high-alpha/low-beta sampling (8-14 Hz) emerged from parietal areas. Collectively, our findings reveal that lesion-induced high-amplitude, low-frequency brain activity is not epiphenomenal but has immediate behavioral consequences. More generally, these results provide causal evidence for the hypothesis that the functional architecture of attention is inherently rhythmic.
Collapse
Affiliation(s)
- Isabel Raposo
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
| | - Sara M Szczepanski
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Kathleen Haaland
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences, Albuquerque, NM 87102, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373 Oslo, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, 0371 Oslo, Norway
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373 Oslo, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, 0371 Oslo, Norway; Department of Neurosurgery, Oslo University Hospital, 0372 Oslo, Norway; Department of Neuropsychology, Helgeland Hospital, 8656 Mosjøen, Norway
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Hu Y, Yu Q. Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from cue-induced imagery. Cell Rep 2023; 42:113242. [PMID: 37831604 DOI: 10.1016/j.celrep.2023.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Visual imagery allows for the construction of rich internal experience in our mental world. However, it has remained poorly understood how imagery experience derives volitionally as opposed to being cue driven. Here, using electroencephalography and functional magnetic resonance imaging, we systematically investigate the spatiotemporal dynamics of self-generated imagery by having participants volitionally imagining one of the orientations from a learned pool. We contrast self-generated imagery with cue-induced imagery, where participants imagined line orientations based on associative cues acquired previously. Our results reveal overlapping neural signatures of cue-induced and self-generated imagery. Yet, these neural signatures display substantially differential sensitivities to the two types of imagery: self-generated imagery is supported by an enhanced involvement of the anterior cortex in representing imagery contents. By contrast, cue-induced imagery is supported by enhanced imagery representations in the posterior visual cortex. These results jointly support a reverse cortical hierarchy in generating and maintaining imagery contents in self-generated versus externally cued imagery.
Collapse
Affiliation(s)
- Yiheng Hu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
16
|
Isabel Vanegas M, Akbarian A, Clark KL, Nesse WH, Noudoost B. Prefrontal activity sharpens spatial sensitivity of extrastriate neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564095. [PMID: 37961256 PMCID: PMC10634826 DOI: 10.1101/2023.10.25.564095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Prefrontal cortex is known to exert its control over representation of visual signals in extrastriate areas such as V4. Frontal Eye Field (FEF) is suggested to be the proxy for the prefrontal control of visual signals. However, it is not known which aspects of sensory representation within extrastriate areas are under the influence of FEF activity. We employed a causal manipulation to examine how FEF activity contributes to spatial sensitivity of extrastriate neurons. Finding FEF and V4 areas with overlapping response field (RF) in two macaque monkeys, we recorded V4 responses before and after inactivation of the overlapping FEF. We assessed spatial sensitivity of V4 neurons in terms of their response gain, RF spread, coding capacity, and spatial discriminability. Unexpectedly, we found that in the absence of FEF activity, spontaneous and visually-evoked activity of V4 neurons both increase and their RFs enlarge. However, assessing the spatial sensitivity within V4, we found that these changes were associated with a reduction in the ability of V4 neurons to represent spatial information: After FEF inactivation, V4 neurons showed a reduced response gain and a decrease in their spatial discriminability and coding capacity. These results show the necessity of FEF activity for shaping spatial responses of extrastriate neurons and indicates the importance of FEF inputs in sharpening the sensitivity of V4 responses.
Collapse
Affiliation(s)
- M. Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
17
|
Borgomaneri S, Zanon M, Di Luzio P, Cataneo A, Arcara G, Romei V, Tamietto M, Avenanti A. Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions. Nat Commun 2023; 14:5720. [PMID: 37737239 PMCID: PMC10517146 DOI: 10.1038/s41467-023-41058-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
The posterior superior temporal sulcus (pSTS) is a critical node in a network specialized for perceiving emotional facial expressions that is reciprocally connected with early visual cortices (V1/V2). Current models of perceptual decision-making increasingly assign relevance to recursive processing for visual recognition. However, it is unknown whether inducing plasticity into reentrant connections from pSTS to V1/V2 impacts emotion perception. Using a combination of electrophysiological and neurostimulation methods, we demonstrate that strengthening the connectivity from pSTS to V1/V2 selectively increases the ability to perceive facial expressions associated with emotions. This behavior is associated with increased electrophysiological activity in both these brain regions, particularly in V1/V2, and depends on specific temporal parameters of stimulation that follow Hebbian principles. Therefore, we provide evidence that pSTS-to-V1/V2 back-projections are instrumental to perception of emotion from facial stimuli and functionally malleable via manipulation of associative plasticity.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
| | - Marco Zanon
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Paolo Di Luzio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | - Antonio Cataneo
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | | | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain
| | - Marco Tamietto
- Dipartimento di Psicologia, Università degli Studi di Torino, Torino, Italy.
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
18
|
Cicero NG, Klimova M, Lewis LD, Ling S. Differential cortical and subcortical visual processing with eyes shut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557197. [PMID: 37745511 PMCID: PMC10515861 DOI: 10.1101/2023.09.11.557197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses, across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar BOLD responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitative distinct pattern of visual processing when the eyes are closed - one that is not simply an overall attenuation, but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserves information about stimuli but is then gated off downstream in visual cortex.
Collapse
Affiliation(s)
- Nicholas G. Cicero
- Graduate Program in Neuroscience, Boston University
- Department of Biomedical Engineering, Boston University
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
| | - Michaela Klimova
- Department of Psychological and Brain Sciences, Boston University
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - Sam Ling
- Graduate Program in Neuroscience, Boston University
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
19
|
Wei J, Yao Z, Huang G, Li L, Liang Z, Zhang L, Zhang Z. Frontal-occipital phase synchronization predicts occipital alpha power in perceptual decision-making. Cogn Neurodyn 2023; 17:815-827. [PMID: 37522043 PMCID: PMC10374503 DOI: 10.1007/s11571-022-09862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Numerous studies of perceptual decision-making have shown that lower prestimulus alpha power leads to a higher hit rate in visual detection, which is believed to correlate with the top-down control. However, whether frontal-occipital phase synchronization underlying the top-down control could impact the occipital alpha power that directly affects the perceptual performance remains unclear. In this study, we used analyses of the general linear mixed model (GLMM) and event-related potentials (ERPs) to show that the prestimulus alpha power over the occipital area directly affected visual perception. Using both the univariate and multivariate methods, we found that low-frequency (4-30 Hz) frontal-occipital phase synchronization predicted the prestimulus alpha power over the occipital area. Overall, our results suggested that frontal-occipital phase synchronization could predict occipital alpha power that directly affects perceptual decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09862-7.
Collapse
Affiliation(s)
- Jinwen Wei
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Ziqing Yao
- Department of Psychology, The University of Hong Kong, Hong Kong S.A.R, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Radecke JO, Fiene M, Misselhorn J, Herrmann CS, Engel AK, Wolters CH, Schneider TR. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimul 2023; 16:1047-1061. [PMID: 37353071 DOI: 10.1016/j.brs.2023.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Covert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention. OBJECTIVE Attentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS shifts attention relative to the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations. METHODS We applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer. RESULTS Behavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex. CONCLUSION Overall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
21
|
Turri C, Di Dona G, Santoni A, Zamfira DA, Franchin L, Melcher D, Ronconi L. Periodic and Aperiodic EEG Features as Potential Markers of Developmental Dyslexia. Biomedicines 2023; 11:1607. [PMID: 37371702 DOI: 10.3390/biomedicines11061607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Developmental Dyslexia (DD) is a neurobiological condition affecting the ability to read fluently and/or accurately. Analyzing resting-state electroencephalographic (EEG) activity in DD may provide a deeper characterization of the underlying pathophysiology and possible biomarkers. So far, studies investigating resting-state activity in DD provided limited evidence and did not consider the aperiodic component of the power spectrum. In the present study, adults with (n = 26) and without DD (n = 31) underwent a reading skills assessment and resting-state EEG to investigate potential alterations in aperiodic activity, their impact on the periodic counterpart and reading performance. In parieto-occipital channels, DD participants showed a significantly different aperiodic activity as indexed by a flatter and lower power spectrum. These aperiodic measures were significantly related to text reading time, suggesting a link with individual differences in reading difficulties. In the beta band, the DD group showed significantly decreased aperiodic-adjusted power compared to typical readers, which was significantly correlated to word reading accuracy. Overall, here we provide evidence showing alterations of the endogenous aperiodic activity in DD participants consistently with the increased neural noise hypothesis. In addition, we confirm alterations of endogenous beta rhythms, which are discussed in terms of their potential link with magnocellular-dorsal stream deficit.
Collapse
Affiliation(s)
- Chiara Turri
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Di Dona
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Franchin
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - David Melcher
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
22
|
Son JJ, Arif Y, Schantell M, Willett MP, Johnson HJ, Okelberry HJ, Embury CM, Wilson TW. Oscillatory dynamics serving visual selective attention during a Simon task. Brain Commun 2023; 5:fcad131. [PMID: 37151223 PMCID: PMC10162684 DOI: 10.1093/braincomms/fcad131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8-12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3-6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
23
|
Leszczynski M, Bickel S, Nentwich M, Russ BE, Parra L, Lakatos P, Mehta A, Schroeder CE. Saccadic modulation of neural excitability in auditory areas of the neocortex. Curr Biol 2023; 33:1185-1195.e6. [PMID: 36863343 PMCID: PMC10424710 DOI: 10.1016/j.cub.2023.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
In natural "active" vision, humans and other primates use eye movements (saccades) to sample bits of information from visual scenes. In the visual cortex, non-retinal signals linked to saccades shift visual cortical neurons into a high excitability state as each saccade ends. The extent of this saccadic modulation outside of the visual system is unknown. Here, we show that during natural viewing, saccades modulate excitability in numerous auditory cortical areas with a temporal pattern complementary to that seen in visual areas. Control somatosensory cortical recordings indicate that the temporal pattern is unique to auditory areas. Bidirectional functional connectivity patterns suggest that these effects may arise from regions involved in saccade generation. We propose that by using saccadic signals to yoke excitability states in auditory areas to those in visual areas, the brain can improve information processing in complex natural settings.
Collapse
Affiliation(s)
- Marcin Leszczynski
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; Cognitive Science Department, Institute of Philosophy, Jagiellonian University, Krakow 31-007, Poland.
| | - Stephan Bickel
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11549, USA
| | - Maximilian Nentwich
- Biomedical Engineering Department, City College, CUNY, New York, NY 10031, USA
| | - Brian E Russ
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, New York University at Langone, New York, NY 10016, USA
| | - Lucas Parra
- Biomedical Engineering Department, City College, CUNY, New York, NY 10031, USA
| | - Peter Lakatos
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University at Langone, New York, NY 10016, USA
| | - Ashesh Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11549, USA
| | - Charles E Schroeder
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
24
|
Hoshi A, Hirayama Y, Saito F, Ishiguro T, Suetani H, Kitajo K. Spatiotemporal consistency of neural responses to repeatedly presented video stimuli accounts for population preferences. Sci Rep 2023; 13:5532. [PMID: 37015982 PMCID: PMC10073227 DOI: 10.1038/s41598-023-31751-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/16/2023] [Indexed: 04/06/2023] Open
Abstract
Population preferences for video advertisements vary across short video clips. What underlies these differences? Repeatedly watching a video clip may produce a consistent spatiotemporal pattern of neural activity that is dependent on the individual and the stimulus. Moreover, such consistency may be associated with the degree of engagement and memory of individual viewers. Since the population preferences are associated with the engagement and memory of the individual viewers, the consistency observed in a smaller group of viewers can be a predictor of population preferences. To test the hypothesis, we measured the degree of inter-trial consistency in participants' electroencephalographic (EEG) responses to repeatedly presented television commercials. We observed consistency in the neural activity patterns across repetitive views and found that the similarity in the spatiotemporal patterns of neural responses while viewing popular television commercials predicts population preferences obtained from a large audience. Moreover, a regression model that used two datasets, including two separate groups of participants viewing different stimulus sets, showed good predictive performance in a leave-one-out cross-validation. These findings suggest that universal spatiotemporal patterns in EEG responses can account for population-level human behaviours.
Collapse
Affiliation(s)
- Ayaka Hoshi
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- KIRIN Central Research Institute, Research & Development Division, Kirin Holdings Company, Limited, 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuya Hirayama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Fumihiro Saito
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tatsuji Ishiguro
- KIRIN Central Research Institute, Research & Development Division, Kirin Holdings Company, Limited, 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiromichi Suetani
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan
| | - Keiichi Kitajo
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
25
|
Weyrich L, Arif Y, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Wilson TW. Altered functional connectivity and oscillatory dynamics in polysubstance and cannabis only users during visuospatial processing. Psychopharmacology (Berl) 2023; 240:769-783. [PMID: 36752815 PMCID: PMC10545949 DOI: 10.1007/s00213-023-06318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
RATIONALE AND OBJECTIVES Cannabis use is often associated with the use of other psychoactive substances, which is subsequently linked to an increased risk for addiction. While there is a growing body of neuroimaging literature investigating the cognitive effect of long-term cannabis use, very little is known about the potential additive effects of cannabis polysubstance use. METHODS Fifty-six adults composed of 18 polysubstance users (i.e., cannabis plus at least one other illicit substance), 19 cannabis-only users, and 19 nonusers completed a visuospatial attention task while undergoing magnetoencephalography. A data-driven approach was used to identify oscillatory neural responses, which were imaged using a beamforming approach. The resulting cortical regions were probed for group differences and used as seeds for whole-brain connectivity analysis. RESULTS Participants exhibited robust theta, alpha, beta, and gamma responses during visuospatial processing. Statistical analyses indicated that the cannabis-only group had weaker occipital theta relative to the nonusers, and that both polysubstance and cannabis-only users had reduced spontaneous gamma in the occipital cortices during the pre-stimulus baseline period relative to nonusers. Finally, functional connectivity analyses revealed that polysubstance users had sharply reduced beta connectivity between occipital and prefrontal, as well as occipital and left temporal cortices. CONCLUSIONS Cannabis use should be considered in a polysubstance context, as our correlational design suggests differences in functional connectivity among those who reported cannabis-only versus polysubstance use in occipital to prefrontal pathways critical to visuospatial processing and attention function. Future work should distinguish the effect of different polysubstance combinations and use more causal designs.
Collapse
Affiliation(s)
- Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center, 42nd and Emile Street, Omaha, NE, 68198, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE, 68010, USA.
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
26
|
Harris AM. Phase resets undermine measures of phase-dependent perception. Trends Cogn Sci 2023; 27:224-226. [PMID: 36609017 DOI: 10.1016/j.tics.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
As interest increases in the possible effects of the phase of neural oscillations on perception and cognition, new conceptual and methodological challenges arise. One prominent challenge is the stimulus-induced phase reset, which has the capacity to obscure the effects of phase in the postreset period.
Collapse
Affiliation(s)
- Anthony M Harris
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
27
|
Esparza-Iaizzo M, Vigué-Guix I, Ruzzoli M, Torralba-Cuello M, Soto-Faraco S. Long-Range α-Synchronization as Control Signal for BCI: A Feasibility Study. eNeuro 2023; 10:ENEURO.0203-22.2023. [PMID: 36750362 PMCID: PMC9997698 DOI: 10.1523/eneuro.0203-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Shifts in spatial attention are associated with variations in α band (α, 8-14 Hz) activity, specifically in interhemispheric imbalance. The underlying mechanism is attributed to local α-synchronization, which regulates local inhibition of neural excitability, and frontoparietal synchronization reflecting long-range communication. The direction-specific nature of this neural correlate brings forward its potential as a control signal in brain-computer interfaces (BCIs). In the present study, we explored whether long-range α-synchronization presents lateralized patterns dependent on voluntary attention orienting and whether these neural patterns can be picked up at a single-trial level to provide a control signal for active BCI. We collected electroencephalography (EEG) data from a cohort of healthy adults (n = 10) while performing a covert visuospatial attention (CVSA) task. The data show a lateralized pattern of α-band phase coupling between frontal and parieto-occipital regions after target presentation, replicating previous findings. This pattern, however, was not evident during the cue-to-target orienting interval, the ideal time window for BCI. Furthermore, decoding the direction of attention trial-by-trial from cue-locked synchronization with support vector machines (SVMs) was at chance level. The present findings suggest EEG may not be capable of detecting long-range α-synchronization in attentional orienting on a single-trial basis and, thus, highlight the limitations of this metric as a reliable signal for BCI control.
Collapse
Affiliation(s)
| | - Irene Vigué-Guix
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain 08005
| | - Manuela Ruzzoli
- Basque Center on Cognition Brain and Language (BCBL), Donostia-San Sebastián, Spain 20009
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain 20009
| | | | - Salvador Soto-Faraco
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain 08005
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 20009
| |
Collapse
|
28
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
29
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
30
|
Rodríguez-San Esteban P, Chica AB, Paz-Alonso PM. Functional characterization of correct and incorrect feature integration. Cereb Cortex 2023; 33:1440-1451. [PMID: 35510933 DOI: 10.1093/cercor/bhac147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/14/2022] Open
Abstract
Our sensory system constantly receives information from the environment and our own body. Despite our impression to the contrary, we remain largely unaware of this information and often cannot report it correctly. Although perceptual processing does not require conscious effort on the part of the observer, it is often complex, giving rise to errors such as incorrect integration of features (illusory conjunctions). In the present study, we use functional magnetic resonance imaging to study the neural bases of feature integration in a dual task that produced ~30% illusions. A distributed set of regions demonstrated increased activity for correct compared to incorrect (illusory) feature integration, with increased functional coupling between occipital and parietal regions. In contrast, incorrect feature integration (illusions) was associated with increased occipital (V1-V2) responses at early stages, reduced functional connectivity between right occipital regions and the frontal eye field at later stages, and an overall decrease in coactivation between occipital and parietal regions. These results underscore the role of parietal regions in feature integration and highlight the relevance of functional occipito-frontal interactions in perceptual processing.
Collapse
Affiliation(s)
- Pablo Rodríguez-San Esteban
- Department of Experiment Psychology and Brain, Mind and Behavior Research Center (CIMCYC), Universidad de Granada, Campus de Cartuja S/N, 18071 Granada, Spain
| | - Ana B Chica
- Department of Experiment Psychology and Brain, Mind and Behavior Research Center (CIMCYC), Universidad de Granada, Campus de Cartuja S/N, 18071 Granada, Spain
| | - Pedro M Paz-Alonso
- BCBL-Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua 69, 20009 Donostia, Gipuzkoa, Spain.,IKERBASQUE-Basque Foundation for Science, 48013 Bilbo, Bizkaia, Spain
| |
Collapse
|
31
|
Zhang Y, Ryali S, Cai W, Supekar K, Pasumarthy R, Padmanabhan A, Luna B, Menon V. Developmental maturation of causal signaling hubs in voluntary control of saccades and their functional controllability. Cereb Cortex 2022; 32:4746-4762. [PMID: 35094063 PMCID: PMC9627122 DOI: 10.1093/cercor/bhab514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
The ability to adaptively respond to behaviorally relevant cues in the environment, including voluntary control of automatic but inappropriate responses and deployment of a goal-relevant alternative response, undergoes significant maturation from childhood to adulthood. Importantly, the maturation of voluntary control processes influences the developmental trajectories of several key cognitive domains, including executive function and emotion regulation. Understanding the maturation of voluntary control is therefore of fundamental importance, but little is known about the underlying causal functional circuit mechanisms. Here, we use state-space and control-theoretic modeling to investigate the maturation of causal signaling mechanisms underlying voluntary control over saccades. We demonstrate that directed causal interactions in a canonical saccade network undergo significant maturation between childhood and adulthood. Crucially, we show that the frontal eye field (FEF) is an immature causal signaling hub in children during control over saccades. Using control-theoretic analysis, we then demonstrate that the saccade network is less controllable in children and that greater energy is required to drive FEF dynamics in children compared to adults. Our findings provide novel evidence that strengthening of causal signaling hubs and controllability of FEF are key mechanisms underlying age-related improvements in the ability to plan and execute voluntary control over saccades.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramkrishna Pasumarthy
- Department of Electrical Engineering, Robert Bosch Center of Data Sciences and Artificial Intelligence, Network Systems Learning, Control and Evolution Group, Indian Institute of Technology Madras, Chennai 600036, India
| | - Aarthi Padmanabhan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bea Luna
- Department of Psychiatry and Behavioral Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Li D, Luo X, Guo J, Kong Y, Hu Y, Chen Y, Zhu Y, Wang Y, Sun L, Song Y. Information-based multivariate decoding reveals imprecise neural encoding in children with attention deficit hyperactivity disorder during visual selective attention. Hum Brain Mapp 2022; 44:937-947. [PMID: 36250701 PMCID: PMC9875917 DOI: 10.1002/hbm.26115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school-age children. Attentional orientation is a potential clinical diagnostic marker to aid in the early diagnosis of ADHD. However, the underlying pathophysiological substrates of impaired attentional orienting in childhood ADHD remain unclear. Electroencephalography (EEG) was measured in 135 school-age children (70 with childhood ADHD and 65 matched typically developing children) to directly investigate target localization during spatial selective attention through univariate ERP analysis and information-based multivariate pattern machine learning analysis. Compared with children with typical development, a smaller N2pc was found in the ADHD group through univariate ERP analysis. Children with ADHD showed a lower parieto-occipital multivariate decoding accuracy approximately 240-340 ms after visual search onset, which predicts a slower reaction time and larger standard deviation of reaction time. Furthermore, a significant correlation was found between N2pc and decoding accuracy in typically developing children but not in children with ADHD. These observations reveal that impaired attentional orienting in ADHD may be due to inefficient neural encoding responses. By using a personalized information-based multivariate machine learning approach, we have advanced the understanding of cognitive deficits in neurodevelopmental disorders. Our study provides potential research directions for the early diagnosis and optimization of personalized intervention in children with ADHD.
Collapse
Affiliation(s)
- Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Xiangsheng Luo
- Peking University Sixth Hospital and Peking University Institute of Mental HealthBeijingChina,NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yanbo Chen
- Peking University Sixth Hospital and Peking University Institute of Mental HealthBeijingChina,NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Yu Zhu
- Peking University Sixth Hospital and Peking University Institute of Mental HealthBeijingChina,NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Yufeng Wang
- Peking University Sixth Hospital and Peking University Institute of Mental HealthBeijingChina,NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Li Sun
- Peking University Sixth Hospital and Peking University Institute of Mental HealthBeijingChina,NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina,Center for Collaboration and Innovation in Brain and Learning SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
33
|
Brookshire G. Putative rhythms in attentional switching can be explained by aperiodic temporal structure. Nat Hum Behav 2022; 6:1280-1291. [PMID: 35680992 PMCID: PMC9489532 DOI: 10.1038/s41562-022-01364-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/25/2022] [Indexed: 02/02/2023]
Abstract
The neural and perceptual effects of attention were traditionally assumed to be sustained over time, but recent work suggests that covert attention rhythmically switches between objects at 3-8 Hz. Here I use simulations to demonstrate that the analysis approaches commonly used to test for rhythmic oscillations generate false positives in the presence of aperiodic temporal structure. I then propose two alternative analyses that are better able to discriminate between periodic and aperiodic structure in time series. Finally, I apply these alternative analyses to published datasets and find no evidence for behavioural rhythms in attentional switching after accounting for aperiodic temporal structure. The techniques presented here will help clarify the periodic and aperiodic dynamics of perception and of cognition more broadly.
Collapse
Affiliation(s)
- Geoffrey Brookshire
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
- SPARK Neuro, New York, NY, USA.
| |
Collapse
|
34
|
Tosato T, Rohenkohl G, Dowdall JR, Fries P. Quantifying rhythmicity in perceptual reports. Neuroimage 2022; 262:119561. [PMID: 35973565 DOI: 10.1016/j.neuroimage.2022.119561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the discrete Fourier transform (DFT) and the least square spectrum (LSS). DFT and LSS can be applied both on the average accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effects) or on the population (random-effects) of simulated participants. Multiple comparisons across frequencies were corrected using False Discovery Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated sensitivity, specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the average accuracy time course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effects approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.
Collapse
Affiliation(s)
- Tommaso Tosato
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| | - Gustavo Rohenkohl
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
35
|
Unrestricted eye movements strengthen effective connectivity from hippocampal to oculomotor regions during scene construction. Neuroimage 2022; 260:119497. [PMID: 35870699 DOI: 10.1016/j.neuroimage.2022.119497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Scene construction is a key component of memory recall, navigation, and future imagining, and relies on the medial temporal lobes (MTL). A parallel body of work suggests that eye movements may enable the imagination and construction of scenes, even in the absence of external visual input. There are vast structural and functional connections between regions of the MTL and those of the oculomotor system. However, the directionality of connections between the MTL and oculomotor control regions, and how it relates to scene construction, has not been studied directly in human neuroimaging. In the current study, we used dynamic causal modeling (DCM) to interrogate effective connectivity between the MTL and oculomotor regions using a scene construction task in which participants' eye movements were either restricted (fixed-viewing) or unrestricted (free-viewing). By omitting external visual input, and by contrasting free- versus fixed- viewing, the directionality of neural connectivity during scene construction could be determined. As opposed to when eye movements were restricted, allowing free-viewing during construction of scenes strengthened top-down connections from the MTL to the frontal eye fields, and to lower-level cortical visual processing regions, suppressed bottom-up connections along the visual stream, and enhanced vividness of the constructed scenes. Taken together, these findings provide novel, non-invasive evidence for the underlying, directional, connectivity between the MTL memory system and oculomotor system associated with constructing vivid mental representations of scenes.
Collapse
|
36
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
37
|
Merholz G, Grabot L, VanRullen R, Dugué L. Periodic attention operates faster during more complex visual search. Sci Rep 2022; 12:6688. [PMID: 35461325 PMCID: PMC9035177 DOI: 10.1038/s41598-022-10647-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Attention has been found to sample visual information periodically, in a wide range of frequencies below 20 Hz. This periodicity may be supported by brain oscillations at corresponding frequencies. We propose that part of the discrepancy in periodic frequencies observed in the literature is due to differences in attentional demands, resulting from heterogeneity in tasks performed. To test this hypothesis, we used visual search and manipulated task complexity, i.e., target discriminability (high, medium, low) and number of distractors (set size), while electro-encephalography was simultaneously recorded. We replicated previous results showing that the phase of pre-stimulus low-frequency oscillations predicts search performance. Crucially, such effects were observed at increasing frequencies within the theta-alpha range (6-18 Hz) for decreasing target discriminability. In medium and low discriminability conditions, correct responses were further associated with higher post-stimulus phase-locking than incorrect ones, in increasing frequency and latency. Finally, the larger the set size, the later the post-stimulus effect peaked. Together, these results suggest that increased complexity (lower discriminability or larger set size) requires more attentional cycles to perform the task, partially explaining discrepancies between reports of attentional sampling. Low-frequency oscillations structure the temporal dynamics of neural activity and aid top-down, attentional control for efficient visual processing.
Collapse
Affiliation(s)
- Garance Merholz
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France.
| | - Laetitia Grabot
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
| | - Rufin VanRullen
- Centre National de la Recherche Scientifique, CerCo Unité Mixte de Recherche 5549, Université de Toulouse, 31052, Toulouse, France
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
38
|
Levinson M, Baillet S. Perceptual filling-in dispels the veridicality problem of conscious perception research. Conscious Cogn 2022; 100:103316. [PMID: 35358869 DOI: 10.1016/j.concog.2022.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Conscious perceptual experiences are expected to correlate with content-specific brain activity. A veridicality problem arises when attempting to disentangle unconscious and conscious brain processes if conscious perceptual contents accurately match the physical nature of the stimulus. We argue that perceptual filling-in, a phenomenon whereby visual information inaccurately spreads across visual space, is a promising approach to circumvent the veridicality problem. Filling-in generates non-veridical although unambiguous percepts dissociated from stimulus input. In particular, the radial uniformity illusion induces a filling-in experience between a central disk and the surrounding periphery. We discuss how this illusion facilitates both the detection of neurophysiological responses and subjective phenomenological monitoring. We report behavioral effects from a large-sample (n = 200) psychophysics study and examine key stimulus parameters that drive the conscious filling-in experience. We propose that these data underpin future hypothesis-driven studies of filling-in to further delineate the neural mechanisms of conscious perception.
Collapse
Affiliation(s)
- Max Levinson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
39
|
Kluger DS, Balestrieri E, Busch NA, Gross J. Respiration aligns perception with neural excitability. eLife 2021; 10:e70907. [PMID: 34904567 PMCID: PMC8763394 DOI: 10.7554/elife.70907] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behavior. We acquired respiration and human magnetoencephalography data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8-13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected versus undetected targets underscored the behavioral benefits of heightened excitability. Notably, respiration-locked excitability changes were maximized at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Elio Balestrieri
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Niko A Busch
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
40
|
Liang Q, Zhang B, Fu S, Sui J, Wang F. The roles of the LpSTS and DLPFC in self-prioritization: A transcranial magnetic stimulation study. Hum Brain Mapp 2021; 43:1381-1393. [PMID: 34826160 PMCID: PMC8837583 DOI: 10.1002/hbm.25730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022] Open
Abstract
The Self‐Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self‐prioritization effect, yet the roles of the key nodes in the SAN—the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)—still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self‐prioritization effect based on the difference between the performance of the self‐matching task before and after the targeted stimulation. We analyzed both model‐free performance measures and HDDM‐based performance measures for the self‐matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self‐related stimuli, which establishes a causal role for the LpSTS in self‐related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self‐salience in information processing.
Collapse
Affiliation(s)
- Qiongdan Liang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Sinan Fu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Jie Sui
- School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China.,Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex. Sci Rep 2021; 11:18562. [PMID: 34535692 PMCID: PMC8448857 DOI: 10.1038/s41598-021-96849-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parieto-occipital alpha rhythms (8-12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.
Collapse
|
42
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
43
|
Peylo C, Hilla Y, Sauseng P. Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci 2021; 44:705-713. [PMID: 34167840 DOI: 10.1016/j.tins.2021.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
A well-established finding in the literature of human studies is that alpha activity (rhythmical brain activity around 10 Hz) shows retinotopic amplitude modulation during shifts in visual attention. Thus, it has long been argued that alpha amplitude modulation might play a crucial role in attention-driven alterations in visual information processing. Recently, there has been a revival of the topic, driven in part by new studies directly investigating the possible causal relationship between alpha activity and responses to visual input, both neuronally and perceptually. Here, we discuss evidence for and against a causal role of alpha activity in visual attentional processing. We conclude with hypotheses regarding the mechanisms by which top-down-modulated alpha activity in the parietal cortex might select visual information for attentive processing.
Collapse
Affiliation(s)
- Charline Peylo
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yannik Hilla
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
44
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|