1
|
Koshiguchi M, Yonezawa N, Hatano Y, Suenaga H, Yamagata K, Kobayashi S. A system to analyze the initiation of random X-chromosome inactivation using time-lapse imaging of single cells. Sci Rep 2024; 14:20327. [PMID: 39223177 PMCID: PMC11369159 DOI: 10.1038/s41598-024-71105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In female eutherian mammal development, X-chromosome inactivation (XCI) of one of the two X chromosomes is initiated early. Understanding the relationship between the initiation of XCI and cell fate is critical for understanding early female development and requires a system that can monitor XCI in single living cells. Traditional embryonic stem cells (ESCs) used for XCI studies often lose X chromosomes spontaneously during culture and differentiation, making accurate monitoring difficult. Additionally, most XCI assessment methods necessitate cell disruption, hindering cell fate tracking. We developed the Momiji (version 2) ESC line to address these difficulties, enabling real-time monitoring of X-chromosome activity via fluorescence. We inserted green and red fluorescent reporter genes and neomycin and puromycin resistance genes into the two X chromosomes of PGK12.1 ESCs, creating a female ESC line that retains two X chromosomes more faithfully during differentiation. Momiji (version 2) ESCs exhibit a more stable XX karyotype than other ESC lines, including the parental PGK12.1 line. This new tool offers valuable insights into the relationship between XCI and cell fate, improving our understanding of early female development.
Collapse
Affiliation(s)
- Manami Koshiguchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Yu Hatano
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Yamanashi, 400-8510, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Shin Kobayashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
2
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
3
|
Bowness JS, Almeida M, Nesterova TB, Brockdorff N. YY1 binding is a gene-intrinsic barrier to Xist-mediated gene silencing. EMBO Rep 2024; 25:2258-2277. [PMID: 38654121 PMCID: PMC11094009 DOI: 10.1038/s44319-024-00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.
Collapse
Affiliation(s)
- Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mafalda Almeida
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
4
|
Hauth A, Panten J, Kneuss E, Picard C, Servant N, Rall I, Pérez-Rico YA, Clerquin L, Servaas N, Villacorta L, Jung F, Luong C, Chang HY, Zaugg JB, Stegle O, Odom DT, Loda A, Heard E. Escape from X inactivation is directly modulated by levels of Xist non-coding RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581559. [PMID: 38559194 PMCID: PMC10979913 DOI: 10.1101/2024.02.22.581559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.
Collapse
Affiliation(s)
- Antonia Hauth
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Jasper Panten
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Emma Kneuss
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Christel Picard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Molecular Genetics of Montpellier University of Montpellier, CNRS, 34090 Montpellier, France
| | - Nicolas Servant
- Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75005, France
| | - Isabell Rall
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Human Biology (IHB), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Yuvia A Pérez-Rico
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Lena Clerquin
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Nila Servaas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Ferris Jung
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Agnese Loda
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collège de France, Paris 75005, France
| |
Collapse
|
5
|
Li Y, Mo Y, Chen C, He J, Guo Z. Research advances of polycomb group proteins in regulating mammalian development. Front Cell Dev Biol 2024; 12:1383200. [PMID: 38505258 PMCID: PMC10950033 DOI: 10.3389/fcell.2024.1383200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Polycomb group (PcG) proteins are a subset of epigenetic factors that are highly conserved throughout evolution. In mammals, PcG proteins can be classified into two muti-proteins complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Increasing evidence has demonstrated that PcG complexes play critical roles in the regulation of gene expression, genomic imprinting, chromosome X-inactivation, and chromatin structure. Accordingly, the dysfunction of PcG proteins is tightly orchestrated with abnormal developmental processes. Here, we summarized and discussed the current knowledge of the biochemical and molecular functions of PcG complexes, especially the PRC1 and PRC2 in mammalian development including embryonic development and tissue development, which will shed further light on the deep understanding of the basic knowledge of PcGs and their functions for reproductive health and developmental disorders.
Collapse
Affiliation(s)
| | | | | | - Jin He
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiheng Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Malcore RM, Kalantry S. A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation. EPIGENOMES 2024; 8:8. [PMID: 38390899 PMCID: PMC10885068 DOI: 10.3390/epigenomes8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.
Collapse
Affiliation(s)
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Conte MI, Fuentes-Trillo A, Domínguez Conde C. Opportunities and tradeoffs in single-cell transcriptomic technologies. Trends Genet 2024; 40:83-93. [PMID: 37953195 DOI: 10.1016/j.tig.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Recent technological and algorithmic advances enable single-cell transcriptomic analysis with remarkable depth and breadth. Nonetheless, a persistent challenge is the compromise between the ability to profile high numbers of cells and the achievement of full-length transcript coverage. Currently, the field is progressing and developing new and creative solutions that improve cellular throughput, gene detection sensitivity and full-length transcript capture. Furthermore, long-read sequencing approaches for single-cell transcripts are breaking frontiers that have previously blocked full transcriptome characterization. We here present a comprehensive overview of available options for single-cell transcriptome profiling, highlighting the key advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Matilde I Conte
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | | |
Collapse
|
8
|
Kaufmann C, Wutz A. IndiSPENsable for X Chromosome Inactivation and Gene Silencing. EPIGENOMES 2023; 7:28. [PMID: 37987303 PMCID: PMC10660550 DOI: 10.3390/epigenomes7040028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
For about 30 years, SPEN has been the subject of research in many different fields due to its variety of functions and its conservation throughout a wide spectrum of species, like worms, arthropods, and vertebrates. To date, 216 orthologues have been documented. SPEN had been studied for its role in gene regulation in the context of cell signaling, including the NOTCH or nuclear hormone receptor signaling pathways. More recently, SPEN has been identified as a major regulator of initiation of chromosome-wide gene silencing during X chromosome inactivation (XCI) in mammals, where its function remains to be fully understood. Dependent on the biological context, SPEN functions via mechanisms which include different domains. While some domains of SPEN are highly conserved in sequence and secondary structure, species-to-species differences exist that might lead to mechanistic differences. Initiation of XCI appears to be different between humans and mice, which raises additional questions about the extent of generalization of SPEN's function in XCI. In this review, we dissect the mechanism of SPEN in XCI. We discuss its subregions and domains, focusing on its role as a major regulator. We further highlight species-related research, specifically of mouse and human SPEN, with the aim to reveal and clarify potential species-to-species differences in SPEN's function.
Collapse
Affiliation(s)
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, 8093 Zurich, Switzerland;
| |
Collapse
|
9
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Lin J, Zhang J, Ma L, Fang H, Ma R, Groneck C, Filippova GN, Deng X, Ma W, Disteche CM, Berletch JB. KDM6A facilitates Xist upregulation at the onset of X inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553617. [PMID: 37645756 PMCID: PMC10462084 DOI: 10.1101/2023.08.16.553617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved gene Kdm6a , which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression. Here, we investigate the role of KDM6A in the regulation of Xist . We observed impaired upregulation of Xist during early stages of differentiation in hybrid mouse ES cells following CRISPR/Cas9 knockout of Kdm6a . This is associated with reduced Xist RNA coating of the Xi, suggesting diminished XCI potency. Indeed, Kdm6a knockout results in aberrant overexpression of genes from the Xi after differentiation. KDM6A binds to the Xist promoter and knockout cells show an increase in H3K27me3 at Xist . These results indicate that KDM6A plays a role in the initiation of XCI through histone demethylase-dependent activation of Xist during early differentiation.
Collapse
|
11
|
Schwämmle T, Schulz EG. Regulatory principles and mechanisms governing the onset of random X-chromosome inactivation. Curr Opin Genet Dev 2023; 81:102063. [PMID: 37356341 PMCID: PMC10465972 DOI: 10.1016/j.gde.2023.102063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
X-chromosome inactivation (XCI) has evolved in mammals to compensate for the difference in X-chromosomal dosage between the sexes. In placental mammals, XCI is initiated during early embryonic development through upregulation of the long noncoding RNA Xist from one randomly chosen X chromosome in each female cell. The Xist locus must thus integrate both X-linked and developmental trans-regulatory factors in a dosage-dependent manner. Furthermore, the two alleles must coordinate to ensure inactivation of exactly one X chromosome per cell. In this review, we summarize the regulatory principles that govern the onset of XCI. We go on to provide an overview over the factors that have been implicated in Xist regulation and discuss recent advances in our understanding of how Xist's cis-regulatory landscape integrates information in a precise fashion.
Collapse
Affiliation(s)
- Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany. https://twitter.com/@TSchwammle
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
12
|
Wu S, Ren K, Zhao J, Li J, Jia B, Wu X, Dou Y, Fei X, Huan Y, He X, Wang T, Lv W, Wang L, Wang Y, Zhao J, Fei Z, Li S. LncRNA GAS5 represses stemness and malignancy of gliomas via elevating the SPACA6-miR-125a/let-7e Axis. Front Oncol 2022; 12:803652. [PMID: 36106122 PMCID: PMC9465381 DOI: 10.3389/fonc.2022.803652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is a highly invasive neurological malignancy with poor prognosis. LncRNA-GAS5 (growth arrest-specific transcript 5) is a tumor suppressor involved in multiple cancers. In this study, we explored the clinical significance, biological function, and underlying mechanisms of GAS5 in GBM. We showed that lncRNA-GAS5 expression decreased in high-grade glioma tissues and cells, which might be associated with poor prognosis. GAS5 overexpression lowered cell viability, suppressed GBM cell migration and invasion, and impaired the stemness and proliferation of glioma stem cells (GSCs). We further discovered that GAS5 inhibited the viability of glioma cells through miR-let-7e and miR-125a by protecting SPACA6 from degradation. Moreover, GAS5 played an anti-oncogenic role in GBM through the combined involvement of let-7e and miR-125a in vivo and in vitro. Notably, these two miRNAs block the IL-6/STAT3 pathway in tumor tissues extracted from a xenograft model. Taken together, our study provides evidence for an important role of GAS5 in GBM by affecting the proliferation and migration of GSCs, thus providing a new potential prognostic biomarker and treatment strategy for GBM.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Jing Zhao
- Department of Anesthesiology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Tingting Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yan’gang Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| |
Collapse
|
13
|
Winek K, Tzur Y, Soreq H. Biological underpinnings of sex differences in neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:27-67. [PMID: 36038206 DOI: 10.1016/bs.irn.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Single-cell analysis reveals X upregulation is not global in pre-gastrulation embryos. iScience 2022; 25:104465. [PMID: 35707719 PMCID: PMC9189126 DOI: 10.1016/j.isci.2022.104465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
In mammals, transcriptional inactivation of one X chromosome in female compensates for the dosage of X-linked gene expression between the sexes. Additionally, it is believed that the upregulation of active X chromosome in male and female balances the dosage of X-linked gene expression relative to autosomal genes, as proposed by Ohno. However, the existence of X chromosome upregulation (XCU) remains controversial. Here, we have profiled gene-wise dynamics of XCU in pre-gastrulation mouse embryos at single-cell level and found that XCU is dynamically linked with X chromosome inactivation (XCI); however, XCU is not global like XCI. Moreover, we show that upregulated genes are enriched with activating marks and have enhanced burst frequency. Finally, our In-silico model predicts that recruitment probabilities of activating factors and a surge of these factors upon X-inactivation trigger XCU. Altogether, our study provides significant insight into the gene-wise dynamics and mechanistic basis of XCU during early development and extends support for Ohno’s hypothesis. X-upregulation coincides with X chromosome inactivation in pre-gastrulation embryos X-upregulation is not chromosome-wide like X-inactivation Upregulated genes have enhanced burst frequency and are enriched with activating marks A surge of activating factors on X-inactivation triggers X-upregulation
Collapse
|
15
|
Dossin F, Heard E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb Perspect Biol 2022; 14:a040196. [PMID: 34312245 PMCID: PMC9121902 DOI: 10.1101/cshperspect.a040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.
Collapse
Affiliation(s)
- François Dossin
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| |
Collapse
|
16
|
Substoichiometric action of long noncoding RNAs. Nat Cell Biol 2022; 24:608-615. [PMID: 35562482 DOI: 10.1038/s41556-022-00911-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
Low expression levels and stoichiometric imbalances of long noncoding RNAs (lncRNAs) are often used as evidence for their probable lack of function or for limiting the scope of their potential influence. Recent advances in our understanding of the substoichiometric functions of lncRNAs challenge these notions and suggest routes through which unabundant lncRNAs can affect cellular functions and gene regulatory networks.
Collapse
|
17
|
Lentini A, Cheng H, Noble JC, Papanicolaou N, Coucoravas C, Andrews N, Deng Q, Enge M, Reinius B. Elastic dosage compensation by X-chromosome upregulation. Nat Commun 2022; 13:1854. [PMID: 35388014 PMCID: PMC8987076 DOI: 10.1038/s41467-022-29414-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
X-chromosome inactivation and X-upregulation are the fundamental modes of chromosome-wide gene regulation that collectively achieve dosage compensation in mammals, but the regulatory link between the two remains elusive and the X-upregulation dynamics are unknown. Here, we use allele-resolved single-cell RNA-seq combined with chromatin accessibility profiling and finely dissect their separate effects on RNA levels during mouse development. Surprisingly, we uncover that X-upregulation elastically tunes expression dosage in a sex- and lineage-specific manner, and moreover along varying degrees of X-inactivation progression. Male blastomeres achieve X-upregulation upon zygotic genome activation while females experience two distinct waves of upregulation, upon imprinted and random X-inactivation; and ablation of Xist impedes female X-upregulation. Female cells carrying two active X chromosomes lack upregulation, yet their collective RNA output exceeds that of a single hyperactive allele. Importantly, this conflicts the conventional dosage compensation model in which naïve female cells are initially subject to biallelic X-upregulation followed by X-inactivation of one allele to correct the X dosage. Together, our study provides key insights to the chain of events of dosage compensation, explaining how transcript copy numbers can remain remarkably stable across developmental windows wherein severe dose imbalance would otherwise be experienced by the cell.
Collapse
Affiliation(s)
- Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Huaitao Cheng
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J C Noble
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Natali Papanicolaou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nathanael Andrews
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Xist spatially amplifies SHARP/SPEN recruitment to balance chromosome-wide silencing and specificity to the X chromosome. Nat Struct Mol Biol 2022; 29:239-249. [PMID: 35301492 DOI: 10.1038/s41594-022-00739-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
Although thousands of long non-coding RNAs (lncRNAs) are encoded in mammalian genomes, their mechanisms of action are poorly understood, in part because they are often expressed at lower levels than their proposed targets. One such lncRNA is Xist, which mediates chromosome-wide gene silencing on one of the two X chromosomes (X) to achieve gene expression balance between males and females. How a limited number of Xist molecules can mediate robust silencing of a much larger number of target genes while maintaining specificity exclusively to genes on the X within each cell is not well understood. Here, we show that Xist drives non-stoichiometric recruitment of the essential silencing protein SHARP (also known as SPEN) to amplify its abundance across the inactive X, including at regions not directly occupied by Xist. This amplification is achieved through concentration-dependent homotypic assemblies of SHARP on the X and is required for chromosome-wide silencing. Expression of Xist at higher levels leads to increased localization at autosomal regions, demonstrating that low levels of Xist are critical for ensuring its specificity to the X. We show that Xist (through SHARP) acts to suppress production of its own RNA which may act to constrain overall RNA levels and restrict its ability to spread beyond the X. Together, our results demonstrate a spatial amplification mechanism that allows Xist to achieve two essential but countervailing regulatory objectives: chromosome-wide gene silencing and specificity to the X. This suggests a more general mechanism by which other low-abundance lncRNAs could balance specificity to, and robust control of, their regulatory targets.
Collapse
|
19
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
20
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Markaki Y, Gan Chong J, Wang Y, Jacobson EC, Luong C, Tan SYX, Jachowicz JW, Strehle M, Maestrini D, Banerjee AK, Mistry BA, Dror I, Dossin F, Schöneberg J, Heard E, Guttman M, Chou T, Plath K. Xist nucleates local protein gradients to propagate silencing across the X chromosome. Cell 2021; 184:6174-6192.e32. [PMID: 34813726 PMCID: PMC8671326 DOI: 10.1016/j.cell.2021.10.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
The lncRNA Xist forms ∼50 diffraction-limited foci to transcriptionally silence one X chromosome. How this small number of RNA foci and interacting proteins regulate a much larger number of X-linked genes is unknown. We show that Xist foci are locally confined, contain ∼2 RNA molecules, and nucleate supramolecular complexes (SMACs) that include many copies of the critical silencing protein SPEN. Aggregation and exchange of SMAC proteins generate local protein gradients that regulate broad, proximal chromatin regions. Partitioning of numerous SPEN molecules into SMACs is mediated by their intrinsically disordered regions and essential for transcriptional repression. Polycomb deposition via SMACs induces chromatin compaction and the increase in SMACs density around genes, which propagates silencing across the X chromosome. Our findings introduce a mechanism for functional nuclear compartmentalization whereby crowding of transcriptional and architectural regulators enables the silencing of many target genes by few RNA molecules.
Collapse
Affiliation(s)
- Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Johnny Gan Chong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuying Wang
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christy Luong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Y X Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joanna W Jachowicz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Davide Maestrini
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bhaven A Mistry
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Claremont McKenna College, Claremont, CA 91711, USA
| | - Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Francois Dossin
- European Molecular Biology Laboratory, Director's Unit, Heidelberg 69117, Germany
| | - Johannes Schöneberg
- Departments of Pharmacology & Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, Heidelberg 69117, Germany
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tom Chou
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
|