1
|
Wu W, Ma F, Zhang X, Tan Y, Han T, Ding J, Wu J, Xing W, Wu B, Huang D, Zhang S, Xu Y, Song S. Research Progress on Viruses of Passiflora edulis. BIOLOGY 2024; 13:839. [PMID: 39452147 PMCID: PMC11506102 DOI: 10.3390/biology13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Passiflora edulis, also known as passion fruit, is celebrated for its rich nutritional content, distinctive flavour, and significant medicinal benefits. At present, viral diseases pose a major challenge to the passion fruit industry, affecting both the production and quality of the fruit. These diseases impede the sustainable and healthy growth of the passion fruit sector. In recent years, with the expansion of P. edulis cultivation areas, virus mutations, and advances in virus detection technology, an increasing number of virus species infecting P. edulis have been discovered. To date, more than 40 different virus species have been identified; however, there are different strains within the same virus. This poses a challenge for the control and prevention of P. edulis virus disease. Therefore, this review discusses the different types of viruses and their characteristics, modes of transmission, and effects on the growth of the passion fruit plant, as well as the mechanisms of virus generation and preventive measures, with the hope that these discussions will provide a comprehensive understanding of and countermeasures for viruses in passion fruit.
Collapse
Affiliation(s)
- Wenhua Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Funing Ma
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Xiaoyan Zhang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
| | - Yuxin Tan
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Te Han
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Jing Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Juyou Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Dongmei Huang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| | - Shun Song
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| |
Collapse
|
2
|
Sattar MN, Almaghasla MI, Tahir MN, El-Ganainy SM, Chellappan BV, Arshad M, Drou N. High-throughput sequencing discovered diverse monopartite and bipartite begomoviruses infecting cucumbers in Saudi Arabia. FRONTIERS IN PLANT SCIENCE 2024; 15:1375405. [PMID: 39450090 PMCID: PMC11499130 DOI: 10.3389/fpls.2024.1375405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Limited research in Saudi Arabia has devolved into the prevalence and genetic diversity of begomoviruses. Utilizing Illumina MiSeq sequencing, we obtained 21 full-length begomovirus sequences (2.7-2.8 kb) from eight cucumber plants grown in fields and greenhouses. We found that two complete begomovirus genomes were variants of the Boushehr strain of tomato yellow leaf curl virus (TYLCV) with nucleotide (nt) sequence identities of 94.7-95.9%. Another full-length genome was a variant of TYLCV-Iran with 94.6% identity. Five full-length sequences closely matched the DNA-A of watermelon chlorotic stunt virus (WmCSV) isolates with 97.9-98.7% nt sequence identities, while five sequences had their highest nt sequence identities (95.8-96.3%) with the DNA-B of WmCSV isolates. Simultaneously, four sequences were 99.1-99.6% identical to the DNA-A of tomato leaf curl Palampur virus (ToLCPalV). Four sequences matched the DNA-B of ToLCPalV reported from Iran and Saudi Arabia with identities ranging from 96.2-100%. Four plants showed a mixed infection of these begomoviruses. Most ORFs showed evidence of negative selection pressure, suggesting that purifying selection plays a crucial role in shaping the diversity of these begomoviruses. Additionally, potential intra- and interspecies recombination events were detected in the TYLCV and WmCSV DNA-B genomic regions. The ToLCPalV isolates identified in this study formed a cluster with the other ToLCPalV isolates reported from Saudi Arabia, Iran and Iraq, representing a unique lineage distinct from ToLCPalV reported from Southeast Asia. High mutation rate and robust selection facilitated the independent evolution of ToLCPalV without recombination. Overall, this study offers valuable insights into the diversity and evolutionary dynamics of begomoviruses infecting cucumber crops in Al-Ahsa, Saudi Arabia.
Collapse
Affiliation(s)
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Nouman Tahir
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Crespo-Bellido A, Hoyer JS, Burgos-Amengual Y, Duffy S. Phylogeographic analysis of Begomovirus coat and replication-associated proteins. J Gen Virol 2024; 105:002037. [PMID: 39446128 PMCID: PMC11500754 DOI: 10.1099/jgv.0.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Begomoviruses are globally distributed plant pathogens that significantly limit crop production. These viruses are traditionally described according to phylogeographic distribution and categorized into two groups: begomoviruses from the Africa, Asia, Europe and Oceania (AAEO) region and begomoviruses from the Americas. Monopartite begomoviruses are more common in the AAEO region, while bipartite viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene involved in inter-cellular movement and RNA silencing suppression found in AAEO begomoviruses. While these features are generally accepted as lineage-defining, the number of known species has doubled due to sequence-based discovery since 2010. To re-evaluate the geographic groupings after the rapid expansion of the genus, we conducted phylogenetic analyses for begomovirus species representatives of the two longest and most conserved begomovirus proteins: the coat and replication-associated proteins. Both proteins still largely support the broad AAEO and Americas begomovirus groupings, except for sweet potato-infecting begomoviruses that form an independent, well-supported clade for their coat protein regardless of the region they were isolated from. Our analyses do not support more fine-scaled phylogeographic groupings. Monopartite and bipartite genome organizations are broadly interchanged throughout the phylogenies, and the absence of the V2/AV2 gene is highly reflective of the split between Americas and AAEO begomoviruses. We observe significant evidence of recombination within the Americas and within the AAEO region but rarely between the regions. We speculate that increased globalization of agricultural trade, the invasion of polyphagous whitefly vector biotypes and recombination will blur begomovirus phylogeographic delineations in the future.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Yeissette Burgos-Amengual
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Diksha D, Sidharthan VK, Baranwal VK. Identification of a novel monopartite begomovirus associated with leaf curl disease of Citharexylum spinosum in India. Virus Genes 2024; 60:568-571. [PMID: 38935183 DOI: 10.1007/s11262-024-02087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
The present study reports the complete genome of a novel monopartite begomovirus, named tentatively as "Citharexylum leaf curl virus" (CitLCuV), associated with leaf curl disease of Citharexylum spinosum in India. CitLCuV genome (2767 nucleotide) contained the typical genome organization of Old World begomoviruses and shared the maximum nucleotide sequence identity of 89.7% with a papaya leaf crumple virus (PaLCrV) isolate. In addition, two small non-canonical open reading frames (C5 and C6) were determined in the complementary strand of CitLCuV genome. Phylogenetic analysis revealed the relatedness of CitLCuV to PaLCrV and rose leaf curl virus. Recombination analysis detected a possible recombination event in CitLCuV genome. Based on begomovirus species demarcation criteria, CitLCuV can be regarded as a novel begomoviral species.
Collapse
Affiliation(s)
- Damini Diksha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
5
|
Yin ZN, Han PY, Han TT, Huang Y, Yang JJ, Zhang MS, Fang M, Zhong K, Zhang J, Lu QY. V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus. Int J Mol Sci 2024; 25:10521. [PMID: 39408850 PMCID: PMC11476850 DOI: 10.3390/ijms251910521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5'-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.
Collapse
Affiliation(s)
- Zhen-Ni Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Pei-Yu Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Tao-Tao Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Ying Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Jing-Jing Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Meng-Si Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Miao Fang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kui Zhong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Quan-You Lu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
6
|
Zhang J, Yuan L, Li D, Yang X, Li J, Wu Z, Du Z. The C5 protein of euphorbia leaf curl virus is a virulence factor and gene silencing suppressor. Virology 2024; 600:110252. [PMID: 39383774 DOI: 10.1016/j.virol.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
The genome of a monopartite begomovirus, or the DNA-A component of a bipartite begomovirus, typically encodes six proteins: two on the viral strand (AV1/V1 and AV2/V2) and four on the complementary strand (AC1/C1, AC2/C2, AC3/C3, AC4/C4). Recent studies, however, have identified additional begomoviral proteins with various functions. This paper reports that euphorbia leaf curl virus (EuLCV), a monopartite begomovirus, encodes a seventh protein, C5. Promoter activity of the upstream fragment of the EuLCV C5 gene was shown using a GUS expression vector. EuLCV C5 also enhanced the pathogenicity and accumulation of potato virus X (PVX) in Nicotiana benthamiana. Localization studies revealed that EuLCV C5 localizes to the cytoplasm and nucleus, forming granular structures on the cell membrane. Additionally, C5 acts as a post-transcriptional gene silencing (PTGS) suppressor. A C5 deletion mutant of EuLCV (EuLCV-ΔC5) exhibited reduced pathogenicity and viral accumulation compared to wild-type EuLCV in N. benthamiana.
Collapse
Affiliation(s)
- Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Linkai Yuan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingshan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Jayanthi P, Geetanjali AS. Molecular characterization to study the genetic diversity of begomoviruses occurring in the major chilli growing areas of Tamil Nadu state of India. Int Microbiol 2024:10.1007/s10123-024-00580-0. [PMID: 39230779 DOI: 10.1007/s10123-024-00580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Chilli leaf curl disease (ChiLCD), which is a significant problem in chilli cultivation, is caused by begomoviruses that are transmitted by the whitefly Bemisia tabaci. This disease leads to severe impacts on crop yields. To determine the incidence of begomovirus in the chilli crop, infected chilli leaf samples exhibiting symptoms such as curling, yellowing, reduced leaf size, and overall stunted growth were collected from various districts of Tamil Nadu, namely, Coimbatore, Dharmapuri, Kancheepuram, Karur, Salem, Krishnagiri, Thoothukudi, Thiruvallur, Tiruchirappalli, Virudhunagar, Tiruvannamalai, Tenkasi, and Vellore, during the years 2018-2022. To determine the complete genome sequence of the begomoviruses, the rolling circle amplification (RCA) method was used to clone and sequence the begomovirus genomes from the chilli samples collected from various districts of Tamil Nadu. Here we characterized 17 DNA A genome sequences and 12 betasatellite sequences. BLAST results of the DNA A genome sequences revealed nucleotide identities ranging from 94.2 to 99.7% with five distinct begomovirus species of chilli, namely, chilli leaf curl Salem virus (HM007119), chilli leaf curl virus Bhavanisagar (NC_055130), chilli leaf curl Ahmedabad virus (MW795666), chilli leaf curl virus (NC_055131), and chilli leaf curl Sri Lanka virus (JN555600). BLAST results of the betasatellite sequences showed nucleotide identities of 96 to 98.8% with the tomato leaf curl Bangladesh betasatellite (MZ151286). In the present study, five distinct begomovirus species and one associated betasatellite were found to infect chilli crops in Tamil Nadu. This finding indicates a changing pattern of begomovirus occurrence in the different districts of Tamil Nadu. This study highlights the prevalence of chilli-infecting begomoviruses in the major chilli growing districts of Tamil Nadu, the identification of begomovirus species, and the significance of understanding and managing these viruses to safeguard chilli cultivation in the region.
Collapse
Affiliation(s)
- P Jayanthi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - A Swapna Geetanjali
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Wu G, Chen J, Wang A, Yan F. Unveiling the viroporin arsenal in plant viruses: Implications for the future. PLoS Pathog 2024; 20:e1012473. [PMID: 39235994 PMCID: PMC11376509 DOI: 10.1371/journal.ppat.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Lozano-Durán R. Viral Recognition and Evasion in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:655-677. [PMID: 39038248 DOI: 10.1146/annurev-arplant-060223-030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University Tübingen, Tübingen, Germany;
| |
Collapse
|
10
|
Sun Z, Wu YX, Liu LZ, Tian YP, Li XD, Geng C. P3N-PIPO but not P3 is the avirulence determinant in melon carrying the Wmr resistance against watermelon mosaic virus, although they contain a common genetic determinant. J Virol 2024; 98:e0050724. [PMID: 38775482 PMCID: PMC11237411 DOI: 10.1128/jvi.00507-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024] Open
Abstract
Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Xuan Wu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ling-Zhi Liu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan-Ping Tian
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, China
| | - Chao Geng
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
11
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
12
|
Chen Y, Guo S, Jiang L, Yan F, Hao K, Wang Z, An M, Xia Z, Li F, Zhou X, Wu Y. Molecular characterization and pathogenicity of a novel monopartite geminivirus infecting tobacco in China. Virology 2024; 594:110061. [PMID: 38518441 DOI: 10.1016/j.virol.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
The occurrence of geminiviruses causes significant economic losses in many economically important crops. In this study, a novel geminivirus isolated from tobacco in Sichuan province of China, named tomato leaf curl Chuxiong virus (TLCCxV), was characterized by small RNA-based deep sequencing. The full-length of TLCCxV genome was determined to be 2744 nucleotides (nt) encoding six open reading frames. Phylogenetic and genome-wide pairwise identity analysis revealed that TLCCxV shared less than 91% identities with reported geminiviruses. A TLCCxV infectious clone was constructed and successfully infected Nicotiana benthamiana, N. tabacum, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants. Furthermore, expression of the V2, C1 and C4 proteins through a potato virus X vector caused severe chlorosis or necrosis symptom in N. benthamiana. Taken together, we identified a new geminivirus in tobacco plants, and found that V2, C1 and C4 contribute to symptom development.
Collapse
Affiliation(s)
- Yuan Chen
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shiping Guo
- Sichuan Tobacco Company, Chengdu, Sichuan, 610000, China
| | - Lianqiang Jiang
- Liangshan Branch of Sichuan Tobacco Company, Xichang, Sichuan, 615000, China
| | - Fangfang Yan
- Panzhihua Branch of Sichuan Tobacco Company, Panzhihua, Sichuan, 617000, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
13
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
15
|
Prasad A, Sharma S, Prasad M. Deeper look into viruses: replication intermediates do code! PLANT CELL REPORTS 2024; 43:52. [PMID: 38308009 DOI: 10.1007/s00299-023-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
16
|
Han TT, Tang JX, Fang M, Zhang P, Han PY, Yin ZN, Ma Y, Zhang J, Lu QY. Two genes encoded by mulberry crinkle leaf virus (MCLV): The V4 gene enhances viral replication, and the V5 gene is needed for MCLV infection in Nicotiana benthamiana. Virus Res 2024; 339:199288. [PMID: 38043724 PMCID: PMC10751690 DOI: 10.1016/j.virusres.2023.199288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Mulberry crinkle leaf virus (MCLV) is a member of the genus Mulcrilevirus, family Geminiviridae. The expression and functions of the V4 and V5 genes encoded by the MCLV genome remain unknown. Here, we confirmed the expression of V4 and V5 by analyzing the V4 and V5 mRNAs and the promoter activity of individual ORFs upstream sequences. The functions of V4 and V5 were investigated by constructing Agrobacterium-mediated infectious clones of wild-type MCLV variant П (MCLV vII), MCLVwt and MCLV vП mutants, such as MCLVmV4 (start codon of V4 ORF mutated), MCLVdV4 (5'-end partial deletion of V4 ORF sequence) and MCLVmV5 (V5 ORF start codon mutated). Although MCLVwt, MCLVmV4, and MCLVdV4 could infect natural host mulberry and experimental tomato plants systematically, the replication of the MCLVmV4 and MCLVdV4 genomes was obviously reduced compared to MCLVwt in both mulberry and tomato plants. MCLV vП expressing V5 could infect Nicotiana benthamiana plants systematically, but MCLVmV5 could not, implying that V5 is needed for MCLV vП to infect N. benthamiana plants. Taken together, V4 is involved in replication of the MCLV genome in host plants, and V5 potentially might extend the host range. Our findings lay a foundation for in-depth insight into the functions of MCLV-encoded proteins and provide a novel perspective for the subsequent study of MCLV-host plant interactions.
Collapse
Affiliation(s)
- Tao-Tao Han
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jia-Xuan Tang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Miao Fang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Peng Zhang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Pei-Yu Han
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Zhen-Ni Yin
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yu Ma
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jian Zhang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Quan-You Lu
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
17
|
Li F, Jia M, Wang A. Hidden viral proteins: How powerful are they? PLoS Pathog 2024; 20:e1011905. [PMID: 38236814 PMCID: PMC10795976 DOI: 10.1371/journal.ppat.1011905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
18
|
Cheng X, Wu X, Fang R. The minus strand of positive-sense RNA viruses encodes small proteins. Trends Microbiol 2024; 32:6-7. [PMID: 37951770 DOI: 10.1016/j.tim.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
It is widely accepted that the minus strands of positive single-strand RNA (+ssRNA) viruses function as replication templates only. Gong et al. revealed that the minus strand of two unrelated +ssRNA viruses encodes proteins. This textbook-changing discovery calls for the reconsideration of the molecular mechanisms underlying the infection cycle of +ssRNA viruses.
Collapse
Affiliation(s)
- Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030 Harbin, Heilongjiang, China.
| | - Xiaoyun Wu
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030 Harbin, Heilongjiang, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Romero-Rodríguez B, Petek M, Jiao C, Križnik M, Zagorščak M, Fei Z, Bejarano ER, Gruden K, Castillo AG. Transcriptional and epigenetic changes during tomato yellow leaf curl virus infection in tomato. BMC PLANT BIOLOGY 2023; 23:651. [PMID: 38110861 PMCID: PMC10726652 DOI: 10.1186/s12870-023-04534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
Collapse
Affiliation(s)
- Beatriz Romero-Rodríguez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- The Key Lab of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain.
| |
Collapse
|
20
|
Shafiq M, Ondrasek G, Al-Sadi AM, Shahid MS. Molecular Signature of a Novel Alternanthera Yellow Vein Virus Variant Infecting the Ageratum conyzoides Weed in Oman. Viruses 2023; 15:2381. [PMID: 38140622 PMCID: PMC10747960 DOI: 10.3390/v15122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Alternanthera yellow vein virus (AlYVV), a monopartite begomovirus, has been identified infecting a diverse range of crops and native plants in Pakistan, India, and China. However, distinctive yellow vein symptoms, characteristic of begomovirus infection, were observed on the Ageratum conyzoides weed in Oman, prompting a thorough genomic characterization in this study. The results unveiled a complete genome sequence of 2745 base pairs and an associated betasatellite spanning 1345 base pairs. In addition, Sequence Demarcation Tool analyses indicated the highest nucleotide identity of 92.8% with a previously reported AlYVV-[IN_abalpur_A_17:LC316182] strain, whereas the betasatellite exhibited a 99.8% nucleotide identity with isolates of tomato leaf curl betasatellite. Thus, our findings propose a novel AlYVV Oman virus (AlYVV-OM) variant, emphasizing the need for additional epidemiological surveillance to understand its prevalence and significance in Oman and the broader region. To effectively manage the spread of AlYVV-OM and minimize its potential harm to (agro)ecosystems, future research should focus on elucidating the genetic diversity of AlYVV-OM and its interactions with other begomoviruses.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetosimunska Cesta 25, 10000 Zagreb, Croatia
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
21
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
22
|
Zhang W, Liu S, Xie G, Li X, Zhai Y, Lin W, Wu Z, Du Z, Zhang J. Size Restriction Is Required for Proper Functioning of a Bipartite Begomovirus AC4 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:774-778. [PMID: 37665597 DOI: 10.1094/mpmi-02-23-0020-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many geminiviruses, including members of the genus Begomovirus, produce a protein known as C4 or AC4. Whereas C4/AC4 typically consists of more than 80 amino acid residues, a few are much shorter. The significance of these shorter C4/AC4 proteins in viral infection and why the virus maintains their abbreviated length is not yet understood. The AC4 of the begomovirus Tomato leaf curl Hsinchu virus contains only 65 amino acids, but it extends to 96 amino acids when the natural termination codon is replaced with a normal codon. We discovered that both interrupting and extending AC4 were harmful to tomato leaf curl Hsinchu virus (ToLCHsV). The extended AC4 (EAC4) also showed a reduced ability to promote the infection of the heterologous virus Potato virus X than the wild-type AC4. When the wild-type AC4 was fused with yellow fluorescent protein (AC4-YFP), it was predominantly found in chloroplasts, whereas EAC4-YFP was mainly localized to the cell periphery. These results suggest that ToLCHsV's AC4 protein is important for viral infection, and the virus may benefit from the abbreviated length, because it may lead to chloroplast localization. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenwen Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shunmin Liu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318020, China
| | - Guohui Xie
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuyu Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhai
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhong Lin
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Gong P, Shen Q, Zhang M, Qiao R, Jiang J, Su L, Zhao S, Fu S, Ma Y, Ge L, Wang Y, Lozano-Durán R, Wang A, Li F, Zhou X. Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. MOLECULAR PLANT 2023; 16:1794-1810. [PMID: 37777826 DOI: 10.1016/j.molp.2023.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses, the most abundant viruses of eukaryotes in nature, require the synthesis of negative-sense RNA (-RNA) using their genomic (positive-sense) RNA (+RNA) as a template for replication. Based on current evidence, viral proteins are translated via viral +RNAs, whereas -RNA is considered to be a viral replication intermediate without coding capacity. Here, we report that plant and animal +ssRNA viruses contain small open reading frames (ORFs) in their -RNA (reverse ORFs [rORFs]). Using turnip mosaic virus (TuMV) as a model for plant +ssRNA viruses, we demonstrate that small proteins encoded by rORFs display specific subcellular localizations, and confirm the presence of rORF2 in infected cells through mass spectrometry analysis. The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes. The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase, and mutation of rORF2 completely abolishes virus infection, whereas ectopic expression of rORF2 rescues the mutant virus. Furthermore, we show that several rORFs in the -RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have the ability to suppress type I interferon production and facilitate the infection of vesicular stomatitis virus. In addition, we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs. Taken together, these findings indicate that the -RNA of +ssRNA viruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection, revealing a viral proteome larger than previously thought.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Su
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Rajabu CA, Dallas MM, Chiunga E, De León L, Ateka EM, Tairo F, Ndunguru J, Ascencio-Ibanez JT, Hanley-Bowdoin L. SEGS-1 a cassava genomic sequence increases the severity of African cassava mosaic virus infection in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1250105. [PMID: 37915512 PMCID: PMC10616593 DOI: 10.3389/fpls.2023.1250105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.
Collapse
Affiliation(s)
- Cyprian A. Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Evangelista Chiunga
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Elijah M. Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fred Tairo
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Joseph Ndunguru
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Jose T. Ascencio-Ibanez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
25
|
Galewski PJ, Majumdar R, Lebar MD, Strausbaugh CA, Eujayl IA. Combined Omics Approaches Reveal Distinct Mechanisms of Resistance and/or Susceptibility in Sugar Beet Double Haploid Genotypes at Early Stages of Beet Curly Top Virus Infection. Int J Mol Sci 2023; 24:15013. [PMID: 37834460 PMCID: PMC10573692 DOI: 10.3390/ijms241915013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed. Using BCTV resistant (R) [KDH13; Line 13 and KDH4-9; Line 4] and susceptible (S) [KDH19-17; Line 19] lines, beet leafhopper mediated natural infection, mRNA/sRNA sequencing, and metabolite analyses, potential mechanisms of resistance against the virus and vector were identified. At early infection stages (2- and 6-days post inoculation), examples of differentially expressed genes highly up-regulated in the 'R' lines (vs. 'S') included EL10Ac5g10437 (inhibitor of trypsin and hageman factor), EL10Ac6g14635 (jasmonate-induced protein), EL10Ac3g06016 (ribosome related), EL10Ac2g02812 (probable prolyl 4-hydroxylase 10), etc. Pathway enrichment analysis showed differentially expressed genes were predominantly involved with peroxisome, amino acids metabolism, fatty acid degradation, amino/nucleotide sugar metabolism, etc. Metabolite analysis revealed significantly higher amounts of specific isoflavonoid O-glycosides, flavonoid 8-C glycosides, triterpenoid, and iridoid-O-glycosides in the leaves of the 'R' lines (vs. 'S'). These data suggest that a combination of transcriptional regulation and production of putative antiviral metabolites might contribute to BCTV resistance. In addition, genome divergence among BCTV strains differentially affects the production of small non-coding RNAs (sncRNAs) and small peptides which may potentially affect pathogenicity and disease symptom development.
Collapse
Affiliation(s)
- Paul J. Galewski
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
- Plant Germplasm Introduction and Testing Research Unit, United States Department of Agriculture—Agricultural Research Service, Pullman, WA 99164, USA
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture—Agricultural Research Service, New Orleans, LA 70179, USA;
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Imad A. Eujayl
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| |
Collapse
|
26
|
Guo Q, Sun Y, Ji C, Kong Z, Liu Z, Li Y, Li Y, Lai H. Plant resistance to tomato yellow leaf curl virus is enhanced by Bacillus amyloliquefaciens Ba13 through modulation of RNA interference. Front Microbiol 2023; 14:1251698. [PMID: 37869663 PMCID: PMC10587425 DOI: 10.3389/fmicb.2023.1251698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Tomato yellow leaf curl virus (TYLCV), which is a typical member of the genus Begomovirus, causes severe crop yield losses worldwide. RNA interference (RNAi) is an important antiviral defense mechanism in plants, but whether plant beneficial microbes used as biocontrol agents would modulate RNAi in defense against TYLCV remains unclear. Methods Here, we employed whole-transcriptome, bisulfite, and small RNA sequencing to decipher the possible role of Bacillus amyloliquefaciens Ba13 as a bacterial biocontrol agent against TYLCV in RNAi modulation. Results Potted tomato plants were exposed to whiteflies for natural viral infection 14 days after bacterial inoculation. Compared with non-inoculated controls, the abundance of TYLCV gene in the leaves of inoculated plants decreased by 70.1% at 28 days post-infection, which mirrored the pattern observed for plant disease index. The expression of the ARGONAUTE family genes (e.g., AGO3, AGO4, AGO5, and AGO7) involved in antiviral defense markedly increased by 2.44-6.73-fold following bacterial inoculation. The methylation level at CpG site 228 (in the open reading frame region of the RNA interference suppressing gene AV2) and site 461 (in the open reading frame regions of AV1 and AV2) was 183.1 and 63.0% higher in inoculated plants than in non-inoculated controls, respectively. The abundances of 10 small interfering RNAs matched to the TYLCV genome were all reduced in inoculated plants, accompanied by enhancement of photosystem and auxin response pathways. Discussion The results indicate that the application of Ba. amyloliquefaciens Ba13 enhances plant resistance to TYLCV through RNAi modulation by upregulating RNAi-related gene expression and enhancing viral genome methylation.
Collapse
Affiliation(s)
- Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Chenglong Ji
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Zirong Kong
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Zhe Liu
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, China
| |
Collapse
|
27
|
Zhang L, Wang S, Ruan S, Nzabanita C, Wang Y, Guo L. A Mycovirus VIGS Vector Confers Hypovirulence to a Plant Pathogenic Fungus to Control Wheat FHB. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302606. [PMID: 37587761 PMCID: PMC10582431 DOI: 10.1002/advs.202302606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Mycovirus-mediated hypovirulence has the potential to control fungal diseases. However, the availability of hypovirulence-conferring mycoviruses for plant fungal disease control is limited as most fungal viruses are asymptomatic. In this study, the virus-induced gene silencing (VIGS) vector p26-D4 of Fusarium graminearum gemytripvirus 1 (FgGMTV1), a tripartite circular single-stranded DNA mycovirus, is successfully constructed to convert the causal fungus of cereal Fusarium head blight (FHB) into a hypovirulent strain. p26-D4, with an insert of a 75-150 bp fragment of the target reporter transgene transcript in both sense and antisense orientations, efficiently triggered gene silencing in Fusarium graminearum. Notably, the two hypovirulent strains, p26-D4-Tri101, and p26-D4-FgPP1, obtained by silencing the virulence-related genes Tri101 and FgPP1 with p26-D4, can be used as biocontrol agents to protect wheat from a fungal disease FHB and mycotoxin contamination at the field level. This study not only describes the first mycovirus-derived VIGS system but also proves that the VIGS vector can be used to establish multiple hypovirulent strains to control pathogenic fungi.
Collapse
Affiliation(s)
- Lihang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Shaojian Ruan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Clement Nzabanita
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Yanfei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
28
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
29
|
Lin W, Qiu P, Xu Y, Chen L, Wu Z, Zhang J, Du Z. Transcription start site mapping of geminiviruses using the in vitro cap-snatching of a tenuivirus. J Virol Methods 2023; 319:114757. [PMID: 37257758 DOI: 10.1016/j.jviromet.2023.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Geminiviruses are a family of single-stranded DNA viruses that cause significant yield losses in crop production worldwide. Transcription start site (TSS) mapping is crucial in understanding the gene expression mechanisms of geminiviruses. However, this often requires costly and laborious experiments. Rice stripe virus (RSV) has a mechanism called cap-snatching, whereby it cleaves cellular mRNAs and uses the 5' cleavage product, a capped-RNA leader (CRL), as primers for transcription. Our previous work demonstrated that RSV snatches CRLs from geminiviral mRNAs in co-infected plants, providing a convenient and powerful approach to map the TSSs of geminiviruses. However, co-infections are not always feasible for all geminiviruses. In this study, we evaluated the use of in vitro cap-snatching of RSV for the same purpose, using tomato yellow leaf curl virus (TYLCV) as an example. We incubated RNA extracted from TYLCV-infected plants with purified RSV ribonucleoproteins in a reaction mixture that supports in vitro cap-snatching of RSV. The RSV mRNAs produced in the reaction were deep sequenced. The CRLs snatched by RSV allowed us to locate 28 TSSs in TYLCV. These results provide support for using RSV's in vitro cap-snatching to map geminiviral TSSs.
Collapse
Affiliation(s)
- Wenzhong Lin
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ping Qiu
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yixing Xu
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Lihong Chen
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Zujian Wu
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhang
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Zhenguo Du
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
30
|
Zhao S, Gong P, Liu J, Liu H, Lozano-Durán R, Zhou X, Li F. Geminivirus C5 proteins mediate formation of virus complexes at plasmodesmata for viral intercellular movement. PLANT PHYSIOLOGY 2023; 193:322-338. [PMID: 37306279 DOI: 10.1093/plphys/kiad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Movement proteins (MPs) encoded by plant viruses deliver viral genomes to plasmodesmata (PD) to ensure intracellular and intercellular transport. However, how the MPs encoded by monopartite geminiviruses are targeted to PD is obscure. Here, we demonstrate that the C5 protein of tomato yellow leaf curl virus (TYLCV) anchors to PD during the viral infection following trafficking from the nucleus along microfilaments in Nicotiana benthamiana. C5 could move between cells and partially complement the traffic of a movement-deficient turnip mosaic virus (TuMV) mutant (TuMV-GFP-P3N-PIPO-m1) into adjacent cells. The TYLCV-C5 null mutant (TYLCV-mC5) attenuates viral pathogenicity and decreases viral DNA and protein accumulation, and ectopic overexpression of C5 enhances viral DNA accumulation. Interaction assays between TYLCV-C5 and the other eight viral proteins described in TYLCV reveal that C5 associates with C2 in the nucleus and with V2 in the cytoplasm and at PD. The V2 protein is mainly localized in the nucleus and cytoplasmic granules when expressed alone; in contrast, V2 forms small punctate granules at PD when co-expressed with C5 or in TYLCV-infected cells. The interaction of V2 and C5 also facilitates their nuclear export. Furthermore, C5-mediated PD localization of V2 is conserved in two other geminiviruses. Therefore, this study solves a long-sought-after functional connection between PD and the geminivirus movement and improves our understanding of geminivirus-encoded MPs and their potential cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen D-72076, Germany
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
32
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
33
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Liu H, Chang Z, Zhao S, Gong P, Zhang M, Lozano-Durán R, Yan H, Zhou X, Li F. Functional identification of a novel C7 protein of tomato yellow leaf curl virus. Virology 2023; 585:117-126. [PMID: 37331112 DOI: 10.1016/j.virol.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a monopartite geminivirus, and one of the most devastating plant viruses in the world. TYLCV is traditionally known to encode six viral proteins in bidirectional and partially overlapping open reading frames (ORFs). However, recent studies have shown that TYLCV encodes additional small proteins with specific subcellular localizations and potential virulence functions. Here, a novel protein named C7, encoded by a newly-described ORF in the complementary strand, was identified as part of the TYLCV proteome using mass spectrometry. The C7 protein localized to the nucleus and cytoplasm, both in the absence and presence of the virus. C7 was found to interact with two other TYLCV-encoded proteins: with C2 in the nucleus, and with V2 in the cytoplasm, forming conspicuous granules. Mutation of C7 start codon ATG to ACG to block the translation of C7 delayed the onset of viral infection, and the mutant virus caused milder virus symptoms and less accumulations of viral DNAs and proteins. Using the potato virus X (PVX)-based recombinant vector, we found that ectopic overexpression of C7 resulted in more severe mosaic symptoms and promoted a higher accumulation of PVX-encoded coat protein in the late virus infection stage. In addition, C7 was also found to inhibit GFP-induced RNA silencing moderately. This study demonstrates that the novel C7 protein encoded by TYLCV is a pathogenicity factor and a weak RNA silencing suppressor, and that it plays a critical role during TYLCV infection.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaoyang Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
36
|
Zwolinski AM, Brigden A, Rey MEC. Differences in the 3' intergenic region and the V2 protein of two sequence variants of tomato curly stunt virus play an important role in disease pathology in Nicotiana benthamiana. PLoS One 2023; 18:e0286149. [PMID: 37220127 PMCID: PMC10205009 DOI: 10.1371/journal.pone.0286149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Tomato production in South Africa is threatened by the emergence of tomato curly stunt virus (ToCSV), a monopartite Begomovirus transmitted by the whitefly vector Bemisia tabaci (Genn.). We investigated the role of sequence differences present in the 3' intergenic region (IR) and the V2 coding region on the differing infectivity of ToCSV sequence variant isolates V30 and V22 in the model host Nicotiana benthamiana. Using virus mutant chimeras, we determined that the development of the upward leaf roll symptom phenotype is mediated by sequence differences present in the 3' IR containing the TATA-associated composite element. Sequence differences present in the V2 coding region are responsible for modulating disease severity and symptom recovery in V22-infected plants. Serine substitution of V22 V2 Val27 resulted in a significant increase in disease severity with reduced recovery, the first study to demonstrate the importance of this V2 residue in disease development. Two putative ORFs, C5 and C6, were identified using in silico analysis and detection of an RNA transcript spanning their coding region suggests that these ORFs may be transcribed during infection. Additional virus-derived RNA transcripts spanning multiple ORFs and crossing the boundaries of recognised polycistronic transcripts, as well as the origin of replication within the IR, were detected in ToCSV-infected plants providing evidence of bidirectional readthrough transcription. From our results, we conclude that the diverse responses of the model host to ToCSV infection is influenced by select sequence differences and our findings provide several avenues for further investigation into the mechanisms behind these responses to infection.
Collapse
Affiliation(s)
- Alexander M. Zwolinski
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Brigden
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie E. C. Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
38
|
Sangeeta, Kumar RV, Yadav BK, Bhatt BS, Krishna R, Krishnan N, Karkute SG, Kumar S, Singh B, Singh AK. Diverse begomovirus-betasatellite complexes cause tomato leaf curl disease in the western India. Virus Res 2023; 328:199079. [PMID: 36813240 PMCID: PMC10194379 DOI: 10.1016/j.virusres.2023.199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
In the Indian sub-continent, tomato leaf curl disease (ToLCD) of tomato caused by begomoviruses has emerged as a major limiting factor for tomato cultivation. Despite the spread of this disease in the western India, a systematic study on the characterization of virus complexes with ToLCD is lacking. Here, we report the identification of a complex of begomoviruses including 19 DNA-A and 4 DNA-B as well as 15 betasatellites with ToLCD in the western part of the country. Additionally, a novel betasatellite and an alphasatellite were also identified. The recombination breakpoints were detected in the cloned begomoviruses and betasatellites. The cloned infectious DNA constructs cause disease on the tomato (a moderately virus-resistant cultivar) plants, thus fulfilling Koch's postulates for these virus complexes. Further, the role of non-cognate DNA B/betasatellite with ToLCD-associated begomoviruses on disease development was demonstrated. It also emphasizes the evolutionary potential of these virus complexes in breaking disease resistance and plausible expansion of its host range. This necessitates to investigate the mechanism of the interaction between resistance breaking virus complexes and the infected host.
Collapse
Affiliation(s)
- Sangeeta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Present address-Department of Science & Technology, Gujarat Council of Science & Technology, Gandhinagar, Gujarat 382 011, India
| | - R Vinoth Kumar
- Department of Biotechnology, College of Science & Humanities, SRM Institute of Science & Technology, Ramapuram, Chennai, Tamil Nadu 600 089, India
| | - Brijesh K Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Faculty of Education and Methodology, Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan 303 122, India
| | - Bhavin S Bhatt
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Faculty of Science, Sarvajanik University, Surat, Gujarat 395 001, India
| | - Ram Krishna
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Nagendran Krishnan
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Suhas G Karkute
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Sudhir Kumar
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Bijendra Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Achuit K Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India.
| |
Collapse
|
39
|
Siskos L, Antoniou M, Riado J, Enciso M, Garcia C, Liberti D, Esselink D, Baranovskiy AG, Tahirov TH, Visser RGF, Kormelink R, Bai Y, Schouten HJ. DNA primase large subunit is an essential plant gene for geminiviruses, putatively priming viral ss-DNA replication. FRONTIERS IN PLANT SCIENCE 2023; 14:1130723. [PMID: 37008458 PMCID: PMC10064052 DOI: 10.3389/fpls.2023.1130723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The family of Geminiviridae consists of more than 500 circular single-stranded (ss) DNA viral species that can infect numerous dicot and monocot plants. Geminiviruses replicate their genome in the nucleus of a plant cell, taking advantage of the host's DNA replication machinery. For converting their DNA into double-stranded DNA, and subsequent replication, these viruses rely on host DNA polymerases. However, the priming of the very first step of this process, i.e. the conversion of incoming circular ssDNA into a dsDNA molecule, has remained elusive for almost 30 years. In this study, sequencing of melon (Cucumis melo) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit (PRiL) of all accessions that exhibited resistance upon a challenge with ToLCNDV. Silencing of (native) Nicotiana benthamiana PriL and subsequent challenging with three different geminiviruses showed a severe reduction in titers of all three viruses, altogether emphasizing an important role of PRiL in geminiviral replication. A model is presented explaining the role of PriL during initiation of geminiviral DNA replication, i.e. as a regulatory subunit of primase that generates an RNA primer at the onset of DNA replication in analogy to DNA Primase-mediated initiation of DNA replication in all living organisms.
Collapse
Affiliation(s)
- Lampros Siskos
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Maria Antoniou
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jose Riado
- Sakata Vegetables Europe, Almeria, Spain
| | | | | | | | - Danny Esselink
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Andrey G. Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
40
|
Zhong X, Li J, Yang L, Wu X, Xu H, Hu T, Wang Y, Wang Y, Wang Z. Genome-wide identification and expression analysis of wall-associated kinase (WAK) and WAK-like kinase gene family in response to tomato yellow leaf curl virus infection in Nicotiana benthamiana. BMC PLANT BIOLOGY 2023; 23:146. [PMID: 36927306 PMCID: PMC10021985 DOI: 10.1186/s12870-023-04112-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) is a major monopartite virus in the family Geminiviridae and has caused severe yield losses in tomato and tobacco planting areas worldwide. Wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) are a subfamily of the receptor-like kinase family implicated in cell wall signaling and transmitting extracellular signals to the cytoplasm, thereby regulating plant growth and development and resistance to abiotic and biotic stresses. Recently, many studies on WAK/WAKL family genes have been performed in various plants under different stresses; however, identification and functional survey of the WAK/WAKL gene family of Nicotiana benthamiana have not yet been performed, even though its genome has been sequenced for several years. Therefore, in this study, we aimed to identify the WAK/WAKL gene family in N. benthamiana and explore their possible functions in response to TYLCV infection. RESULTS Thirty-eight putative WAK/WAKL genes were identified and named according to their locations in N. benthamiana. Phylogenetic analysis showed that NbWAK/WAKLs are clustered into five groups. The protein motifs and gene structure compositions of NbWAK/WAKLs appear to be highly conserved among the phylogenetic groups. Numerous cis-acting elements involved in phytohormone and/or stress responses were detected in the promoter regions of NbWAK/WAKLs. Moreover, gene expression analysis revealed that most of the NbWAK/WAKLs are expressed in at least one of the examined tissues, suggesting their possible roles in regulating the growth and development of plants. Virus-induced gene silencing and quantitative PCR analyses demonstrated that NbWAK/WAKLs are implicated in regulating the response of N. benthamiana to TYLCV, ten of which were dramatically upregulated in locally or systemically infected leaves of N. benthamiana following TYLCV infection. CONCLUSIONS Our study lays an essential base for the further exploration of the potential functions of NbWAK/WAKLs in plant growth and development and response to viral infections in N. benthamiana.
Collapse
Affiliation(s)
- Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Hong Xu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yajun Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| |
Collapse
|
41
|
Zhang J, Ma M, Liu Y, Ismayil A. Plant Defense and Viral Counter-Defense during Plant-Geminivirus Interactions. Viruses 2023; 15:v15020510. [PMID: 36851725 PMCID: PMC9964946 DOI: 10.3390/v15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Geminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections. In this review, we discuss recent findings about plant defense and viral counter-defense during plant-geminivirus interactions.
Collapse
Affiliation(s)
- Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengyuan Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence:
| |
Collapse
|
42
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
43
|
Yu J, Jiang W, Zhu SB, Liao Z, Dou X, Liu J, Guo FB, Dong C. Prediction of protein-coding small ORFs in multi-species using integrated sequence-derived features and the random forest model. Methods 2023; 210:10-19. [PMID: 36621557 DOI: 10.1016/j.ymeth.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Proteins encoded by small open reading frames (sORFs) can serve as functional elements playing important roles in vivo. Such sORFs also constitute the potential pool for facilitating the de novo gene birth, driving evolutionary innovation and species diversity. Therefore, their theoretical and experimental identification has become a critical issue. Herein, we proposed a protein-coding sORFs prediction method merely based on integrative sequence-derived features. Our prediction performance is better or comparable compared with other nine prevalent methods, which shows that our method can provide a relatively reliable research tool for the prediction of protein-coding sORFs. Our method allows users to estimate the potential expression of a queried sORF, which has been demonstrated by the correlation analysis between our possibility estimation and codon adaption index (CAI). Based on the features that we used, we demonstrated that the sequence features of the protein-coding sORFs in the two domains have significant differences implying that it might be a relatively hard task in terms of cross-domain prediction, hence domain-specific models were developed, which allowed users to predict protein-coding sORFs both in eukaryotes and prokaryotes. Finally, a web-server was developed and provided to boost and facilitate the study of the related field, which is freely available at http://guolab.whu.edu.cn/codingCapacity/index.html.
Collapse
Affiliation(s)
- Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Wenwen Jiang
- Department of Bioinformatics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sen-Bin Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhen Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xianghua Dou
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Feng-Biao Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Chuan Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
44
|
Bupi N, Sangaraju VK, Phan LT, Lal A, Vo TTB, Ho PT, Qureshi MA, Tabassum M, Lee S, Manavalan B. An Effective Integrated Machine Learning Framework for Identifying Severity of Tomato Yellow Leaf Curl Virus and Their Experimental Validation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0016. [PMID: 36930763 PMCID: PMC10013792 DOI: 10.34133/research.0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 01/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development of machine learning (ML)-based models using characterized sequences and evaluating blind predictions is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an integrated computational framework for the accurate identification of symptoms (mild or severe) based on TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different feature encodings and hybrid features from the training data and then explored 8 different classifiers and developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, whose predicted class labels were combined and considered as reduced features. On the basis of these features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.
Collapse
Affiliation(s)
- Nattanong Bupi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Vinoth Kumar Sangaraju
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Quadros AFF, Ferro CG, de Rezende RR, Godinho MT, Xavier CAD, Nogueira AM, Alfenas-Zerbini P, Zerbini FM. Begomovirus populations in single plants are complex and may include both well-adapted and poorly-adapted viruses. Virus Res 2023; 323:198969. [PMID: 36257487 PMCID: PMC10194161 DOI: 10.1016/j.virusres.2022.198969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.
Collapse
Affiliation(s)
- Ayane F F Quadros
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rafael R de Rezende
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - César A D Xavier
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Angélica M Nogueira
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P Alfenas-Zerbini
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
46
|
Dubey D, Hoyer JS, Duffy S. Limited role of recombination in the global diversification of begomovirus DNA-B proteins. Virus Res 2023; 323:198959. [PMID: 36209920 PMCID: PMC10194223 DOI: 10.1016/j.virusres.2022.198959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Approximately half of the characterized begomoviruses have bipartite genomes, but the second genomic segment, the DNA-B, is understudied relative to the DNA-A, which is homologous to the entire genome of monopartite begomoviruses. We examined the evolutionary history of the two proteins encoded by the DNA-B, the genes of which make up ∼60% of the DNA-B segment, from all bipartite begomovirus species. Our dataset of 131 movement protein (MP) and nuclear shuttle protein (NSP) sequences confirmed the deep split between Old World (OW) and New World (NW) species, and showed strong support for deep, congruent branches among the OW sequences of the MP and NSP. NW sequences were much less diverse and had poor phylogenetic resolution; over half of nodes in both the NSP and MP NW clades were supported by <50% bootstrap support. This poor resolution hampered our ability to detect incongruent phylogenies between the MP and NSP datasets, and we found no statistical evidence for recombination within our MP and NSP datasets. Finally, we quantified the sequence diversity between the NW and OW proteins, showing that the NW MP has particularly low diversity, suggesting it has been subject to different evolutionary pressures than the NW NSP.
Collapse
Affiliation(s)
- Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - J Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
47
|
Zhang M, Cao B, Zhang H, Fan Z, Zhou X, Li F. Geminivirus satellite-encoded βC1 activates UPR, induces bZIP60 nuclear export, and manipulates the expression of bZIP60 downstream genes to benefit virus infection. SCIENCE CHINA LIFE SCIENCES 2022:10.1007/s11427-022-2196-y. [DOI: 10.1007/s11427-022-2196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
|
48
|
Guo Y, Jia MA, Li S, Li F. Geminiviruses boost active DNA demethylation for counter-defense. Trends Microbiol 2022; 30:1121-1124. [PMID: 35249803 DOI: 10.1016/j.tim.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
DNA methylation regulates gene expression under abiotic and biotic stresses. Recently, Gui et al. discovered that geminiviruses subverted DNA methylation-mediated defense through boosting the active DNA demethylation mediated by host DNA glycosylases to promote viral virulence. Their findings reveal a distinctive counter-defense strategy exploited by invading pathogens to achieve successful infection.
Collapse
Affiliation(s)
- Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China
| | - Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
49
|
Gorovits R, Shteinberg M, Anfoka G, Czosnek H. Exploiting Virus Infection to Protect Plants from Abiotic Stresses: Tomato Protection by a Begomovirus. PLANTS (BASEL, SWITZERLAND) 2022; 11:2944. [PMID: 36365396 PMCID: PMC9657025 DOI: 10.3390/plants11212944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Tomato cultivation is threatened by environmental stresses (e.g., heat, drought) and by viral infection (mainly viruses belonging to the tomato yellow leaf curl virus family-TYLCVs). Unlike many RNA viruses, TYLCV infection does not induce a hypersensitive response and cell death in tomato plants. To ensure a successful infection, TYLCV preserves a suitable cellular environment where it can reproduce. Infected plants experience a mild stress, undergo adaptation and become partially "ready" to exposure to other environmental stresses. Plant wilting and cessation of growth caused by heat and drought is suppressed by TYLCV infection, mainly by down-regulating the heat shock transcription factors, HSFA1, HSFA2, HSFB1 and consequently, the expression of HSF-regulated stress genes. In particular, TYLCV captures HSFA2 by inducing protein complexes and aggregates, thus attenuating an acute stress response, which otherwise causes plant death. Viral infection mitigates the increase in stress-induced metabolites, such as carbohydrates and amino acids, and leads to their reallocation from shoots to roots. Under high temperatures and water deficit, TYLCV induces plant cellular homeostasis, promoting host survival. Thus, this virus-plant interaction is beneficial for both partners.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Moshe Shteinberg
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ghandi Anfoka
- Faculty of Agricultural Technology, Al Balqa’ University, Al-Salt 10117, Jordan
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
50
|
Wang L, Tan H, Medina-Puche L, Wu M, Garnelo Gomez B, Gao M, Shi C, Jimenez-Gongora T, Fan P, Ding X, Zhang D, Ding Y, Rosas-Díaz T, Liu Y, Aguilar E, Fu X, Lozano-Durán R. Combinatorial interactions between viral proteins expand the potential functional landscape of the tomato yellow leaf curl virus proteome. PLoS Pathog 2022; 18:e1010909. [PMID: 36256684 PMCID: PMC9633003 DOI: 10.1371/journal.ppat.1010909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/03/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size restrictions, viral genomes have reduced genetic space; how the action of the limited number of viral proteins results in the cell reprogramming observed during the infection is a long-standing question. Here, we explore the hypothesis that combinatorial interactions may expand the functional landscape of the viral proteome. We show that the proteins encoded by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physically associate with one another in an intricate network, as detected by a number of protein-protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein interactions can modify the subcellular localization of the proteins involved. Using one particular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-concept, we demonstrate that the combination of viral proteins leads to novel transcriptional effects on the host cell. Taken together, our results underscore the importance of studying viral protein function in the context of the infection. We propose a model in which viral proteins might have evolved to extensively interact with other elements within the viral proteome, enlarging the potential functional landscape available to the pathogen. Viruses are obligate intracellular parasites that depend on the molecular machinery of their host cell to complete their life cycle. For this purpose, viruses co-opt host processes, modulating or redirecting them. Most viruses have small genomes, and hence limited coding capacity. During the viral invasion, virus-encoded proteins will be produced in large amounts and coexist in the infected cell, which enables physical or functional interactions among viral proteins, potentially expanding the virus-host functional interface by increasing the number of potential targets in the host cell and/or synergistically modulating the cellular environment. Examples of interactions between viral proteins have been recently documented for both animal and plant viruses; however, the hypothesis that viral proteins might have a combinatorial effect, which would lead to the acquisition of novel functions, lacks systematic experimental validation. Here, we use the geminivirus tomato yellow leaf curl virus (TYLCV), a plant-infecting virus with reduced proteome and causing devastating diseases in crops, to test the idea that combinatorial interactions between viral proteins exist and might underlie an expansion of the functional landscape of the viral proteome. Our results indicate that viral proteins prevalently interact with one another in the context of the infection, which can result in the acquisition of novel functions.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Borja Garnelo Gomez
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Gao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tábata Rosas-Díaz
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yujing Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
- * E-mail:
| |
Collapse
|