1
|
Gutierrez B, Tsui JLH, Pullano G, Mazzoli M, Gangavarapu K, Inward RPD, Bajaj S, Evans Pena R, Busch-Moreno S, Suchard MA, Pybus OG, Dunner A, Puentes R, Ayala S, Fernandez J, Araos R, Ferres L, Colizza V, Kraemer MUG. Routes of importation and spatial dynamics of SARS-CoV-2 variants during localized interventions in Chile. PNAS NEXUS 2024; 3:pgae483. [PMID: 39525554 PMCID: PMC11547135 DOI: 10.1093/pnasnexus/pgae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Human mobility is strongly associated with the spread of SARS-CoV-2 via air travel on an international scale and with population mixing and the number of people moving between locations on a local scale. However, these conclusions are drawn mostly from observations in the context of the global north where international and domestic connectivity is heavily influenced by the air travel network; scenarios where land-based mobility can also dominate viral spread remain understudied. Furthermore, research on the effects of nonpharmaceutical interventions (NPIs) has mostly focused on national- or regional-scale implementations, leaving gaps in our understanding of the potential benefits of implementing NPIs at higher granularity. Here, we use Chile as a model to explore the role of human mobility on disease spread within the global south; the country implemented a systematic genomic surveillance program and NPIs at a very high spatial granularity. We combine viral genomic data, anonymized human mobility data from mobile phones and official records of international travelers entering the country to characterize the routes of importation of different variants, the relative contributions of airport and land border importations, and the real-time impact of the country's mobility network on the diffusion of SARS-CoV-2. The introduction of variants which are dominant in neighboring countries (and not detected through airport genomic surveillance) is predicted by land border crossings and not by air travelers, and the strength of connectivity between comunas (Chile's lowest administrative divisions) predicts the time of arrival of imported lineages to new locations. A higher stringency of local NPIs was also associated with fewer domestic viral importations. Our analysis sheds light on the drivers of emerging respiratory infectious disease spread outside of air travel and on the consequences of disrupting regular movement patterns at lower spatial scales.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Joseph L -H Tsui
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Giulia Pullano
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
| | - Mattia Mazzoli
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- ISI Foundation, 10126 Turin, Italy
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rhys P D Inward
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Rosario Evans Pena
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Simon Busch-Moreno
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Marc A Suchard
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Pathobiology and Population Science, Royal Veterinary College, London AL9 7TA, United Kingdom
| | | | - Rodrigo Puentes
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Salvador Ayala
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Jorge Fernandez
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Rafael Araos
- Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, 7610671 Santiago, Chile
| | - Leo Ferres
- ISI Foundation, 10126 Turin, Italy
- Data Science Institute, Universidad del Desarrollo, 7610671 Santiago, Chile
- Telefónica, 7500775 Santiago, Chile
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
2
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Vasylyeva TI, Havens JL, Wang JC, Luoma E, Hassler GW, Amin H, Di Lonardo S, Taki F, Omoregie E, Hughes S, Wertheim JO. The role of socio-economic disparities in the relative success and persistence of SARS-CoV-2 variants in New York City in early 2021. PLoS Pathog 2024; 20:e1012288. [PMID: 38900824 PMCID: PMC11218943 DOI: 10.1371/journal.ppat.1012288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/02/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024] Open
Abstract
Socio-economic disparities were associated with disproportionate viral incidence between neighborhoods of New York City (NYC) during the first wave of SARS-CoV-2. We investigated how these disparities affected the co-circulation of SARS-CoV-2 variants during the second wave in NYC. We tested for correlation between the prevalence, in late 2020/early 2021, of Alpha, Iota, Iota with E484K mutation (Iota-E484K), and B.1-like genomes and pre-existing immunity (seropositivity) in NYC neighborhoods. In the context of varying seroprevalence we described socio-economic profiles of neighborhoods and performed migration and lineage persistence analyses using a Bayesian phylogeographical framework. Seropositivity was greater in areas with high poverty and a larger proportion of Black and Hispanic or Latino residents. Seropositivity was positively correlated with the proportion of Iota-E484K and Iota genomes, and negatively correlated with the proportion of Alpha and B.1-like genomes. The proportion of persisting Alpha lineages declined over time in locations with high seroprevalence, whereas the proportion of persisting Iota-E484K lineages remained the same in high seroprevalence areas. During the second wave, the geographic variation of standing immunity, due to disproportionate disease burden during the first wave of SARS-CoV-2 in NYC, allowed for the immune evasive Iota-E484K variant, but not the more transmissible Alpha variant, to circulate in locations with high pre-existing immunity.
Collapse
Affiliation(s)
- Tetyana I. Vasylyeva
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, California, United States of America
| | - Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Jade C. Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Elizabeth Luoma
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Gabriel W. Hassler
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Helly Amin
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Steve Di Lonardo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Faten Taki
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Enoma Omoregie
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants. Infection 2024; 52:767-786. [PMID: 38554253 PMCID: PMC11143066 DOI: 10.1007/s15010-024-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
The COVID-19 pandemic has affected hundreds of millions of individuals and caused more than six million deaths. The prolonged pandemic duration and the continual inter-individual transmissibility have contributed to the emergence of a wide variety of SARS-CoV-2 variants. Genomic surveillance and phylogenetic studies have shown that substantial mutations in crucial supersites of spike glycoprotein modulate the binding affinity of the evolved SARS-COV-2 lineages to ACE2 receptors and modify the binding of spike protein with neutralizing antibodies. The immunological spike mutations have been associated with differential transmissibility, infectivity, and therapeutic efficacy of the vaccines and the immunological therapies among the new variants. This review highlights the diverse genetic mutations assimilated in various SARS-CoV-2 variants. The implications of the acquired mutations related to viral transmission, infectivity, and COVID-19 severity are discussed. This review also addresses the effectiveness of human neutralizing antibodies induced by SARS-CoV-2 infection or immunization and the therapeutic antibodies against the ascended variants.
Collapse
Affiliation(s)
- Dima Hattab
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Zina M Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Liu Y, Sapoval N, Gallego-García P, Tomás L, Posada D, Treangen TJ, Stadler LB. Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater. Nat Commun 2024; 15:4545. [PMID: 38806450 PMCID: PMC11133379 DOI: 10.1038/s41467-024-48334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
7
|
Crone MA, Hakki S, Fenn J, Zhou J, de Oliveira CR, Madon KJ, Koycheva A, Badhan A, Jonnerby J, Nevin S, Conibear E, Derelle R, Varro R, Luca C, Ahmad S, Zambon M, Barclay WS, Dunning J, Freemont PS, Taylor GP, Lalvani A. Rapid emergence of transmissible SARS-CoV-2 variants in mild community cases. Microbiol Spectr 2024; 12:e0363423. [PMID: 38483161 PMCID: PMC10986593 DOI: 10.1128/spectrum.03634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Michael A. Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom
- London Biofoundry, Imperial College Translation and Innovation Hub, London, United Kingdom
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Joe Fenn
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jie Zhou
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Kieran J. Madon
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aleksandra Koycheva
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anjna Badhan
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jakob Jonnerby
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sean Nevin
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emily Conibear
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Varro
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Constanta Luca
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Shazaad Ahmad
- Department of Virology, Manchester Medical Microbiology Partnership, Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Maria Zambon
- UK Health Security Agency, London, United Kingdom
| | - Wendy S. Barclay
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jake Dunning
- UK Health Security Agency, London, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Oxford, Oxford, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom
- London Biofoundry, Imperial College Translation and Innovation Hub, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
9
|
Giron CC, Laaksonen A, Barroso da Silva FL. Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. J Biomol Struct Dyn 2023; 41:5707-5727. [PMID: 35815535 DOI: 10.1080/07391102.2022.2095305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 remains a health threat with the continuous emergence of new variants. This work aims to expand the knowledge about the SARS-CoV-2 receptor-binding domain (RBD) interactions with cell receptors and monoclonal antibodies (mAbs). By using constant-pH Monte Carlo simulations, the free energy of interactions between the RBD from different variants and several partners (Angiotensin-Converting Enzyme-2 (ACE2) polymorphisms and various mAbs) were predicted. Computed RBD-ACE2-binding affinities were higher for two ACE2 polymorphisms (rs142984500 and rs4646116) typically found in Europeans which indicates a genetic susceptibility. This is amplified for Omicron (BA.1) and its sublineages BA.2 and BA.3. The antibody landscape was computationally investigated with the largest set of mAbs so far in the literature. From the 32 studied binders, groups of mAbs were identified from weak to strong binding affinities (e.g. S2K146). These mAbs with strong binding capacity and especially their combination are amenable to experimentation and clinical trials because of their high predicted binding affinities and possible neutralization potential for current known virus mutations and a universal coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, PR China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Dellicour S, Hong SL, Hill V, Dimartino D, Marier C, Zappile P, Harkins GW, Lemey P, Baele G, Duerr R, Heguy A. Variant-specific introduction and dispersal dynamics of SARS-CoV-2 in New York City - from Alpha to Omicron. PLoS Pathog 2023; 19:e1011348. [PMID: 37071654 PMCID: PMC10180688 DOI: 10.1371/journal.ppat.1011348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/12/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Dacia Dimartino
- Genome Technology Center, Office for Science and Research, NYU Langone Health, New York, New York, United States of America
| | - Christian Marier
- Genome Technology Center, Office for Science and Research, NYU Langone Health, New York, New York, United States of America
| | - Paul Zappile
- Genome Technology Center, Office for Science and Research, NYU Langone Health, New York, New York, United States of America
| | - Gordon W. Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, United States of America
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States of America
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Adriana Heguy
- Genome Technology Center, Office for Science and Research, NYU Langone Health, New York, New York, United States of America
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
11
|
Neamtu A, Mocci F, Laaksonen A, Barroso da Silva FL. Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. Colloids Surf B Biointerfaces 2023; 221:112986. [PMID: 36375294 PMCID: PMC9617679 DOI: 10.1016/j.colsurfb.2022.112986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its here optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs structures were initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be the best against all SARS-CoV-2 variants. Surprisingly, all 10 candidates and the native CR3022 exhibited a higher affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling the affinity and complex building. Studied mAbs carrying a more negative total net charge show a higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a strategy for designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, Str. Universitatii nr. 16, 700051 Iasi, România; TRANSCEND Centre - Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot, Nr. 2-4 Iași, România
| | - Francesca Mocci
- University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41 A, 700487 Iasi, Romania; University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. café, s/no - campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
12
|
Hernandez S, Nguyen PV, Azmain T, Piantadosi A, Waggoner JJ. SARS-CoV-2 genotyping and sequencing following a simple and economical RNA extraction and storage protocol. PLoS One 2023; 18:e0280577. [PMID: 36656914 PMCID: PMC9851494 DOI: 10.1371/journal.pone.0280577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Since the beginning of the SARS-CoV-2 pandemic, supply chain shortages have caused major disruptions in sourcing the materials needed for laboratory-based molecular assays. With increasing demand for molecular testing, these disruptions have limited testing capacity and hindered efforts to mitigate spread of the virus and new variants. Here we evaluate an economical and reliable protocol for the extraction and short-term ambient temperature storage of SARS-CoV-2 RNA. Additional objectives of the study were to evaluate RNA from this protocol for 1) detection of single nucleotide polymorphisms (SNPs) in the spike gene and 2) whole genome sequencing of SARS-CoV-2. The RNAES protocol was evaluated with residual nasopharyngeal (NP) samples collected from Emory Healthcare and Emory Student Health services. All RNAES extractions were performed in duplicate and once with a commercial extraction robot for comparison. Following extraction, eluates were immediately tested by rRT-PCR. SARS-CoV-2 RNA was successfully detected in 56/60 (93.3%) RNAES replicates, and Ct values corresponded with comparator results. Upon testing in spike SNP assays, three genotypes were identified, and all variant calls were consistent with those previously obtained after commercial extraction. Additionally, the SARS-RNAES protocol yield eluate pure enough for downstream whole genome sequencing, and results were consistent with SARS-CoV-2 whole genome sequencing of eluates matched for Ct value. With reproducible results across a range of virus concentrations, the SARS-RNAES protocol could help increase SARS-CoV-2 diagnostic testing and monitoring for emerging variants in resource-constrained communities.
Collapse
Affiliation(s)
- Sarah Hernandez
- Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Phuong-Vi Nguyen
- Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Taz Azmain
- Emory University Department of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, Georgia, United States of America
| | - Anne Piantadosi
- Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
- Emory University Department of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, Georgia, United States of America
| | - Jesse J. Waggoner
- Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Department of Global Health, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mathez G, Pillonel T, Bertelli C, Cagno V. Alpha and Omicron SARS-CoV-2 Adaptation in an Upper Respiratory Tract Model. Viruses 2022; 15:13. [PMID: 36680054 PMCID: PMC9864588 DOI: 10.3390/v15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing an unprecedented pandemic. Although vaccines and antivirals are limiting the spread, SARS-CoV-2 is still under selective pressure in human and animal populations, as demonstrated by the emergence of variants of concern. To better understand the driving forces leading to new subtypes of SARS-CoV-2, we infected an ex vivo cell model of the human upper respiratory tract with Alpha and Omicron BA.1 variants for one month. Although viral RNA was detected during the entire course of the infection, infectious virus production decreased over time. Sequencing analysis did not show any adaptation in the spike protein, suggesting a key role for the adaptive immune response or adaptation to other anatomical sites for the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
14
|
Velu P, Cong L, Rand S, Qiu Y, Zhang Z, Zhang J, Guo J, Ruggiero P, Sukhu A, Fauntleroy K, Imada E, Zanettini C, Brundage D, Westblade L, Marchionni L, Cushing MM, Rennert H. Rapid detection of SARS-CoV-2 variants of concern by single nucleotide polymorphism genotyping using TaqMan assays. Diagn Microbiol Infect Dis 2022; 104:115789. [PMID: 36122486 PMCID: PMC9392658 DOI: 10.1016/j.diagmicrobio.2022.115789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
We evaluated the performance of SARS-CoV-2 TaqMan real-time reverse-transcription PCR (RT-qPCR) assays (ThermoFisher) for detecting 2 nonsynonymous spike protein mutations, E484K and N501Y. Assay accuracy was evaluated by whole genome sequencing (WGS). Residual nasopharyngeal SARS-CoV-2 positive samples (N = 510) from a diverse patient population in New York City submitted for routine SARS-CoV-2 testing during January-April 2020 were used. We detected 91 (18%) N501Y and 101 (20%) E484K variants. Four samples (0.8%) were positive for both variants. The assay had nearly perfect concordance with WGS in the validation subset, detecting B.1.1.7 and B.1.526 variants among others. Sensitivity and specificity ranged from 0.95 to 1.00. Positive and negative predictive values were 0.98-1.00. TaqMan genotyping successfully predicted the presence of B.1.1.7, but had significantly lower sensitivity, 62% (95% CI, 0.53, 0.71), for predicting B.1.526 sub-lineages lacking E484K. This approach is rapid and accurate for detecting SARS-CoV-2 variants and can be rapidly implemented in routine clinical setting.
Collapse
Affiliation(s)
- Priya Velu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lin Cong
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Sophie Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yuqing Qiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhengmao Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jianxuan Zhang
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Jianfen Guo
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Phyllis Ruggiero
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Ashley Sukhu
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Kathy Fauntleroy
- NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Eddie Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Brundage
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hanna Rennert
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Zeng HL, Liu Y, Dichio V, Aurell E. Temporal epistasis inference from more than 3 500 000 SARS-CoV-2 genomic sequences. Phys Rev E 2022; 106:044409. [PMID: 36397507 DOI: 10.1103/physreve.106.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We use direct coupling analysis (DCA) to determine epistatic interactions between loci of variability of the SARS-CoV-2 virus, segmenting genomes by month of sampling. We use full-length, high-quality genomes from the GISAID repository up to October 2021 for a total of over 3 500 000 genomes. We find that DCA terms are more stable over time than correlations but nevertheless change over time as mutations disappear from the global population or reach fixation. Correlations are enriched for phylogenetic effects, and in particularly statistical dependencies at short genomic distances, while DCA brings out links at longer genomic distance. We discuss the validity of a DCA analysis under these conditions in terms of a transient auasilinkage equilibrium state. We identify putative epistatic interaction mutations involving loci in spike.
Collapse
Affiliation(s)
- Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing 210023, China
| | - Yue Liu
- School of Science, Nanjing University of Posts and Telecommunications, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing 210023, China
| | - Vito Dichio
- Inria Paris, Aramis Project Team, Paris 75013, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Erik Aurell
- Department of Computational Science and Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
17
|
Candido KL, Eich CR, de Fariña LO, Kadowaki MK, da Conceição Silva JL, Maller A, Simão RDCG. Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Braz J Microbiol 2022; 53:1133-1157. [PMID: 35397075 PMCID: PMC8994061 DOI: 10.1007/s42770-022-00743-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
The scientific community has been alarmed by the possible immunological evasion, higher infectivity, and severity of disease caused by the newest variants of SARS-CoV-2. The spike protein has an important role in the cellular invasion of viruses and is the target of several vaccines and therapeutic resources, such as monoclonal antibodies. In addition, some of the most relevant mutations in the different variants are on the spike (S) protein gene sequence that leads to structural alterations in the predicted protein, thus causing concern about the protection mediated by vaccines against these new strains. The present review highlights the most recent knowledge about COVID-19 and vaccines, emphasizing the different spike protein structures of SARS-CoV-2 and updating the reader about the emerging viral variants and their classifications, the more common viral mutations described and their distribution in Brazil. It also compiles a table with the most recent knowledge about all of the Omicron spike mutations.
Collapse
Affiliation(s)
- Kattlyn Laryssa Candido
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Caio Ricardo Eich
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Luciana Oliveira de Fariña
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Marina Kimiko Kadowaki
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - José Luis da Conceição Silva
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Alexandre Maller
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Rita de Cássia Garcia Simão
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| |
Collapse
|
18
|
Sapoval N, Liu Y, Lou EG, Hopkins L, Ensor KB, Schneider R, Stadler LB, Treangen TJ. QuaID: Enabling Earlier Detection of Recently Emerged SARS-CoV-2 Variants of Concern in Wastewater. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.09.08.21263279. [PMID: 35898338 PMCID: PMC9327636 DOI: 10.1101/2021.09.08.21263279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variants of concern (VoC) in communities. Multiple recent studies support that wastewater-based SARS-CoV-2 detection of circulating VoC can precede clinical cases by up to two weeks. Furthermore, wastewater based epidemiology enables wide population-based screening and study of viral evolutionary dynamics. However, highly sensitive detection of emerging variants remains a complex task due to the pooled nature of environmental samples and genetic material degradation. In this paper we propose quasi-unique mutations for VoC identification, implemented in a novel bioinformatics tool (QuaID) for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3 week earlier VoC detection compared to existing approaches, (ii) enables more sensitive VoC detection, which is shown to be tolerant of >50% mutation drop-out, and (iii) leverages all mutational signatures, including insertions & deletions.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yunxi Liu
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
19
|
De Marco C, Veneziano C, Massacci A, Pallocca M, Marascio N, Quirino A, Barreca GS, Giancotti A, Gallo L, Lamberti AG, Quaresima B, Santamaria G, Biamonte F, Scicchitano S, Trecarichi EM, Russo A, Torella D, Quattrone A, Torti C, Matera G, De Filippo C, Costanzo FS, Viglietto G. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front Microbiol 2022; 13:934993. [PMID: 35966675 PMCID: PMC9366435 DOI: 10.3389/fmicb.2022.934993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021; while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively); C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively); Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant; A701S in Alpha variant; and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha; E484K identified in Gamma; and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- Carmela De Marco
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Alice Massacci
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | | | - Luigia Gallo
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
- *Correspondence: Giuseppe Viglietto
| |
Collapse
|
20
|
Klink GV, Safina KR, Garushyants SK, Moldovan M, Nabieva E, Komissarov AB, Lioznov D, Bazykin GA. Spread of endemic SARS-CoV-2 lineages in Russia before April 2021. PLoS One 2022; 17:e0270717. [PMID: 35857745 PMCID: PMC9299347 DOI: 10.1371/journal.pone.0270717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
In 2021, the COVID-19 pandemic was characterized by global spread of several lineages with evidence for increased transmissibility. Throughout the pandemic, Russia has remained among the countries with the highest number of confirmed COVID-19 cases, making it a potential hotspot for emergence of novel variants. Here, we show that among the globally significant variants of concern that have spread globally by late 2020, alpha (B.1.1.7), beta (B.1.351) or gamma (P.1), none have been sampled in Russia before the end of 2020. Instead, between summer 2020 and spring 2021, the epidemic in Russia has been characterized by the spread of two lineages that were rare in most other countries: B.1.1.317 and a sublineage of B.1.1 including B.1.1.397 (hereafter, B.1.1.397+). Their frequency has increased concordantly in different parts of Russia. On top of these lineages, in late December 2020, alpha (B.1.1.7) emerged in Russia, reaching a frequency of 17.4% (95% C.I.: 12.0%-24.4%) in March 2021. Additionally, we identify three novel distinct lineages, AT.1, B.1.1.524 and B.1.1.525, that have started to spread, together reaching the frequency of 11.8% (95% C.I.: 7.5%-18.1%) in March 2021. These lineages carry combinations of several notable mutations, including the S:E484K mutation of concern, deletions at a recurrent deletion region of the spike glycoprotein (S:Δ140-142, S:Δ144 or S:Δ136-144), and nsp6:Δ106-108 (also known as ORF1a:Δ3675-3677). Community-based PCR testing indicates that these variants have continued to spread in April 2021, with the frequency of B.1.1.7 reaching 21.7% (95% C.I.: 12.3%-35.6%), and the joint frequency of B.1.1.524 and B.1.1.525, 15.2% (95% C.I.: 7.6%-28.2%). Although these variants have been displaced by the onset of delta variant in May-June 2021, lineages B.1.1.317, B.1.1.397+, AT.1, B.1.1.524 and B.1.1.525 and the combinations of mutations comprising them that are found in other lineages merit monitoring.
Collapse
Affiliation(s)
- Galya V. Klink
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R. Safina
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Sofya K. Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Moldovan
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Elena Nabieva
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | | | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
- First Pavlov State Medical University, Saint Petersburg, Russia
| | - Georgii A. Bazykin
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | | |
Collapse
|
21
|
Vasylyeva TI, Fang CE, Su M, Havens JL, Parker E, Wang JC, Zeller M, Yakovleva A, Hassler GW, Chowdhury MA, Andersen KG, Hughes S, Wertheim JO. Introduction and Establishment of SARS-CoV-2 Gamma Variant in New York City in Early 2021. J Infect Dis 2022; 226:2142-2149. [PMID: 35771664 PMCID: PMC9278250 DOI: 10.1093/infdis/jiac265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Monitoring the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is an important public health objective. We investigated how the Gamma variant was established in New York City (NYC) in early 2021 in the presence of travel restrictions that aimed to prevent viral spread from Brazil, the country where the variant was first identified. METHODS We performed phylogeographic analysis on 15 967 Gamma sequences sampled between 10 March and 1 May 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. RESULTS We identified 16 phylogenetically distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes); most of them were introduced from Florida and Illinois and only 1 directly from Brazil. By the time the first Gamma case was reported by genomic surveillance in NYC on 10 March, the majority (57%) of circulating Gamma lineages had already been established in the city for at least 2 weeks. CONCLUSIONS Although travel from Brazil to the United States was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.
Collapse
Affiliation(s)
- Tetyana I Vasylyeva
- Corresponding author information Tetyana Vasylyeva, DPhil Assistant Professor Division of Infectious Diseases and Global Public Health University of California San Diego San Diego, California, USA +1 (858) 766 1012
| | - Courtney E Fang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Michelle Su
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, US
| | - Edyth Parker
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, US
| | - Jade C Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, US
| | - Anna Yakovleva
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Gabriel W Hassler
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Moinuddin A Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, US
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Joel O Wertheim
- Alternate corresponding author Joel Wertheim, PhD Associate Professor Division of Infectious Diseases and Global Public Health University of California San Diego San Diego, California, USA
| |
Collapse
|
22
|
Wertheim JO, Wang JC, Leelawong M, Martin DP, Havens JL, Chowdhury MA, Pekar JE, Amin H, Arroyo A, Awandare GA, Chow HY, Gonzalez E, Luoma E, Morang'a CM, Nekrutenko A, Shank SD, Silver S, Quashie PK, Rakeman JL, Ruiz V, Torian LV, Vasylyeva TI, Kosakovsky Pond SL, Hughes S. Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City. Nat Commun 2022; 13:3645. [PMID: 35752633 PMCID: PMC9233664 DOI: 10.1038/s41467-022-31247-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jade C Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA.
| | - Mindy Leelawong
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Moinuddin A Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Helly Amin
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Anthony Arroyo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Hoi Yan Chow
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Edimarlyn Gonzalez
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Elizabeth Luoma
- Bureau of the Communicable Diseases, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stefan Silver
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jennifer L Rakeman
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Victoria Ruiz
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Lucia V Torian
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| |
Collapse
|
23
|
Rayati Damavandi A, Dowran R, Al Sharif S, Kashanchi F, Jafari R. Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211:79-103. [PMID: 35235048 PMCID: PMC8889515 DOI: 10.1007/s00430-022-00729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Subissi L, von Gottberg A, Thukral L, Worp N, Oude Munnink BB, Rathore S, Abu-Raddad LJ, Aguilera X, Alm E, Archer BN, Attar Cohen H, Barakat A, Barclay WS, Bhiman JN, Caly L, Chand M, Chen M, Cullinane A, de Oliveira T, Drosten C, Druce J, Effler P, El Masry I, Faye A, Gaseitsiwe S, Ghedin E, Grant R, Haagmans BL, Herring BL, Iyer SS, Kassamali Z, Kakkar M, Kondor RJ, Leite JA, Leo YS, Leung GM, Marklewitz M, Moyo S, Mendez-Rico J, Melhem NM, Munster V, Nahapetyan K, Oh DY, Pavlin BI, Peacock TP, Peiris M, Peng Z, Poon LLM, Rambaut A, Sacks J, Shen Y, Siqueira MM, Tessema SK, Volz EM, Thiel V, van der Werf S, Briand S, Perkins MD, Van Kerkhove MD, Koopmans MPG, Agrawal A. An early warning system for emerging SARS-CoV-2 variants. Nat Med 2022; 28:1110-1115. [PMID: 35637337 PMCID: PMC11346314 DOI: 10.1038/s41591-022-01836-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Global sequencing and surveillance capacity for SARS-CoV-2 must be strengthened and combined with multidisciplinary studies of infectivity, virulence, and immune escape, in order to track the unpredictable evolution of the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Anne von Gottberg
- National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lipi Thukral
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Nathalie Worp
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Bas B Oude Munnink
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Surabhi Rathore
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Ximena Aguilera
- Epidemiology and Health Policy Centre, Universidad del Desarollo, Santiago, Chile
| | - Erik Alm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | - Amal Barakat
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | | | - Jinal N Bhiman
- National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | | | - Mark Chen
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation, Stellenbosch University, Stellenbosch, South Africa
| | | | - Julian Druce
- Epidemiology and Health Policy Centre, Universidad del Desarollo, Santiago, Chile
| | - Paul Effler
- University of Western Australia, Perth, Western Australia, Australia
| | | | - Adama Faye
- Institut de Santé et Développement, Université Cheikh Anta Diop, Dakar, Senegal
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H Chan School of Public Health, Department of Immunology & Infectious Diseases, Boston, MA, USA
| | - Elodie Ghedin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Bart L Haagmans
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Belinda L Herring
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Shilpa S Iyer
- World Health Organization Regional Office for Western Pacific, Manila, The Philippines
| | | | - Manish Kakkar
- World Health Organization Regional Office for South-East Asia, New Delhi, India
| | - Rebecca J Kondor
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juliana A Leite
- World Health Organization Regional Office for the Americas, Washington, DC, USA
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Gabriel M Leung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Marco Marklewitz
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H Chan School of Public Health, Department of Immunology & Infectious Diseases, Boston, MA, USA
| | - Jairo Mendez-Rico
- World Health Organization Regional Office for the Americas, Washington, DC, USA
| | | | - Vincent Munster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Karen Nahapetyan
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Thomas P Peacock
- Imperial College London, London, UK
- UK Health Security Agency, London, UK
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Zhibin Peng
- Chinese Center for Disease Control and Prevention, Beijing, The People's Republic of China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | | | | | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, The People's Republic of China
| | | | - Sofonias K Tessema
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, Switzerland
| | | | | | | | | | - Marion P G Koopmans
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
25
|
Akkız H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front Med (Lausanne) 2022; 9:849217. [PMID: 35669924 PMCID: PMC9163346 DOI: 10.3389/fmed.2022.849217] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve, emerging novel variants with spike protein mutations. Although most mutations emerged in the SARS-CoV-2 genome are neutral or mildly deleterious, a small number of mutations can affect virus phenotype that confers the virus a fitness advantage. These mutations can enhance viral replication, raise the risk of reinfection and blunt the potency of neutralizing antibodies triggered by previous infection and vaccination. Since December 2020, the SARS-CoV-2 has emerged five quickly spreading strains, designated variants of concern (VOCs), including the Alpha (B.1.1.7) variant, the Beta (B.1.351) variant, the Gamma (P.1) variant, the Delta (B.1.617.2) variant and the Omicron (B.1.1.529) variant. These variants have a high number of the mutations in the spike protein that promotes viral cell entry through the angiotensin-converting enzyme -2 (ACE2). Mutations that have arisen in the receptor binding domain (RBD) of the spike protein are of great concern due to their potential to evade neutralizing antibodies triggered by previous infection and vaccines. The Alpha variant emerged in the United Kingdom in the second half of 2020 that has spread quickly globally and acquired the E484K mutation in the United Kingdom and the United States. The Beta and Gamma variants emerged in South Africa and Brazil, respectively, that have additional mutations at positions E484 and K417 in the RBD. SARS-CoV-2 variants containing the combination of N501Y, E484K, and K417N/T mutations exhibit remarkably decreased sensitivity to neutralizing antibodies mediated by vaccination or previous infection. The Gamma variant may result in more severe disease than other variants do even in convalescent individuals. The Delta variant emerged in India in December 2020 and has spread to many countries including the United States and the United Kingdom. The Delta variant has 8 mutations in the spike protein, some of which can influence immune responses to the key antigenic regions of RBD. In early November 2021, the Omicron (B.1.1.529) variant was first detected in Botswana and South Africa. The Omicron variant harbors more than 30 mutations in the spike protein, many of which are located within the RBD, which have been associated with increased transmissibility and immune evasion after previous infection and vaccination. Additionally, the Omicron variant contains 3 deletions and one insertion in the spike protein. Recently, the Omicron variant has been classified into three sublineages, including BA.1, BA.2, and BA.3, with strikingly different genetic characteristics. The Omicron BA.2 sublineage has different virological landscapes, such as transmissibility, pathogenicity and resistance to the vaccine-induced immunity compared to BA.1 and BA.3 sublineages. Mutations emerged in the RBD of the spike protein of VOCs increase viral replication, making the virus more infectious and more transmissible and enable the virus to evade vaccine-elicited neutralizing antibodies. Unfortunately, the emergence of novel SARS-CoV-2 VOCs has tempered early optimism regarding the efficacy of COVID-19 vaccines. This review addresses the biological and clinical significance of SARS-CoV-2 VOCs and their impact on neutralizing antibodies mediated by existing COVID-19 vaccines.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology and Hepatology, The University of Çukurova, Adana, Turkey
| |
Collapse
|
26
|
Petrone ME, Rothman JE, Breban MI, Ott IM, Russell A, Lasek-Nesselquist E, Badr H, Kelly K, Omerza G, Renzette N, Watkins AE, Kalinich CC, Alpert T, Brito AF, Earnest R, Tikhonova IR, Castaldi C, Kelly JP, Shudt M, Plitnick J, Schneider E, Murphy S, Neal C, Laszlo E, Altajar A, Pearson C, Muyombwe A, Downing R, Razeq J, Niccolai L, Wilson MS, Anderson ML, Wang J, Liu C, Hui P, Mane S, Taylor BP, Hanage WP, Landry ML, Peaper DR, Bilguvar K, Fauver JR, Vogels CBF, Gardner LM, Pitzer VE, St George K, Adams MD, Grubaugh ND. Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 variants Alpha and Iota. Commun Biol 2022; 5:439. [PMID: 35545661 PMCID: PMC9095641 DOI: 10.1038/s42003-022-03347-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.
Collapse
Affiliation(s)
- Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Jessica E Rothman
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexis Russell
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Hamada Badr
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, MD, USA
| | - Kevin Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Greg Omerza
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Nicholas Renzette
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Anne E Watkins
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Anderson F Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06510, USA
| | | | - John P Kelly
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Matthew Shudt
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Jonathan Plitnick
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Erasmus Schneider
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Steven Murphy
- Murphy Medical Associates, Greenwich, CT, 06830, USA
| | - Caleb Neal
- Murphy Medical Associates, Greenwich, CT, 06830, USA
| | - Eva Laszlo
- Murphy Medical Associates, Greenwich, CT, 06830, USA
| | - Ahmad Altajar
- Murphy Medical Associates, Greenwich, CT, 06830, USA
| | - Claire Pearson
- Connecticut State Department of Public Health, Rocky Hill, CT, 06067, USA
| | - Anthony Muyombwe
- Connecticut State Department of Public Health, Rocky Hill, CT, 06067, USA
| | - Randy Downing
- Connecticut State Department of Public Health, Rocky Hill, CT, 06067, USA
| | - Jafar Razeq
- Connecticut State Department of Public Health, Rocky Hill, CT, 06067, USA
| | - Linda Niccolai
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Margaret L Anderson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06510, USA
| | - Bradford P Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Marie L Landry
- Departments of Laboratory Medicine and Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - David R Peaper
- Departments of Laboratory Medicine and Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Joseph R Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Lauren M Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, MD, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Kirsten St George
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
27
|
Yavarian J, Nejati A, Salimi V, Shafiei Jandaghi NZ, Sadeghi K, Abedi A, Sharifi Zarchi A, Gouya MM, Mokhtari-Azad T. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS One 2022; 17:e0267847. [PMID: 35499994 PMCID: PMC9060343 DOI: 10.1371/journal.pone.0267847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Whole genome sequencing of SARS-CoV2 is important to find useful information about the viral lineages, variants of interests and variants of concern. As there are not enough data about the circulating SARS-CoV2 variants in Iran, we sequenced 54 SARS-CoV2 genomes during the 5 waves of pandemic in Iran. METHODS After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq platform. The sequencing data were analyzed and compared with reference sequences. RESULTS During the 1st wave, V and L clades were detected. The second wave was recognized by G, GH and GR clades. Circulating clades during the 3rd wave were GH and GR. In the fourth wave GRY (alpha variant), GK (delta variant) and one GH clade (beta variant) were detected. All viruses in the fifth wave were in clade GK (delta variant). There were different mutations in all parts of the genomes but Spike-D614G, NSP12-P323L, N-R203K and N-G204R were the most frequent mutants in these studied viruses. CONCLUSIONS These findings display the significance of SARS-CoV2 monitoring to help on time detection of possible variants for pandemic control and vaccination plans.
Collapse
Affiliation(s)
- Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Abedi
- Mathematics Department, Shahid Beheshti University, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Halawa S, Pullamsetti SS, Bangham CRM, Stenmark KR, Dorfmüller P, Frid MG, Butrous G, Morrell NW, de Jesus Perez VA, Stuart DI, O'Gallagher K, Shah AM, Aguib Y, Yacoub MH. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol 2022; 19:314-331. [PMID: 34873286 PMCID: PMC8647069 DOI: 10.1038/s41569-021-00640-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
The lungs are the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with severe hypoxia being the cause of death in the most critical cases. Coronavirus disease 2019 (COVID-19) is extremely heterogeneous in terms of severity, clinical phenotype and, importantly, global distribution. Although the majority of affected patients recover from the acute infection, many continue to suffer from late sequelae affecting various organs, including the lungs. The role of the pulmonary vascular system during the acute and chronic stages of COVID-19 has not been adequately studied. A thorough understanding of the origins and dynamic behaviour of the SARS-CoV-2 virus and the potential causes of heterogeneity in COVID-19 is essential for anticipating and treating the disease, in both the acute and the chronic stages, including the development of chronic pulmonary hypertension. Both COVID-19 and chronic pulmonary hypertension have assumed global dimensions, with potential complex interactions. In this Review, we present an update on the origins and behaviour of the SARS-CoV-2 virus and discuss the potential causes of the heterogeneity of COVID-19. In addition, we summarize the pathobiology of COVID-19, with an emphasis on the role of the pulmonary vasculature, both in the acute stage and in terms of the potential for developing chronic pulmonary hypertension. We hope that the information presented in this Review will help in the development of strategies for the prevention and treatment of the continuing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Kurt R Stenmark
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
| | - Maria G Frid
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent at Canterbury, Canterbury, UK
| | - Nick W Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David I Stuart
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Magdi H Yacoub
- Aswan Heart Centre, Aswan, Egypt.
- National Heart & Lung Institute, Imperial College London, London, UK.
- Harefield Heart Science Centre, London, UK.
| |
Collapse
|
29
|
Negrón DA, Kang J, Mitchell S, Holland MY, Wist S, Voss J, Brinkac L, Jennings K, Guertin S, Goodwin BG, Sozhamannan S. Impact of SARS-CoV-2 Mutations on PCR Assay Sequence Alignment. Front Public Health 2022; 10:889973. [PMID: 35570946 PMCID: PMC9096222 DOI: 10.3389/fpubh.2022.889973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Real-time reverse transcription polymerase chain reaction (RT-PCR) assays are the most widely used molecular tests for the detection of SARS-CoV-2 and diagnosis of COVID-19 in clinical samples. PCR assays target unique genomic RNA regions to identify SARS-CoV-2 with high sensitivity and specificity. In general, assay development incorporates the whole genome sequences available at design time to be inclusive of all target species and exclusive of near neighbors. However, rapid accumulation of mutations in viral genomes during sustained growth in the population can result in signature erosion and assay failures, creating situational blind spots during a pandemic. In this study, we analyzed the signatures of 43 PCR assays distributed across the genome against over 1.6 million SARS-CoV-2 sequences. We present evidence of significant signature erosion emerging in just two assays due to mutations, while adequate sequence identity was preserved in the other 41 assays. Failure of more than one assay against a given variant sequence was rare and mostly occurred in the two assays noted to have signature erosion. Assays tended to be designed in regions with statistically higher mutations rates. in silico analyses over time can provide insights into mutation trends and alert users to the emergence of novel variants that are present in the population at low proportions before they become dominant. Such routine assessment can also potentially highlight false negatives in test samples that may be indicative of mutations having functional consequences in the form of vaccine and therapeutic failures. This study highlights the importance of whole genome sequencing and expanded real-time monitoring of diagnostic PCR assays during a pandemic.
Collapse
Affiliation(s)
| | - June Kang
- Noblis, Inc., Reston, VA, United States
| | | | | | | | - Jameson Voss
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
| | | | | | | | - Bruce G. Goodwin
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
- Logistics Management Institute, Tysons, VA, United States
| |
Collapse
|
30
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Zhang Y, Zhang H, Zhang W. SARS-CoV-2 variants, immune escape, and countermeasures. Front Med 2022; 16:196-207. [PMID: 35253097 PMCID: PMC8898658 DOI: 10.1007/s11684-021-0906-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
32
|
Martínez-Salazar B, Holwerda M, Stüdle C, Piragyte I, Mercader N, Engelhardt B, Rieben R, Döring Y. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front Cell Dev Biol 2022; 10:824851. [PMID: 35242762 PMCID: PMC8887620 DOI: 10.3389/fcell.2022.824851] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as “Long-COVID-syndrome”. Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.
Collapse
Affiliation(s)
- Berenice Martínez-Salazar
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chiara Stüdle
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Indre Piragyte
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Bern Center of Precision Medicine BCPM, University of Bern, Bern, Switzerland
| | | | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
33
|
Saunders N, Planas D, Bolland WH, Rodriguez C, Fourati S, Buchrieser J, Planchais C, Prot M, Staropoli I, Guivel-Benhassine F, Porrot F, Veyer D, Péré H, Robillard N, Saliba M, Baidaliuk A, Seve A, Hocqueloux L, Prazuck T, Rey FA, Mouquet H, Simon-Lorière E, Bruel T, Pawlotsky JM, Schwartz O. Fusogenicity and neutralization sensitivity of the SARS-CoV-2 Delta sublineage AY.4.2. EBioMedicine 2022; 77:103934. [PMID: 35290827 PMCID: PMC8917961 DOI: 10.1016/j.ebiom.2022.103934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.
Collapse
Affiliation(s)
- Nell Saunders
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - William H Bolland
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Christophe Rodriguez
- Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France; Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Slim Fourati
- Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France; Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Matthieu Prot
- G5 Evolutionary genomics of RNA viruses, Department of Virology, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France
| | | | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France
| | - David Veyer
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - Hélène Péré
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - Nicolas Robillard
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Madelina Saliba
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Artem Baidaliuk
- G5 Evolutionary genomics of RNA viruses, Department of Virology, Institut Pasteur, Paris, France
| | - Aymeric Seve
- CHR d'Orléans, service de maladies infectieuses, Orléans, France
| | | | - Thierry Prazuck
- CHR d'Orléans, service de maladies infectieuses, Orléans, France
| | - Felix A Rey
- Structural Virology Unit Institut Pasteur, Université de Paris, CNRS UMR3569, 75015 Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary genomics of RNA viruses, Department of Virology, Institut Pasteur, Paris, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - Jean-Michel Pawlotsky
- Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France; Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
34
|
Russell A, O'Connor C, Lasek-Nesselquist E, Plitnick J, Kelly JP, Lamson DM, St George K. Spatiotemporal Analyses of 2 Co-Circulating SARS-CoV-2 Variants, New York State, USA. Emerg Infect Dis 2022; 28:650-659. [PMID: 35133957 PMCID: PMC8888210 DOI: 10.3201/eid2803.211972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in late 2020 and early 2021 raised alarm worldwide because of their potential for increased transmissibility and immune evasion. Elucidating the evolutionary and epidemiologic dynamics among novel SARS-CoV-2 variants is essential for understanding the trajectory of the coronavirus disease pandemic. We describe the interplay between B.1.1.7 (Alpha) and B.1.526 (Iota) variants in New York State, USA, during December 2020–April 2021 through phylogeographic analyses, space-time scan statistics, and cartographic visualization. Our results indicate that B.1.526 probably evolved in New York City, where it was displaced as the dominant lineage by B.1.1.7 months after its initial appearance. In contrast, B.1.1.7 became dominant earlier in regions with fewer B.1.526 infections. These results suggest that B.1.526 might have delayed the initial spread of B.1.1.7 in New York City. Our combined spatiotemporal methodologies can help disentangle the complexities of shifting SARS-CoV-2 variant landscapes.
Collapse
|
35
|
Wu J, Nie J, Zhang L, Song H, An Y, Liang Z, Yang J, Ding R, Liu S, Li Q, Li T, Cui Z, Zhang M, He P, Wang Y, Qu X, Hu Z, Wang Q, Huang W. The antigenicity of SARS-CoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain. Signal Transduct Target Ther 2022; 7:18. [PMID: 35046385 PMCID: PMC8767530 DOI: 10.1038/s41392-022-00874-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/08/2022] Open
Abstract
Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.
Collapse
MESH Headings
- Amino Acid Substitution
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Binding Sites
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/metabolism
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression
- Humans
- Immune Sera/chemistry
- Immunogenicity, Vaccine
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/metabolism
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neutralization Tests
- Protein Binding
- Protein Conformation
- Protein Interaction Domains and Motifs
- SARS-CoV-2/chemistry
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Pseudotyping
Collapse
Affiliation(s)
- Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yimeng An
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Ziteng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Mengyi Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Peng He
- Division of Hepatitis and Enteric Viral Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, 102629, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Xiaowang Qu
- Translational Medicine Institute, First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Zhongyu Hu
- Division of Hepatitis and Enteric Viral Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, 102629, Beijing, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China.
| |
Collapse
|
36
|
Chatterjee D, Tauzin A, Laumaea A, Gong SY, Bo Y, Guilbault A, Goyette G, Bourassa C, Gendron-Lepage G, Medjahed H, Richard J, Moreira S, Côté M, Finzi A. Antigenicity of the Mu (B.1.621) and A.2.5 SARS-CoV-2 Spikes. Viruses 2022; 14:v14010144. [PMID: 35062348 PMCID: PMC8780535 DOI: 10.3390/v14010144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Aurélie Guilbault
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
37
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
38
|
Kuzmina A, Wattad S, Khalaila Y, Ottolenghi A, Rosental B, Engel S, Rosenberg E, Taube R. SARS CoV-2 Delta variant exhibits enhanced infectivity and a minor decrease in neutralization sensitivity to convalescent or post-vaccination sera. iScience 2021; 24:103467. [PMID: 34805783 PMCID: PMC8591850 DOI: 10.1016/j.isci.2021.103467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Since their identification, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Kappa and Delta have rapidly spread to become globally dominant. However, their infectivity and sensitivity to administered vaccines have not been documented. We monitored the neutralization potential of convalescent or BNT162b2 post-vaccination sera against Kappa and Delta SARS-CoV-2 pseudoviruses. We show that both variants were successfully neutralized by convalescent and post-vaccination sera, exhibiting a mild decrease in their neutralization sensitivity. Of the two variants, Delta presented enhanced infectivity levels compared with Kappa or wild-type SARS-CoV-2. Nevertheless, both variants were not as infectious or resistant to post-vaccination sera as the Beta variant of concern. Interestingly, the Delta plus variant (AY.1/B.1.617.2.1) exhibited high resistance to post-vaccination sera, similar to that of the Beta SARS-CoV-2. However, its infectivity levels were close to those of wild-type SARS-CoV-2. These results account for the worldwide prevalence of Delta variant of concern and confirm the efficacy of the BNT162b2 vaccine against circulating other Delta variants.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Seraj Wattad
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
39
|
Tuli HS, Sak K, Aggarwal P, Iqubal A, Upadhaya SK, Kaur J, Kaur G, Aggarwal D. Molecular Evolution of Severe Acute Respiratory Syndrome Coronavirus 2: Hazardous and More Hazardous Strains Behind the Coronavirus Disease 2019 Pandemic and Their Targeting by Drugs and Vaccines. Front Cell Infect Microbiol 2021; 11:763687. [PMID: 34970505 PMCID: PMC8712944 DOI: 10.3389/fcimb.2021.763687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Within almost the last 2 years, the world has been shaken by the coronavirus disease 2019 (COVID-19) pandemic, which has affected the lives of all people. With nearly 4.92 million deaths by October 19, 2021, and serious health damages in millions of people, COVID-19 has been the most serious global challenge after the Second World War. Besides lost lives and long-term health problems, devastating impact on economics, education, and culture will probably leave a lasting impression on the future. Therefore, the actual extent of losses will become obvious only after years. Moreover, despite the availability of different vaccines and vaccination programs, it is still impossible to forecast what the next steps of the virus are or how near we are to the end of the pandemic. In this article, the route of molecular evolution of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thoroughly compiled, highlighting the changes that the virus has undergone during the last 2 years and discussing the approaches that the medical community has undertaken in the fight against virus-induced damages.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Katrin Sak
- Non-Governmental Organization (NGO) Praeventio, Tartu, Estonia
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Sushil K. Upadhaya
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies (SVKM’S NMIMS), Mumbai, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| |
Collapse
|
40
|
Schmidt F, Weisblum Y, Rutkowska M, Poston D, DaSilva J, Zhang F, Bednarski E, Cho A, Schaefer-Babajew DJ, Gaebler C, Caskey M, Nussenzweig MC, Hatziioannou T, Bieniasz PD. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature 2021; 600:512-516. [PMID: 34544114 PMCID: PMC9241107 DOI: 10.1038/s41586-021-04005-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in individuals who are SARS-CoV-2 convalescent and vaccinated are key determinants of neutralization breadth and the genetic barrier to viral escape1-4. Using HIV-1 pseudotypes and plasma selection experiments with vesicular stomatitis virus/SARS-CoV-2 chimaeras5, here we show that multiple neutralizing epitopes, within and outside the receptor-binding domain, are variably targeted by human polyclonal antibodies. Antibody targets coincide with spike sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic 'polymutant' spike protein pseudotypes that resisted polyclonal antibody neutralization to a similar degree as circulating variants of concern. By aggregating variant of concern-associated and antibody-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in the SARS-CoV-2 spike protein are sufficient to generate pseudotypes with near-complete resistance to the polyclonal neutralizing antibodies generated by individuals who are convalescent or recipients who received an mRNA vaccine. However, plasma from individuals who had been infected and subsequently received mRNA vaccination neutralized pseudotypes bearing this highly resistant SARS-CoV-2 polymutant spike, or diverse sarbecovirus spike proteins. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against potential future sarbecovirus pandemics.
Collapse
Affiliation(s)
- Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Magdalena Rutkowska
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Bhattacharya M, Chatterjee S, Sharma AR, Agoramoorthy G, Chakraborty C. D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity. Appl Microbiol Biotechnol 2021; 105:9035-9045. [PMID: 34755213 PMCID: PMC8578012 DOI: 10.1007/s00253-021-11676-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022]
Abstract
The progression of the COVID-19 pandemic has generated numerous emerging variants of SARS-CoV-2 on a global scale. These variants have gained evolutionary advantages, comprising high virulence and serious infectivity due to multiple spike glycoprotein mutations. As a reason, variants are demonstrating significant abilities to escape the immune responses of the host. The D614G mutation in the S-glycoprotein of SARS-CoV-2 variants has shown the most efficient interaction with the ACE2 receptor of the cells. This explicit mutation at amino acid position 614 (aspartic acid-to-glycine substitution) is the prime cause of infection and re-infection. It changes the conformation of RBD and cleavage patterns S-glycoprotein with higher stability, replication fitness, and fusion efficiencies. Therefore, this review aims to provide several crucial pieces of information associated with the D614 mutational occurrence of SARS-CoV-2 variants and their infectivity patterns. This review will also effectively emphasize the mechanism of action of D614G mutant variants, immune escape, and partial vaccine escape of this virus. Furthermore, the viral characteristic changes leading to the current global pandemic condition have been highlighted. Here, we have tried to illustrate a novel direction for future researchers to develop effective therapeutic approaches and counterweight strategies to minimize the spread of COVID-19.Key points• D614G mutation arises within the S-glycoprotein of significant SARS-CoV-2 variants.• The D614G mutation affects infection, re-infection, cleavage patterns of S-glycoprotein, and replication fitness of SARS-CoV-2 variants.• The D614G mutation influences the immunity and partial vaccine escape.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal, 700126, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
42
|
Mitchell PK, Martins M, Reilly T, Caserta LC, Anderson RR, Cronk BD, Murphy J, Goodrich EL, Diel DG. SARS-CoV-2 B.1.1.7 Variant Infection in Malayan Tigers, Virginia, USA. Emerg Infect Dis 2021; 27:3171-3173. [PMID: 34808082 PMCID: PMC8632162 DOI: 10.3201/eid2712.211234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report infection of 3 Malayan tigers with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) variant at a zoologic park in Virginia, USA. All tigers exhibited respiratory signs consistent with SARS-CoV-2 infection. These findings show that tigers are susceptible to infection with the SARS-CoV-2 B.1.1.7 variant.
Collapse
|
43
|
A Comparative Study between Spanish and British SARS-CoV-2 Variants. Curr Issues Mol Biol 2021; 43:2036-2047. [PMID: 34889898 PMCID: PMC8929045 DOI: 10.3390/cimb43030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the interaction between the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor is key to understanding binding affinity and stability. In the present report, we sought to investigate the differences between two already sequenced genome variants (Spanish and British) of SARS-CoV-2. Methods: In silico model evaluating the homology, identity and similarity in the genome sequence and the structure and alignment of the predictive spike by computational docking methods. Results: The identity results between the Spanish and British variants of the Spike protein were 28.67%. This close correspondence in the results between the Spanish and British SARS-CoV-2 variants shows that they are very similar (99.99%). The alignment obtained results in four deletions. There were 23 nucleotide substitutions also predicted which could affect the functionality of the proteins produced from this sequence. The interaction between the binding receptor domain from the spike protein and the ACE2 receptor produces some of the mutations found and, therefore, the energy of this ligand varies. However, the estimated antigenicity of the British variant is higher than its Spanish counterpart. Conclusions: Our results indicate that minimal mutations could interfere in the infectivity of the virus due to changes in the fitness between host cell recognition and interaction proteins. In particular, the N501Y substitution, situated in the RBD of the spike of the British variant, might be the reason for its extraordinary infective potential.
Collapse
|
44
|
Lou F, Li M, Pang Z, Jiang L, Guan L, Tian L, Hu J, Fan J, Fan H. Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Front Immunol 2021; 12:744242. [PMID: 34804024 PMCID: PMC8602852 DOI: 10.3389/fimmu.2021.744242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
The global pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), places a heavy burden on global public health. Four SARS-CoV-2 variants of concern including B.1.1.7, B.1.351, B.1.617.2, and P.1, and two variants of interest including C.37 and B.1.621 have been reported to have potential immune escape, and one or more mutations endow them with worrisome epidemiologic, immunologic, or pathogenic characteristics. This review introduces the latest research progress on SARS-CoV-2 variants of interest and concern, key mutation sites, and their effects on virus infectivity, mortality, and immune escape. Moreover, we compared the effects of various clinical SARS-CoV-2 vaccines and convalescent sera on epidemic variants, and evaluated the neutralizing capability of several antibodies on epidemic variants. In the end, SARS-CoV-2 evolution strategies in different transmission stages, the impact of different vaccination strategies on SARS-CoV-2 immune escape, antibody therapy strategies and COVID-19 epidemic control prospects are discussed. This review will provide a systematic and comprehensive understanding of the secret of SARS-CoV-2 variants of interest/concern and immune escape.
Collapse
Affiliation(s)
- Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiaming Hu
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
45
|
Gong SY, Chatterjee D, Richard J, Prévost J, Tauzin A, Gasser R, Bo Y, Vézina D, Goyette G, Gendron-Lepage G, Medjahed H, Roger M, Côté M, Finzi A. Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 2021. [PMID: 34536797 DOI: 10.1101/2021.08.04.455140v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Towards the end of 2020, multiple variants of concern (VOCs) and variants of interest (VOIs) have arisen from the original SARS-CoV-2 Wuhan-Hu-1 strain. Mutations in the Spike protein are highly scrutinized for their impact on transmissibility, pathogenesis and vaccine efficacy. Here, we contribute to the growing body of literature on emerging variants by evaluating the impact of single mutations on the overall antigenicity of selected variants and their binding to the ACE2 receptor. We observe a differential contribution of single mutants to the global variants phenotype related to ACE2 interaction and antigenicity. Using biolayer interferometry, we observe that enhanced ACE2 interaction is mostly modulated by a decrease in off-rate. Finally, we made the interesting observation that the Spikes from tested emerging variants bind better to ACE2 at 37°C compared to the D614G variant. Whether improved ACE2 binding at higher temperature facilitates emerging variants transmission remain to be demonstrated.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada
| | | | - Jonathan Richard
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | | | - Michel Roger
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
46
|
Prévost J, Richard J, Gasser R, Ding S, Fage C, Anand SP, Adam D, Gupta Vergara N, Tauzin A, Benlarbi M, Gong SY, Goyette G, Privé A, Moreira S, Charest H, Roger M, Mothes W, Pazgier M, Brochiero E, Boivin G, Abrams CF, Schön A, Finzi A. Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. J Biol Chem 2021; 297:101151. [PMID: 34478710 PMCID: PMC8406544 DOI: 10.1016/j.jbc.2021.101151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Clément Fage
- Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Médicine, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Gupta Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Anik Privé
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Hugues Charest
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Emmanuelle Brochiero
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Médicine, Université de Montréal, Montréal, Quebec, Canada
| | - Guy Boivin
- Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, Gomez-Simmonds A, Kelley AL, Tagliavia M, Huang Y, Bedford T, Ho DD, Uhlemann AC. Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature 2021; 597:703-708. [PMID: 34428777 PMCID: PMC8481122 DOI: 10.1038/s41586-021-03908-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
SARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.
Collapse
Affiliation(s)
- Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jason E Zucker
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anne L Kelley
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maya Tagliavia
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David D Ho
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
48
|
Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, Gomez-Simmonds A, Kelley AL, Tagliavia M, Huang Y, Bedford T, Ho DD, Uhlemann AC. Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature 2021. [PMID: 34428777 DOI: 10.1101/2021.02.23.21252259v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
SARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.
Collapse
Affiliation(s)
- Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jason E Zucker
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anne L Kelley
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maya Tagliavia
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David D Ho
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
49
|
Ahmad B, Batool M, Ain QU, Kim MS, Choi S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Int J Mol Sci 2021; 22:9124. [PMID: 34502033 PMCID: PMC8430524 DOI: 10.3390/ijms22179124] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (B.A.); (M.B.); (Q.u.A.); (M.S.K.)
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (B.A.); (M.B.); (Q.u.A.); (M.S.K.)
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon 16502, Korea
| | - Qurat ul Ain
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (B.A.); (M.B.); (Q.u.A.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (B.A.); (M.B.); (Q.u.A.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (B.A.); (M.B.); (Q.u.A.); (M.S.K.)
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon 16502, Korea
| |
Collapse
|