1
|
Wei K, Ping H, Tang X, Li D, Zhan S, Sun B, Kong X, Cao C. The effect of L-dopa and DBS on cortical oscillations in Parkinson's disease analyzed by hidden Markov model algorithm. Neuroimage 2025; 305:120992. [PMID: 39742983 DOI: 10.1016/j.neuroimage.2024.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a movement disorder caused by dopaminergic neurodegeneration. Both Levodopa (L-dopa) and Subthalamic Deep Brain Stimulation (STN-DBS) effectively alleviate symptoms, yet their cerebral effects remain under-explored. Understanding these effects is essential for optimizing treatment strategies and assessing disease severity. Magnetoencephalogram (MEG) data provide a continuous time series signal that reflects the dynamic changes in brain activity. The hidden Markov model (HMM) can capture and model the temporal features and underlying states of the MEG signal to extract potential brain states and monitor dynamic changes. In this study, we employed HMM to investigate the cortical mechanism underlying the treatment of PD patients using MEG recordings. METHODS 21 PD patients treated with medication underwent MEG recording in both L-dopa medoff and medon conditions. Additionally, 11 PD patients receiving STN-DBS treatment underwent MEG recording in both dbsoff and dbson conditions. The MEG data were segmented into four states by Time-delay embedded Hidden Markov Model (TDE-HMM) algorithm. The state parameters including Fractional Occupancy (FO), Interval Times (IT), and Life Time (LT) for each state and power spectrum of β band were analyzed to study the effects of L-dopa and STN-DBS treatment respectively. RESULTS L-dopa significantly increased the motor state of HMM and power in the motor area of both high β (21-35 Hz) and low β (13-20 Hz); the motor state of high β in medoff were correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS III). Conversely, DBS significantly diminishes the motor state of HMM and power in motor area of high β oscillations. The score changes of tremor and limb rigidity after DBS treatment were significantly correlated with the changes of motor state of high β. CONCLUSIONS This study demonstrates that L-dopa and STN-DBS exert differing effects on β oscillations in the motor cortex of PD patients, primarily in high β band. Understanding these distinct neurophysiological impacts can provide valuable insights for refining therapeutic approaches in motor control for PD patients.
Collapse
Affiliation(s)
- Kunzhou Wei
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | - Hang Ping
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | | | - Dianyou Li
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyan Kong
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China.
| | - Chunyan Cao
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Klassen BT, Baker MR, Jensen MA, Ojeda Valencia G, Miller KJ. Spectral changes in motor thalamus field potentials during movement. J Neurophysiol 2025; 133:101-108. [PMID: 39589825 DOI: 10.1152/jn.00419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
The motor thalamus plays a crucial role in integrating and modulating sensorimotor information. Although voltage power spectral changes in the motor cortex with movement are well-characterized, corresponding activity in the motor thalamus, particularly broadband power change, remains unclear. The present study aims to characterize spectral changes in the motor thalamus during hand movements of 15 subjects undergoing awake deep brain stimulation surgery targeting the ventral intermediate (Vim) nucleus of the thalamus for disabling tremor. We analyzed power changes in subject-specific low-frequency oscillations (<30 Hz) and broadband power (captured in 65-115 Hz band) of serial field potential recordings. Consistent with previous studies, we found widespread decreases in low-frequency oscillations with movement. Importantly, in most subjects, we observed that sites with significant increases in broadband power were more spatially discrete, primarily involving the inferior recording sites within the ventral thalamus. One subject also performed an imagined movement task during which low-frequency oscillatory power was suppressed. These electrophysiological changes may be leveraged as biomarkers for thalamic functional mapping, DBS targeting, and closed-loop applications.NEW & NOTEWORTHY We studied movement-associated spectral changes in human motor thalamus and observed focal increases in broadband power with movement. This biomarker may be used as a tool for intraoperative functional mapping, DBS targeting, and closed-loop device control.
Collapse
Affiliation(s)
- Bryan T Klassen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew R Baker
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Jensen
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Gabriela Ojeda Valencia
- Department of Biomedical Engineering & Physiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States
- Department of Biomedical Engineering & Physiology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Parr T, Oswal A, Manohar SG. Inferring when to move. Neurosci Biobehav Rev 2024; 169:105984. [PMID: 39694432 DOI: 10.1016/j.neubiorev.2024.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Most of our movement consists of sequences of discrete actions at regular intervals-including speech, walking, playing music, or even chewing. Despite this, few models of the motor system address how the brain determines the interval at which to trigger actions. This paper offers a theoretical analysis of the problem of timing movements. We consider a scenario in which we must align an alternating movement with a regular external (auditory) stimulus. We assume that our brains employ generative world models that include internal clocks of various speeds. These allow us to associate a temporally regular sensory input with an internal clock, and actions with parts of that clock cycle. We treat this as process of inferring which clock best explains sensory input. This offers a way in which temporally discrete choices might emerge from a continuous process. This is not straightforward, particularly if each of those choices unfolds during a time that has a (possibly unknown) duration. We develop a route for translation to neurology, in the context of Parkinson's disease-a disorder that characteristically slows down movements. The effects are often elicited in clinic by alternating movements. We find that it is possible to reproduce behavioural and electrophysiological features associated with parkinsonism by disrupting specific parameters-that determine the priors for inferences made by the brain. We observe three core features of Parkinson's disease: amplitude decrement, festination, and breakdown of repetitive movements. Our simulations provide a mechanistic interpretation of how pathology and therapeutics might influence behaviour and neural activity.
Collapse
Affiliation(s)
- Thomas Parr
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Ashwini Oswal
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
4
|
Martin A, Nassif J, Chaluvadi L, Schammel C, Newman-Norlund R, Bollmann S, Absher J. Grey matter volume differences across Parkinson's disease motor subtypes in the supplementary motor cortex. Neuroimage Clin 2024; 45:103724. [PMID: 39673940 PMCID: PMC11699459 DOI: 10.1016/j.nicl.2024.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Parkinson's Disease (PD) is the second most prevalent neurodegenerative disease worldwide due to loss of dopaminergic neurons projecting from the basal ganglia (BG). It is associated with various motor symptoms that are grouped into subtypes, each with different clinical presentations and disease progressions. Neuroimaging biomarkers focusing on regions a part of motor circuits projecting from the BG can distinguish and improve overall subtyping. The supplementary motor cortex (SMC) is well established in PD neuropathology and associated with freezing of gait and bradykinesia, but has not been thoroughly evaluated across subtypes. This study aims to identify volumetric differences of the SMC based on PD subtypes of tremor dominant (TD), postural instability with gait difficulty (PIGD), and akinetic rigid (AR) using data from Parkinson's Progression Markers Initiative. To segment grey matter volume and extract region of interest values, voxel-based processing was used. Multi-factor ANCOVAs, Tukey Honest Significance Test, and Kruskal-Wallis were utilized for volumetric analyses (α < 0.05). Subjects were classified and evaluated using TD, PIGD, and AR subtypes from the MDS-UPDRS rating scales. Inter-subtype differences in SMC GMV between TD and PIGD were significant in the right hemisphere for females (p = 0.01). No significant inter-subtype differences were found in the TD/AR system. These results support the use of broader motor networks, specifically the SMC in further understanding the neuropathological heterogeneity of PD. Furthermore, it reveals SMC differences across sexes, subtypes, and subtyping systems, calling for further evaluation of subtyping schemas, specifically regarding sex differences.
Collapse
Affiliation(s)
- A Martin
- College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - J Nassif
- Darla Moore School of Business, University of South Carolina, Columbia, SC, USA
| | - L Chaluvadi
- Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - C Schammel
- Pathology Associates, Greenville, SC, USA
| | - R Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - S Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - J Absher
- Division of Neurology, Department of Medicine, Prisma Health-Upstate, Greenville, SC, USA; School of Health Research, Clemson University, Clemson, SC, USA; Department of Health Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA.
| |
Collapse
|
5
|
Terenzi D, Simon N, Gachomba MJM, de Peretti JL, Nazarian B, Sein J, Anton JL, Grandjean D, Baunez C, Chaminade T. Social context and drug cues modulate inhibitory control in cocaine addiction: involvement of the STN evidenced through functional MRI. Mol Psychiatry 2024; 29:3742-3751. [PMID: 38926543 PMCID: PMC11609098 DOI: 10.1038/s41380-024-02637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Addictions often develop in a social context, although the influence of social factors did not receive much attention in the neuroscience of addiction. Recent animal studies suggest that peer presence can reduce cocaine intake, an influence potentially mediated, among others, by the subthalamic nucleus (STN). However, there is to date no neurobiological study investigating this mediation in humans. This study investigated the impact of social context and drug cues on brain correlates of inhibitory control in individuals with and without cocaine use disorder (CUD) using functional Magnetic Resonance Imaging (fMRI). Seventeen CUD participants and 17 healthy controls (HC) performed a novel fMRI "Social" Stop-Signal Task (SSST) in the presence or absence of an observer while being exposed to cocaine-related (vs. neutral) cues eliciting craving in drug users. The results showed that CUD participants, while slower at stopping with neutral cues, recovered control level stopping abilities with cocaine cues, while HC did not show any difference. During inhibition (Stop Correct vs Stop Incorrect), activity in the right STN, right inferior frontal gyrus (IFG), and bilateral orbitofrontal cortex (OFC) varied according to the type of cue. Notably, the presence of an observer reversed this effect in most areas for CUD participants. These findings highlight the impact of social context and drug cues on inhibitory control in CUD and the mediation of these effects by the right STN and bilateral OFC, emphasizing the importance of considering the social context in addiction research. They also comfort the STN as a potential addiction treatment target.
Collapse
Affiliation(s)
- Damiano Terenzi
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France.
| | - Nicolas Simon
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
- SESSTIM INSERM, IRD & Aix-Marseille Université, AP-HM, Marseille, France
| | | | - Jeanne-Laure de Peretti
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| | - Bruno Nazarian
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| | - Julien Sein
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| | - Jean-Luc Anton
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| | - Didier Grandjean
- Swiss Center for Affective Science and Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France.
| | - Thierry Chaminade
- Institut de Neurosciences de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| |
Collapse
|
6
|
Lopez Ramos CG, Rockhill AP, Shahin MN, Gragg A, Tan H, Yamamoto EA, Fecker AL, Ismail M, Cleary DR, Raslan AM. Beta Oscillations in the Sensory Thalamus During Severe Facial Neuropathic Pain Using Novel Sensing Deep Brain Stimulation. Neuromodulation 2024; 27:1419-1427. [PMID: 38878055 DOI: 10.1016/j.neurom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 12/08/2024]
Abstract
OBJECTIVE Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, β peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative β band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS For this patient, an increase in β band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.
Collapse
Affiliation(s)
| | - Alexander P Rockhill
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Maryam N Shahin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Antonia Gragg
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Erin A Yamamoto
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Adeline L Fecker
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Mostafa Ismail
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Daniel R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Shi Y, Zhang J, Xiu M, Xie R, Liu Y, Xie J, Shi L. The zona incerta system: Involvement in Parkinson's disease. Exp Neurol 2024; 382:114992. [PMID: 39393673 DOI: 10.1016/j.expneurol.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the nigrostriatal dopamine system, resulting in progressive motor and nonmotor symptoms. Although most studies have focused on the basal ganglia network, recent evidence suggests that the zona incerta (ZI), a subthalamic structure composed of 4 neurochemically defined regions, is emerging as a therapeutic target in PD. This review summarizes the clinical and animal studies that indicate the importance of ZI in PD. Human clinical studies have shown that subthalamotomy or deep brain stimulation (DBS) of the ZI alleviates muscle rigidity, bradykinesia, tremors and speech dysfunction in patients with PD. Researchers have also studied the impact of DBS of the ZI on nonmotor signs such as pain, anxiety, and depression. Animal studies combining optogenetics, chemogenetics, behavioral assays, and neural activity recordings reveal the functional roles of ZI GABAergic and glutamatergic neurons in locomotion, gait, and coordination of the symptoms of PD, all of which are discussed in this review. Controversies and possible future studies are also discussed.
Collapse
Affiliation(s)
- Yaying Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Minxia Xiu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Ruyi Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yanhong Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Zakharov N, Belova E, Gamaleya A, Tomskiy A, Sedov A. Neuronal activity features of the subthalamic nucleus associated with optimal deep brain stimulation electrode insertion path in Parkinson's disease. Eur J Neurosci 2024; 60:6987-7005. [PMID: 39617935 DOI: 10.1111/ejn.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a standard treatment for advanced Parkinson's disease (PD). The precise positioning of the electrode can significantly influence the results of DBS and the overall improvement in the quality of life for PD patients receiving this therapy. We hypothesize that single unit activity (SUA) features can serve as a valid marker of the optimal DBS-electrode insertion trajectory, leading to the most favorable outcome of STN-DBS surgery. We analyzed spontaneous SUA data recorded during microelectrode recording (MER) for 21 patients with PD who underwent DBS surgery. We compared 29 linear and six nonlinear characteristics of the STN neural activity recorded along different microelectrode insertion paths to determine features corresponding to favorable stimulation outcomes. Our research indicated that the SUA features of pause neurons in a dorsal STN region significantly affected stimulation outcomes. For the trajectories chosen for lead insertion, firing rate, burst rate and oscillatory activity at 8-12 and 12-20 bands were significantly decreased. Moreover, nonlinear feature analysis showed a significant increase in mutual information for the chosen trajectories. Our findings highlight the significance of specific indicators, such as the activity of pause neurons in the dorsal region and numerous linear SUA characteristics, in determining the optimal lead installation trajectory. Furthermore, our findings emphasize the importance of investigating paths rejected during test stimulation to understand motor impairment in Parkinson's disease and its treatment mechanisms.
Collapse
Affiliation(s)
- Nikita Zakharov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Elena Belova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna Gamaleya
- N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Sedov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| |
Collapse
|
9
|
Wang Y, Jiang Z, Chu C, Zhang Z, Wang J, Li D, He N, Fietkiewicz C, Zhou C, Kaiser M, Bai X, Zhang C, Liu C. Push-pull effects of basal ganglia network in Parkinson's disease inferred by functional MRI. NPJ Parkinsons Dis 2024; 10:224. [PMID: 39567536 PMCID: PMC11579490 DOI: 10.1038/s41531-024-00835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Deep brain stimulation (DBS) can ameliorate motor symptoms in Parkinson's disease (PD), but its mechanism remains unclear. This work constructs a multi-scale brain model using the fMRI data from 27 PD patients with subthalamic DBS and 30 healthy controls. The model fits microscopic coupling parameters in the cortico-basal ganglia-thalamic neural loop to match individual connectivity, finding the "push-pull" effect of basal ganglia network. Specifically, increased GABAergic projection into the thalamus from basal ganglia worsens rigidity, while reduced GABAergic projection within the cortex exacerbates bradykinesia, suggesting that the dopamine deficiency induces the chain coupling variations to "push" the network to an abnormal state. Conversely, DBS can alleviate rigidity by enhancing GABAergic projections within the basal ganglia, and improve bradykinesia by reducing cortical projections to basal ganglia, exhibiting that DBS "pulls" the network to a healthy state. This work combines the microscopic and macroscopic neural information for understanding PD and its treatment.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zhiqi Jiang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Chunguang Chu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chris Fietkiewicz
- Department of Mathematics & Computer Science, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Changsong Zhou
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Marcus Kaiser
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Xuze Bai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
Chen JZ, Volkmann J, Ip CW. A framework for translational therapy development in deep brain stimulation. NPJ Parkinsons Dis 2024; 10:216. [PMID: 39516465 PMCID: PMC11549317 DOI: 10.1038/s41531-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for motor disorders like Parkinson's disease, but its mechanisms and effects on neurons and networks are not fully understood, limiting research-driven progress. This review presents a framework that combines neurophysiological insights and translational research to enhance DBS therapy, emphasizing biomarkers, device technology, and symptom-specific neuromodulation. It also examines the role of animal research in improving DBS, while acknowledging challenges in clinical translation.
Collapse
Affiliation(s)
- Jia Zhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
11
|
Cao C, Litvak V, Zhan S, Liu W, Zhang C, Sun B, Li D, van Wijk BCM. Low-beta versus high-beta band cortico-subcortical coherence in movement inhibition and expectation. Neurobiol Dis 2024; 201:106689. [PMID: 39366457 DOI: 10.1016/j.nbd.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bernadette C M van Wijk
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, 1081, BT, Amsterdam, the Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Wang SS, Mao XF, Cai ZS, Lin W, Liu XX, Luo B, Chen X, Yue Y, Fan HY, Sasaki T, Fukunaga K, Zhang WB, Lu YM, Han F. Distinct Olfactory Bulb-Cortex Neural Circuits Coordinate Cognitive Function in Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0484. [PMID: 39359881 PMCID: PMC11445789 DOI: 10.34133/research.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Cognitive dysfunction stands as a prevalent and consequential non-motor manifestation in Parkinson's disease (PD). Although dysfunction of the olfactory system has been recognized as an important predictor of cognitive decline, the exact mechanism by which aberrant olfactory circuits contribute to cognitive dysfunction in PD is unclear. Here, we provide the first evidence for abnormal functional connectivity across olfactory bulb (OB) and piriform cortex (PC) or entorhinal cortex (EC) by clinical fMRI, and dysfunction of neural coherence in the olfactory system in PD mice. Moreover, we discovered that 2 subpopulations of mitral/tufted (M/T) cells in OB projecting to anterior PC (aPC) and EC precisely mediated the process of cognitive memory respectively by neural coherence at specific frequencies in mice. In addition, the transcriptomic profiling analysis and functional genetic regulation analysis further revealed that biorientation defective 1 (Bod1) may play a pivotal role in encoding OBM/T-mediated cognitive function. We also verified that a new deep brain stimulation protocol in OB ameliorated the cognitive function of Bod1-deficient mice and PD mice. Together, aberrant coherent activity in the olfactory system can serve as a biomarker for assessing cognitive function and provide a candidate therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Shuai-Shuai Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Xing-Feng Mao
- Department of Physiology, School of Basic Medical Sciences,
Nanjing Medical University, Nanjing 211166, China
| | - Zhi-Shen Cai
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Bei Luo
- Department of Functional Neurosurgery,
The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Yue Yue
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology,
Zhejiang University, Hangzhou 310058, China
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences,
Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences,
Tohoku University, Sendai, Japan
| | - Wen-Bin Zhang
- Department of Functional Neurosurgery,
The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences,
Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education,
Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital,
The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215009, China
- Institute of Brain Science,
the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University,
Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China
| |
Collapse
|
13
|
Yin Z, Yuan T, Yang A, Xu Y, Zhu G, An Q, Ma R, Gan Y, Shi L, Bai Y, Zhang N, Wang C, Jiang Y, Meng F, Neumann WJ, Tan H, Zhang JG. Contribution of basal ganglia activity to REM sleep disorder in Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:947-955. [PMID: 38641368 PMCID: PMC7616468 DOI: 10.1136/jnnp-2023-332014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sumarac S, Youn J, Fearon C, Zivkovic L, Keerthi P, Flouty O, Popovic M, Hodaie M, Kalia S, Lozano A, Hutchison W, Fasano A, Milosevic L. Clinico-physiological correlates of Parkinson's disease from multi-resolution basal ganglia recordings. NPJ Parkinsons Dis 2024; 10:175. [PMID: 39261476 PMCID: PMC11391063 DOI: 10.1038/s41531-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.
Collapse
Affiliation(s)
- Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinyoung Youn
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Conor Fearon
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Luka Zivkovic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prerana Keerthi
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Milos Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Suneil Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andres Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - William Hutchison
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
15
|
Perry A, Hughes LE, Adams NE, Naessens M, Kloosterman NA, Rouse MA, Murley AG, Street D, Jones PS, Rowe JB. Frontotemporal lobar degeneration changes neuronal beta-frequency dynamics during the mismatch negativity response. Neuroimage Clin 2024; 44:103671. [PMID: 39305652 PMCID: PMC11439566 DOI: 10.1016/j.nicl.2024.103671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
The consequences of frontotemporal lobar degeneration include changes in prefrontal cortical neurophysiology, with abnormalities of neural dynamics reported in the beta frequency range (14-30 Hz) that correlate with functional severity. We examined beta dynamics in two clinical syndromes associated with frontotemporal lobar degeneration: the behavioral variant of frontotemporal dementia (bvFTD) and progressive supranuclear palsy (PSP). Whilst these two syndromes are partially convergent in cognitive effects, they differ in disease mechanisms such as molecular pathologies and prefrontal atrophy. Whether bvFTD and PSP also differ in neurophysiology remains to be fully investigated. We compared magnetoencephalography from 20 controls, 23 people with bvFTD and 21 people with PSP (Richardson's syndrome) during an auditory roving oddball paradigm. We measured changes in low and high total beta power responses (14-22 and 22-30 Hz respectively) over frontotemporal cortex in the period of the mismatch negativity response (100-250 ms post-stimulus). In controls, we found increased 14-22 Hz beta power following unexpected sensory events (i.e. increased deviant versus standard response), from right prefrontal cortex. Relative to controls, PSP reversed the mismatch response in this time-frequency window, reflecting reduced responses to the deviant stimuli (relative to standard stimuli). Abnormal beta at baseline in PSP could account for the reduced task-modulation of beta. Across bvFTD and PSP groups, the beta response to deviant stimuli (relative to standard stimuli) correlated with clinical severity, but not with atrophy of the prefrontal source region. These findings confirm the proposed importance of higher-order cortical regions, and their beta-power generators, in sensory change detection and context-updating during oddball paradigms. The physiological effects are proposed to result from changes in synaptic density, cortical neurotransmitters and subcortical connections, rather than merely atrophy. Beta-power changes may assist clinical stratification and provide intermediate outcomes for experimental medicine studies of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Natalie E Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Michelle Naessens
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Niels A Kloosterman
- Institut für Psychologie I, Universität zu Lübeck, Germany; Max Planck Institute for Human Development, Berlin, Germany
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| |
Collapse
|
16
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
17
|
Happer JP, Beaton LE, Wagner LC, Hodgkinson CA, Goldman D, Marinkovic K. Neural indices of heritable impulsivity: Impact of the COMT Val158Met polymorphism on frontal beta power during early motor preparation. Biol Psychol 2024; 191:108826. [PMID: 38862067 DOI: 10.1016/j.biopsycho.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Studies of COMT Val158Met suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met158/Met158 (high dopamine) or 21 Val158/Val158 (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met158 homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior. This increase was especially evident on Go trials with slow response speed and was absent during inhibition failures. Such a pause could underlie the tendency of Met158 allele carriers to be more cautious and inhibited. In contrast, Val158 homozygotes exhibited a beta drop during early motor preparation, indicative of high response readiness. This decrease was associated with measures of behavioral disinhibition and consistent with greater extraversion and impulsivity observed in Val homozygotes. These results provide mechanistic insight into genetically-determined interindividual differences of inhibitory control with higher cortical dopamine associated with momentary response hesitation, and lower dopamine leading to motor impulsivity.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, MD, USA
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Radiology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
18
|
Geng X, Quan Z, Zhang R, Zhu G, Nie Y, Wang S, Rolls E, Zhang J, Hu L. Subthalamic and pallidal oscillations and their couplings reflect dystonia severity and improvements by deep brain stimulation. Neurobiol Dis 2024; 199:106581. [PMID: 38936434 DOI: 10.1016/j.nbd.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.
Collapse
Affiliation(s)
- Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Edmund Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Oxford Centre for Computational Neuroscience, University of Oxford, Oxford, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Pavlovsky P, Sayfulina K, Gamaleya A, Tomskiy A, Belova E, Sedov A. Clinical asymmetry in Parkinson's disease is characterized by prevalence of subthalamic pause-burst neurons and alpha-beta oscillations. Clin Neurophysiol 2024; 165:36-43. [PMID: 38943791 DOI: 10.1016/j.clinph.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE We aimed to establish specific biomarkers of Parkinson's disease (PD) by comparing activity of more affected (MA) and less affected (LA) subthalamic nucleus (STN) of patients with prominent clinical asymmetry. METHODS We recorded single unit activity and local field potentials (LFP) of the STN during deep brain stimulation surgeries. Neuronal firing patterns and discharge rate, as well as oscillatory features of both single cells and LFP, were analyzed. RESULTS We observed notable differences in proportions of irregular-burst and pause-burst, but not tonic neurons, between the hemispheres. Oscillations of pause-burst neurons correlated significantly with the bradykinesia and rigidity scores of the corresponding hemibody. LFP derived from MA STN featured greater power in 12-15 Hz. CONCLUSIONS Our results provide evidence that the increased proportion of units with prolonged pauses may be associated with PD. We also speculate that some of them may gain rhythmicity in the alpha-beta range in relation to hypokinetic symptoms, long-term disease, or both. SIGNIFICANCE Our findings highlight the relation between specific oscillatory features of the STN, predominance of subthalamic pause-burst units and PD pathophysiology.
Collapse
Affiliation(s)
- Philip Pavlovsky
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991, Kosygina str.4, Moscow, Russian Federation; Lomonosov Moscow State University, Department of Biology, 119234, 1-12 Leninskie Gory, Moscow, Russian Federation.
| | - Ksenia Sayfulina
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991, Kosygina str.4, Moscow, Russian Federation
| | - Anna Gamaleya
- N.N. Burdenko National Medical Research Center for Neurosurgery, 125047, 4th Tverskaya-Yamskaya str. 16, Moscow, Russian Federation
| | - Alexey Tomskiy
- N.N. Burdenko National Medical Research Center for Neurosurgery, 125047, 4th Tverskaya-Yamskaya str. 16, Moscow, Russian Federation
| | - Elena Belova
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991, Kosygina str.4, Moscow, Russian Federation
| | - Alexey Sedov
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991, Kosygina str.4, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 141701, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
20
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
21
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
22
|
Welter ML, Lehongre K, Faillot M, Collomb-Clerc A, Belaid H, Lau B, Karachi C. Virtual walking through a doorway promotes a beta-gamma power imbalance in the subthalamic nucleus in Parkinson's disease. Clin Neurophysiol 2024; 162:28-30. [PMID: 38554472 DOI: 10.1016/j.clinph.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Affiliation(s)
- Marie-Laure Welter
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France; PANAM Platform, CENIR, ICM, Paris, France; Neurophysiology Department, Rouen University Hospital, CHU Rouen, Rouen, France; University of Rouen, Rouen, France.
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France; STIM Platform, CENIR, ICM, Paris, France
| | - Matthieu Faillot
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France; Neurosurgery Department AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| | - Antoine Collomb-Clerc
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hayat Belaid
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France; Neurosurgery Department AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital Pitié-Salpêtrière, Paris, France; STIM Platform, CENIR, ICM, Paris, France; Neurosurgery Department AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France
| |
Collapse
|
23
|
Unadkat P, Vo A, Ma Y, Peng S, Nguyen N, Niethammer M, Tang CC, Dhawan V, Ramdhani R, Fenoy A, Caminiti SP, Perani D, Eidelberg D. Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: A network imaging marker of the treatment response. RESEARCH SQUARE 2024:rs.3.rs-4178280. [PMID: 38766007 PMCID: PMC11100869 DOI: 10.21203/rs.3.rs-4178280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) alleviates motor symptoms of Parkinson's disease (PD), thereby improving quality of life. However, quantitative brain markers to evaluate DBS responses and select suitable patients for surgery are lacking. Here, we used metabolic brain imaging to identify a reproducible STN-DBS network for which individual expression levels increased with stimulation in proportion to motor benefit. Of note, measurements of network expression from metabolic and BOLD imaging obtained preoperatively predicted motor outcomes determined after DBS surgery. Based on these findings, we computed network expression in 175 PD patients, with time from diagnosis ranging from 0 to 21 years, and used the resulting data to predict the outcome of a potential STN-DBS procedure. While minimal benefit was predicted for patients with early disease, the proportion of potential responders increased after 4 years. Clinically meaningful improvement with stimulation was predicted in 18.9 - 27.3% of patients depending on disease duration.
Collapse
Affiliation(s)
| | - An Vo
- The Feinstein Institutes for Medical Research
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | | | | | | | | - Ritesh Ramdhani
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | | | | |
Collapse
|
24
|
Choi JW, Malekmohammadi M, Niketeghad S, Cross KA, Ebadi H, Alijanpourotaghsara A, Aron A, Rutishauser U, Pouratian N. Prefrontal-subthalamic theta signaling mediates delayed responses during conflict processing. Prog Neurobiol 2024; 236:102613. [PMID: 38631480 PMCID: PMC11149786 DOI: 10.1016/j.pneurobio.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.
Collapse
Affiliation(s)
- Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Katy A Cross
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Hamasa Ebadi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Adam Aron
- Department of Psychology, University of California, San Diego, CA 92093, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, and Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Steiner LA, Crompton D, Sumarac S, Vetkas A, Germann J, Scherer M, Justich M, Boutet A, Popovic MR, Hodaie M, Kalia SK, Fasano A, Hutchison Wd WD, Lozano AM, Lankarany M, Kühn AA, Milosevic L. Neural signatures of indirect pathway activity during subthalamic stimulation in Parkinson's disease. Nat Commun 2024; 15:3130. [PMID: 38605039 PMCID: PMC11009243 DOI: 10.1038/s41467-024-47552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.
Collapse
Affiliation(s)
- Leon A Steiner
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - David Crompton
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Artur Vetkas
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Jürgen Germann
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Maximilian Scherer
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Maria Justich
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5G 1×6, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - William D Hutchison Wd
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Milad Lankarany
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
26
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
27
|
Liénard JF, Aubin L, Cos I, Girard B. Estimation of the transmission delays in the basal ganglia of the macaque monkey and subsequent predictions about oscillatory activity under dopamine depletion. Eur J Neurosci 2024; 59:1657-1680. [PMID: 38414108 DOI: 10.1111/ejn.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate β-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.
Collapse
Affiliation(s)
- Jean F Liénard
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| | - Lise Aubin
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| | - Ignasi Cos
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
- Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
- Serra-Hunter Fellow Program, Barcelona, Spain
| | - Benoît Girard
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| |
Collapse
|
28
|
Steina A, Sure S, Butz M, Vesper J, Schnitzler A, Hirschmann J. Mapping Subcortico-Cortical Coupling-A Comparison of Thalamic and Subthalamic Oscillations. Mov Disord 2024; 39:684-693. [PMID: 38380765 DOI: 10.1002/mds.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandra Steina
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Neurosurgical Clinic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Li Y, Wu J, Hua X, Zheng M, Xu J. The promotion-like effect of the M1-STN hyperdirect pathway induced by ccPAS enhanced balance performances: From the perspective of brain connectivity. CNS Neurosci Ther 2024; 30:e14710. [PMID: 38615363 PMCID: PMC11016345 DOI: 10.1111/cns.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS The present study aimed to explore the effect of cortico-cortical paired-associative stimulation (ccPAS) in modulating hyperdirect pathway and its influence on balance performance. METHODS Forty healthy participants were randomly allocated to the active ccPAS group (n = 20) or the sham ccPAS group (n = 20). The primary motor cortex and subthalamic nucleus were stimulated sequentially with ccPAS. Unlike the active ccPAS group, one wing of coil was tilted to form a 90° angle with scalp of stimulation locations for the sham ccPAS group. Magnetic resonance imaging, functional reach test (FRT), timed up and go (TUG) test, and limit of stability (LOS) test were performed, and correlation between them was also analyzed. RESULTS Three participants in the sham ccPAS group were excluded because of poor quality of NIfTI images. The active group had strengthened hyperdirect pathway, increased functional connectivity (FC) between orbital part of frontal cortex and bilateral precuneus, and decreased FC among basal ganglia (all p < 0.05). Regional network properties of triangular and orbital parts of IFG, middle cingulate cortex, and hippocampus increased. The active group performed better in FRT and LOS (all p < 0.05). FRT positively correlated with FC of the hyperdirect pathway (r = 0.439, p = 0.007) and FCs between orbital part of frontal cortex and bilateral precuneus (all p < 0.05). CONCLUSION The ccPAS enhanced balance performance by promotion-like plasticity mechanisms through the hyperdirect pathway.
Collapse
Affiliation(s)
- Yu‐Lin Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
30
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Front Neurosci 2024; 18:1338624. [PMID: 38449736 PMCID: PMC10915200 DOI: 10.3389/fnins.2024.1338624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bharadwaj Nandakumar
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools. Trends Neurosci 2024; 47:71-83. [PMID: 38042680 DOI: 10.1016/j.tins.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 12/04/2023]
Abstract
Movement disorders such as Parkinson's disease (PD) impact oculomotor function - the ability to move the eyes accurately and purposefully to serve a multitude of sensory, cognitive, and secondary motor tasks. Decades of neurophysiological research in monkeys and behavioral studies in humans have characterized the neural basis of healthy oculomotor control. This review links eye movement abnormalities in persons living with PD to the underlying neurophysiological mechanisms and pathways. Building on this foundation, we highlight recent progress in using eye movements to gauge symptom severity, assess treatment effects, and serve as potential precision biomarkers. We conclude that whereas eye movements provide insights into PD mechanisms, based on current evidence they appear to lack sufficient sensitivity and specificity to serve as a standalone diagnostic tool. Their full potential may be realized when combined with other disease indicators in big datasets.
Collapse
Affiliation(s)
- Chrystalina A Antoniades
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
32
|
Baruzzi V, Lodi M, Sorrentino F, Storace M. Bridging functional and anatomical neural connectivity through cluster synchronization. Sci Rep 2023; 13:22430. [PMID: 38104227 PMCID: PMC10725511 DOI: 10.1038/s41598-023-49746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The dynamics of the brain results from the complex interplay of several neural populations and is affected by both the individual dynamics of these areas and their connection structure. Hence, a fundamental challenge is to derive models of the brain that reproduce both structural and functional features measured experimentally. Our work combines neuroimaging data, such as dMRI, which provides information on the structure of the anatomical connectomes, and fMRI, which detects patterns of approximate synchronous activity between brain areas. We employ cluster synchronization as a tool to integrate the imaging data of a subject into a coherent model, which reconciles structural and dynamic information. By using data-driven and model-based approaches, we refine the structural connectivity matrix in agreement with experimentally observed clusters of brain areas that display coherent activity. The proposed approach leverages the assumption of homogeneous brain areas; we show the robustness of this approach when heterogeneity between the brain areas is introduced in the form of noise, parameter mismatches, and connection delays. As a proof of concept, we apply this approach to MRI data of a healthy adult at resting state.
Collapse
Affiliation(s)
| | - Matteo Lodi
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy
| | - Francesco Sorrentino
- Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marco Storace
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy.
| |
Collapse
|
33
|
Villavicencio-Tejo F, Olesen MA, Navarro L, Calisto N, Iribarren C, García K, Corsini G, Quintanilla RA. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 2023; 42:4. [PMID: 38103074 DOI: 10.1007/s12640-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
Collapse
Affiliation(s)
- Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Laura Navarro
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nancy Calisto
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Iribarren
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile.
| |
Collapse
|
34
|
Wiesman AI, da Silva Castanheira J, Degroot C, Fon EA, Baillet S, Network QP. Adverse and compensatory neurophysiological slowing in Parkinson's disease. Prog Neurobiol 2023; 231:102538. [PMID: 37832713 PMCID: PMC10872886 DOI: 10.1016/j.pneurobio.2023.102538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Clotilde Degroot
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A Fon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Quebec Parkinson Network
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
35
|
Sun Y, Lü J, Zhou Y, Liu Y, Chai Y. Suppression of beta oscillations by delayed feedback in a cortex-basal ganglia-thalamus-pedunculopontine nucleus neural loop model. J Biol Phys 2023; 49:463-482. [PMID: 37572243 PMCID: PMC10651615 DOI: 10.1007/s10867-023-09641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Excessive neural synchronization of neural populations in the beta (β) frequency range (12-35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson's disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on β oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological β oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson's motor symptoms in practical applications.
Collapse
Affiliation(s)
- Yuqin Sun
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Jiali Lü
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Ye Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yingpeng Liu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
36
|
Neige C, Vassiliadis P, Ali Zazou A, Dricot L, Lebon F, Brees T, Derosiere G. Connecting the dots: harnessing dual-site transcranial magnetic stimulation to quantify the causal influence of medial frontal areas on the motor cortex. Cereb Cortex 2023; 33:11339-11353. [PMID: 37804253 DOI: 10.1093/cercor/bhad370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively. Crucially, magnetic resonance imaging revealed that this facilitatory effect depended on a key morphometric feature of supplementary motor area: individuals with larger supplementary motor area volumes exhibited more facilitation from supplementary motor area to primary motor cortex for both short and long inter-stimulation intervals. Notably, we also provide evidence that the facilitatory effect of supplementary motor area stimulation at short intervals is unlikely to arise from spinal interactions of volleys descending simultaneously from supplementary motor area and primary motor cortex. On the other hand, medial orbitofrontal cortex stimulation moderately suppressed primary motor cortex activity at both short and long intervals, irrespective of medial orbitofrontal cortex volume. These results suggest that dual-site transcranial magnetic stimulation is a fruitful approach to investigate the differential influence of supplementary motor area and medial orbitofrontal cortex on primary motor cortex activity, paving the way for the multimodal assessment of these fronto-motor circuits in health and disease.
Collapse
Affiliation(s)
- Cécilia Neige
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PsyR2 Team, F-69500, Bron, France
- Centre Hospitalier le Vinatier, 95 Boulevard Pinel, 300 3969678 Bron Cedex, France
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Abdelkrim Ali Zazou
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Florent Lebon
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
| | - Thomas Brees
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Impact Team, F-69500, Bron, France
| |
Collapse
|
37
|
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146:4456-4468. [PMID: 37450573 PMCID: PMC10629774 DOI: 10.1093/brain/awad239] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon A Steiner
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
| | - Luka Milosevic
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
- Institute of Biomedical Engineering, Institute of Medical Sciences, and CRANIA Neuromodulation Institute, University of Toronto, Toronto M5S 3G9, Canada
| |
Collapse
|
38
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Excessive cortical beta oscillations are associated with slow-wave sleep dysfunction in mild parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564524. [PMID: 37961389 PMCID: PMC10634920 DOI: 10.1101/2023.10.28.564524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Increasing evidence associates slow-wave sleep (SWS) dysfunction with neurodegeneration. Using a within-subject design in the nonhuman primate model of Parkinson's disease (PD), we found that reduced SWS quantity in mild parkinsonism was accompanied by elevated beta and reduced delta power during SWS in the motor cortex. Our findings support excessive beta oscillations as a mechanism for SWS dysfunction and will inform development of neuromodulation therapies for enhancing SWS in PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Fan H, Guo Z, Jiang Y, Xue T, Yin Z, Xie H, Diao Y, Hu T, Zhao B, Wu D, An Q, Xu Y, Gao Y, Bai Y, Zhang J. Optimal subthalamic stimulation sites and related networks for freezing of gait in Parkinson's disease. Brain Commun 2023; 5:fcad238. [PMID: 37701817 PMCID: PMC10493641 DOI: 10.1093/braincomms/fcad238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/10/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Freezing of gait is a common and debilitating symptom in Parkinson's disease. Although high-frequency subthalamic deep brain stimulation is an effective treatment for Parkinson's disease, post-operative freezing of gait severity has been reported to alleviate, deteriorate or remain constant. We conducted this study to explore the optimal stimulation sites and related connectivity networks for high-frequency subthalamic deep brain stimulation treating freezing of gait in Parkinson's disease. A total of 76 Parkinson's disease patients with freezing of gait who underwent bilateral high-frequency subthalamic stimulation were retrospectively included. The volumes of tissue activated were estimated based on individual electrode reconstruction. The optimal and sour stimulation sites were calculated at coordinate/voxel/mapping level and mapped to anatomical space based on patient-specific images and stimulation settings. The structural and functional predictive connectivity networks for the change of the post-operative Freezing of Gait-Questionnaire were also identified based on normative connectomes derived from the Parkinson's Progression Marker Initiative database. Leave-one-out cross-validation model validated the above results, and the model remained significant after including covariates. The dorsolateral two-thirds of the subthalamic nucleus was identified as the optimal stimulation site, while the ventrocentral portion of the right subthalamic nucleus and internal capsule surrounding the left central subthalamic nucleus were considered as the sour stimulation sites. Modulation of the fibre tracts connecting to the supplementary motor area, pre-supplementary motor area and pedunculopontine nucleus accounted for the alleviation of freezing of gait, whereas tracts connecting to medial and ventrolateral prefrontal cortices contributed to the deterioration of freezing of gait. The optimal/sour stimulation sites and structural/functional predictive connectivity networks for high-frequency subthalamic deep brain stimulation treating freezing of gait are identified and validated through sizable Parkinson's disease patients in this study. With the growing understanding of stimulation sites and related networks, individualized deep brain stimulation treatment with directional leads will become an optimal choice for Parkinson's disease patients with freezing of gait in the future.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Zijian Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- School of Biomedical Engineering, Capital Medical University, 100069 Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070 Beijing, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Yu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070 Beijing, China
| | - Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070 Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070 Beijing, China
| |
Collapse
|
40
|
Paulo DL, Qian H, Subramanian D, Johnson GW, Zhao Z, Hett K, Kang H, Chris Kao C, Roy N, Summers JE, Claassen DO, Dhima K, Bick SK. Corticostriatal beta oscillation changes associated with cognitive function in Parkinson's disease. Brain 2023; 146:3662-3675. [PMID: 37327379 PMCID: PMC10681666 DOI: 10.1093/brain/awad206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023] Open
Abstract
Cognitive impairment is the most frequent non-motor symptom in Parkinson's disease and is associated with deficits in a number of cognitive functions including working memory. However, the pathophysiology of Parkinson's disease cognitive impairment is poorly understood. Beta oscillations have previously been shown to play an important role in cognitive functions including working memory encoding. Decreased dopamine in motor cortico-striato-thalamo-cortical (CSTC) circuits increases the spectral power of beta oscillations and results in Parkinson's disease motor symptoms. Analogous changes in parallel cognitive CSTC circuits involving the caudate and dorsolateral prefrontal cortex (DLPFC) may contribute to Parkinson's disease cognitive impairment. The objective of our study is to evaluate whether changes in beta oscillations in the caudate and DLPFC contribute to cognitive impairment in Parkinson's disease patients. To investigate this, we used local field potential recordings during deep brain stimulation surgery in 15 patients with Parkinson's disease. Local field potentials were recorded from DLPFC and caudate at rest and during a working memory task. We examined changes in beta oscillatory power during the working memory task as well as the relationship of beta oscillatory activity to preoperative cognitive status, as determined from neuropsychological testing results. We additionally conducted exploratory analyses on the relationship between cognitive impairment and task-based changes in spectral power in additional frequency bands. Spectral power of beta oscillations decreased in both DLPFC and caudate during working memory encoding and increased in these structures during feedback. Subjects with cognitive impairment had smaller decreases in caudate and DLPFC beta oscillatory power during encoding. In our exploratory analysis, we found that similar differences occurred in alpha frequencies in caudate and theta and alpha in DLPFC. Our findings suggest that oscillatory power changes in cognitive CSTC circuits may contribute to cognitive symptoms in patients with Parkinson's disease. These findings may inform the future development of novel neuromodulatory treatments for cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Helen Qian
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37212, USA
| | - Deeptha Subramanian
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Graham W Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- School of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Zixiang Zhao
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - C Chris Kao
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Noah Roy
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jessica E Summers
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Kaltra Dhima
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
41
|
Alva L, Bernasconi E, Torrecillos F, Fischer P, Averna A, Bange M, Mostofi A, Pogosyan A, Ashkan K, Muthuraman M, Groppa S, Pereira EA, Tan H, Tinkhauser G. Clinical neurophysiological interrogation of motor slowing: A critical step towards tuning adaptive deep brain stimulation. Clin Neurophysiol 2023; 152:43-56. [PMID: 37285747 PMCID: PMC7615935 DOI: 10.1016/j.clinph.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Subthalamic nucleus (STN) beta activity (13-30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson's disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. METHODS STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. RESULTS The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to ∼ 75% for 1 Hz, to ∼ 40% for 3 Hz deviation). CONCLUSIONS Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. SIGNIFICANCE A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS.
Collapse
Affiliation(s)
- Laura Alva
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Elena Bernasconi
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Petra Fischer
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Manuel Bange
- Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital, King's College London, SE59RS, United Kingdom
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Erlick A Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.
| |
Collapse
|
42
|
Hacker ML, Rajamani N, Neudorfer C, Hollunder B, Oxenford S, Li N, Sternberg AL, Davis TL, Konrad PE, Horn A, Charles D. Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease. Ann Neurol 2023; 94:271-284. [PMID: 37177857 PMCID: PMC10846105 DOI: 10.1002/ana.26674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Hollunder
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Simon Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Alice L Sternberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
43
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
44
|
Acosta-Mejia MT, Villalobos N. Neurophysiology of Brain Networks Underlies Symptoms of Parkinson's Disease: A Basis for Diagnosis and Management. Diagnostics (Basel) 2023; 13:2394. [PMID: 37510138 PMCID: PMC10377975 DOI: 10.3390/diagnostics13142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is one of the leading neurodegenerative disorders. It is considered a movement disorder, although it is accepted that many nonmotor symptoms accompany the classic motor symptoms. PD exhibits heterogeneous and overlaying clinical symptoms, and the overlap of motor and nonmotor symptoms complicates the clinical diagnosis and management. Loss of modulation secondary to the absence of dopamine due to degeneration of the substantia nigra compacta produces changes in firing rates and patterns, oscillatory activity, and higher interneuronal synchronization in the basal ganglia-thalamus-cortex and nigrovagal network involvement in motor and nonmotor symptoms. These neurophysiological changes can be monitored by electrophysiological assessment. The purpose of this review was to summarize the results of neurophysiological changes, especially in the network oscillation in the beta-band level associated with parkinsonism, and to discuss the use of these methods to optimize the diagnosis and management of PD.
Collapse
Affiliation(s)
- Martha Teresa Acosta-Mejia
- Área Académica de Nutrición, Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda La Concepción, Sn Agustin Tlaxiaca, Estado de Hidalgo 42160, Mexico
| | - Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico, Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
45
|
Cohen SL, Woo Choi J, Toga AW, Pouratian N, Duncan D. Exaggerated High-Beta Oscillations are Associated with Cortical Thinning at the Motor Cortex in Parkinson's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083533 DOI: 10.1109/embc40787.2023.10341040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Elevated β oscillations (13-35 Hz) are characteristic pathophysiology in Parkinson's Disease (PD). Cortical thinning has also been reported in the disease, however the relationship between these biomarkers of PD has not been established. By comparing electrophysiological measurements with cortical thickness, this study aims to reveal the pathoetiology of disease and symptoms in PD. Preoperative magnetic resonance imaging (MRI) and intraoperative local field potentials (LFPs) were collected from 34 subjects diagnosed with PD. Cortical surfaces were reconstructed from the images, and cortical thickness was extracted from the subregions where the recording electrode was placed in M1. LFPs were preprocessed and cleaned using a semiautomatic artifact detection algorithm, then power spectral densities (PSD) were computed and periodic and aperiodic frequency components were calculated. Nonparametric Spearman rank correlations assessed the relationship between electrophysiological components (i.e. center frequency (CF), power, bandwidth, 1/f exponent, knee), with cortical thickness. According to the CF of each subject's PSD, the cohort was split into two sub-groups: low-β peak (13-20 Hz) and high-β peak (20-35 Hz) groups. There was a significant negative correlation between power and cortical thickness only in the high-β subgroup (r=-0.48, p(corrected)=0.049). This relationship remained significant when correcting for age (r=-0.52,p=0.015), indicating that the effect of age on cortical thinning was not the determining factor. We did not find significant differences between UPDRS-III motor symptom scores for the low-and high-β subgroups. Of note is the dominance of high-β oscillatory power and its relationship with cortical thickness. As suggested by the literature, increased high-β activity during movement may be exaggerated in PD. These findings suggest that the characteristic cortical thinning in PD causes variation in electrical activity, leading to elevated high-β activity.Clinical relevance- This multimodal study provides additional insights on the pathophysiology and its relevance with morphology of Parkinson's Disease.
Collapse
|
46
|
Mirzac D, Kreis SL, Luhmann HJ, Gonzalez-Escamilla G, Groppa S. Translating Pathological Brain Activity Primers in Parkinson's Disease Research. RESEARCH (WASHINGTON, D.C.) 2023; 6:0183. [PMID: 37383218 PMCID: PMC10298229 DOI: 10.34133/research.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Translational experimental approaches that help us better trace Parkinson's disease (PD) pathophysiological mechanisms leading to new therapeutic targets are urgently needed. In this article, we review recent experimental and clinical studies addressing abnormal neuronal activity and pathological network oscillations, as well as their underlying mechanisms and modulation. Our aim is to enhance our knowledge about the progression of Parkinson's disease pathology and the timing of its symptom's manifestation. Here, we present mechanistic insights relevant for the generation of aberrant oscillatory activity within the cortico-basal ganglia circuits. We summarize recent achievements extrapolated from available PD animal models, discuss their advantages and limitations, debate on their differential applicability, and suggest approaches for transferring knowledge on disease pathology into future research and clinical applications.
Collapse
Affiliation(s)
- Daniela Mirzac
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Svenja L. Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
47
|
Wang Y, Shi X, Si B, Cheng B, Chen J. Synchronization and oscillation behaviors of excitatory and inhibitory populations with spike-timing-dependent plasticity. Cogn Neurodyn 2023; 17:715-727. [PMID: 37265649 PMCID: PMC10229527 DOI: 10.1007/s11571-022-09840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
The effect of synaptic plasticity on the synchronization mechanism of the cerebral cortex has been a hot research topic over the past two decades. There are a great deal of literatures on excitatory pyramidal neurons, but the mechanism of interaction between the inhibitory interneurons is still under exploration. In this study, we consider a complex network consisting of excitatory (E) pyramidal neurons and inhibitory (I) interneurons interacting with chemical synapses through spike-timing-dependent plasticity (STDP). To study the effects of eSTDP and iSTDP on synchronization and oscillation behaviors emerged in an excitatory-inhibitory balanced network, we analyzed three different cases, a small-world network of purely excitatory neurons with eSTDP, a small-world network of purely inhibitory neurons with iSTDP and a small-world network with excitatory-inhibitory balanced neurons. By varying the number of inhibitory interneurons, and that of connected edges in a small-world network, and the coupling strength, these networks exhibit different synchronization and oscillation behaviors. We found that the eSTDP facilitates synchronization effectively, while iSTDP has no significant impact on it. In addition, eSTDP and iSTDP restrict the balance of the excitatory-inhibitory balanced neuronal network together and play a fundamental role in maintaining network stability and synchronization. They also can be used to guide the treatment and further research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Brain and Autonomous Intelligent Robots Lab, School of Systems Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Xia Shi
- School of Science, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Bailu Si
- Brain and Autonomous Intelligent Robots Lab, School of Systems Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Bo Cheng
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Junliang Chen
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| |
Collapse
|
48
|
Belova E, Semenova U, Gamaleya A, Tomskiy A, Sedov A. Excessive α-β Oscillations Mark Enlarged Motor Sign Severity and Parkinson's Disease Duration. Mov Disord 2023; 38:1027-1035. [PMID: 37025075 DOI: 10.1002/mds.29393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND β Oscillations in the subthalamic nucleus (STN) have been proven to contribute to Parkinson's disease (PD), but the exact borders of β subbands vary substantially across the studies, and information regarding heterogeneity of β rhythmic activity is still limited. Recently, α oscillations in the basal ganglia have also become the focus of PD research. OBJECTIVES The aim was to study rhythmic oscillations in the STN in PD patients to identify different subbands with stable oscillatory peaks within a broad α-β range and to establish their associations with motor symptoms. METHODS Local field potentials inside the STN were recorded during deep brain stimulation (DBS) surgeries. After calculating power spectra and extracting an aperiodic component, oscillatory peaks in the 8- to 35-Hz range with amplitude exceeding 90th percentile were clustered into three bands. Peak parameters were estimated for two lower subbands. Clinical features were compared in patients with and without oscillation peaks in the lowest α-β subband. RESULTS We isolated α-β (8-15 Hz), β (15-25 Hz), and β-γ (25-35 Hz) subbands within the 8- to 35-Hz spectral range using oscillatory parameters and Ward's hierarchical clustering. Additional α-β oscillatory peaks were found in about half of patients with β peaks; they were located more ventrally compared to β. We have found a significant increase in disease duration, bradykinesia, and rigidity scores in the group with additional α-β peaks. CONCLUSIONS Increased α-β oscillations may emerge as additional phenomena complementing β oscillations; they may mark disease progression in PD and affect DBS stimulation setup. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Belova
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Ulia Semenova
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Anna Gamaleya
- Group of Functional Neurosurgery, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Alexey Tomskiy
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexey Sedov
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| |
Collapse
|
49
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
50
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|