1
|
Bao Z, Zhang F, Zhao Q, Han Q, Liu J, Xue F, Zhang D, Hou D, Zhang H. Microbial community assembly and co-occurrence patterns in Sanmen bay: A comparative analysis before and after nuclear power plant operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178189. [PMID: 39721531 DOI: 10.1016/j.scitotenv.2024.178189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB. This suggests that short-term thermal discharge does not significantly alter the composition of microbial communities. The co-occurrence networks were primarily composed of Gammaproteobacteria, Alphaproteobacteria, Dinoflagellates, Diatoms, and Cryptophyta, with similar network topological properties across sampling groups. Homogeneous selection and dispersal limitation were the main mechanisms that controlled the assembly of microbial communities. Homogeneous selection was more significant for prokaryotes, while dispersal limitation was the dominant factor in microeukaryotes, irrespective of a thermal discharge. Prokaryotic β-diversity and nutrients showed substantially positive effects on the functional potential of the prokaryotic community. The findings indicate that short-term thermal discharge from the NPP, as long as they do not cause a significant overall temperature increase in the bay, are unlikely to impact the microbial communities within the coastal bay ecosystem.
Collapse
Affiliation(s)
- Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fengyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qunfen Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Junfeng Liu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Feng Xue
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Huajun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Zhang Q, Liu C, Qiu L, Zhang W, Sun L, Gu H, Yu R. Genetic diversity and distribution of Karenia in the eastern coastal seas of China and implications for the trends in Karenia blooms under global environmental changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123465. [PMID: 39603101 DOI: 10.1016/j.jenvman.2024.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Species of Karenia G. Hansen & Moestrup gen. nov. frequently contribute to intense harmful algal blooms on a global scale, resulting in detrimental effects on fisheries, aquatic ecosystems, and human health. Over the past two decades, there has been noticeable increase in the reporting of Karenia blooms, with outbreaks attributed to newly recorded species, sometimes with multiple causative species. This trend highlights an insufficient understanding of species diversity and geographical distribution of Karenia and related key environment drivers under global environmental change. In this study, we employed a tailored barcode for genus Karenia combined with high-throughput sequencing to examine the species diversity and geographical dispersion of Karenia, as well as their relationships with environment factors in the eastern Chinese coastal seas (ECCS) in spring and autumn. Our findings revealed an unprecedented presence of both described and unrecorded Karenia species in the ECCS. K. mikimotoi was predominantly observed in the cold waters of the ECCS north of 35°N in autumn and the major waters of the ECCS in spring, while various Karenia species tend to co-inhabit in the warmer waters of autumn in the East China Sea. Sea temperatures were significantly correlated to the distribution patterns of Karenia species in the ECCS. In contrast, concentrations of inorganic nitrogen and phosphorus were not identified as major correlates to Karenia distribution. In light of the findings of this study and the understanding that Karenia species exhibit strong mixotrophic capabilities, it is suggested that ocean warming and increased coastal eutrophication, particularly the rise of dissolved and particulate organic substances, may contribute to the proliferation of Karenia blooms associated with undocumented species and/or multiple causative species.
Collapse
Affiliation(s)
- Qingchun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China
| | - Chao Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China.
| | | | - Lu Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Ocean Mega-Science, Qingdao 266071, China
| |
Collapse
|
3
|
Liu S, Liu Y, Xing Q, Li Y, Tian H, Luo Y, Ito SI, Tian Y. Climate change drives fish communities: Changing multiple facets of fish biodiversity in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176854. [PMID: 39396784 DOI: 10.1016/j.scitotenv.2024.176854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Global marine biodiversity is experiencing significant alterations due to climate change. Incorporating phylogenetic and functional diversity may provide novel insights into these impacts. This study used an ensemble model approach (random forest and boosted regression tree), to predict the habitat distribution of 47 fish species in the Northwestern Pacific under contemporary (2000-2014) and future scenarios (2040-2050, 2090-2100). We first examined the relationship between eleven functional traits and habitat changes, predicting the spatial distribution of functional traits within fish communities. A significant correlation was observed between temperature preference and habitat changes, highlighting the vulnerability of cold-water species and potential advantages for warm-water species in the future. Moreover, fish communities exhibited a spatial gradient distribution with southern regions characterized by shorter-lived and earlier maturity, contrasting with longer-lived and later maturity species in the north. Secondly, to assess the impact of climate change on marine biodiversity, we explored the taxonomic, phylogenetic, and functional diversity under contemporary and future scenarios, revealing higher indices in the East China Sea (ECS) and the coastal sea of Japan, with the Taiwan Strait emerging as a contemporary biodiversity hotspot. In future scenarios, the three biodiversity indices would decline in the Yellow Sea and ECS, but increase in the sea beyond the continental shelf, coastal sea of Hokkaido, and Sea of Okhotsk. Lastly, we explored processes and mechanisms in the change of community composition. By quantifying β-diversity, we identified species loss (nestedness) as the primary driver of fish community change by 2040-2050, with species replacement (turnover) predicted to become dominant in the far future. Our results explore the potential changes in multiple facets of fish biodiversity, providing crucial insights for policymakers aiming to protect fish resources and biodiversity.
Collapse
Affiliation(s)
- Shuhao Liu
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yang Liu
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Qinwang Xing
- Institude of Marine Science and Technology, Shangdong University, Qingdao 266237, China
| | - Yuru Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hao Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanping Luo
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shin-Ichi Ito
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 2778564, Japan
| | - Yongjun Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Chaabane S, de Garidel-Thoron T, Meilland J, Sulpis O, Chalk TB, Brummer GJA, Mortyn PG, Giraud X, Howa H, Casajus N, Kuroyanagi A, Beaugrand G, Schiebel R. Migrating is not enough for modern planktonic foraminifera in a changing ocean. Nature 2024; 636:390-396. [PMID: 39537925 PMCID: PMC11634771 DOI: 10.1038/s41586-024-08191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Rising carbon dioxide emissions are provoking ocean warming and acidification1,2, altering plankton habitats and threatening calcifying organisms3, such as the planktonic foraminifera (PF). Whether the PF can cope with these unprecedented rates of environmental change, through lateral migrations and vertical displacements, is unresolved. Here we show, using data collected over the course of a century as FORCIS4 global census counts, that the PF are displaying evident poleward migratory behaviours, increasing their diversity at mid- to high latitudes and, for some species, descending in the water column. Overall foraminiferal abundances have decreased by 24.2 ± 0.1% over the past eight decades. Beyond lateral migrations5, our study has uncovered intricate vertical migration patterns among foraminiferal species, presenting a nuanced understanding of their adaptive strategies. In the temperature and calcite saturation states projected for 2050 and 2100, low-latitude foraminiferal species will face physicochemical environments that surpass their current ecological tolerances. These species may replace higher-latitude species through poleward shifts, which would reduce low-latitude foraminiferal diversity. Our insights into the adaptation of foraminifera during the Anthropocene suggest that migration will not be enough to ensure survival. This underscores the urgent need for us to understand how the interplay of climate change, ocean acidification and other stressors will impact the survivability of large parts of the marine realm.
Collapse
Affiliation(s)
- Sonia Chaabane
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France.
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany.
- Fondation pour la recherche sur la biodiversité (FRB-CESAB), Montpellier, France.
| | | | - Julie Meilland
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Olivier Sulpis
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | - Thomas B Chalk
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | - Geert-Jan A Brummer
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Ocean Systems, Texel, The Netherlands
| | - P Graham Mortyn
- Universitat Autònoma de Barcelona, ICTA and Dept. of Geography, Barcelona, Spain
| | - Xavier Giraud
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | - Hélène Howa
- LPG-BIAF, UMR-CNRS 6112, University of Angers, Angers, France
| | - Nicolas Casajus
- Fondation pour la recherche sur la biodiversité (FRB-CESAB), Montpellier, France
| | | | - Gregory Beaugrand
- Université Littoral Côte d'Opale, Univ. Lille, CNRS, UMR 8187, Laboratoire d'Océanologie et de Géosciences (LOG), Wimereux, France
| | - Ralf Schiebel
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
5
|
Yamada S, Honda T. Material design of biodegradable primary batteries: boosting operating voltage by substituting the hydrogen evolution reaction at the cathode. NANOSCALE 2024; 16:20027-20036. [PMID: 39392400 DOI: 10.1039/d4nr03321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transient primary batteries (TPBs) degrade after use without leaving harmful toxic substances, providing power sources for developing low-invasive and environmentally benign sensing platforms. Magnesium and zinc, both abundant on Earth, possess low anodic potentials and good biodegradability, making them useful as anode materials. However, molybdenum, a biodegradable metal, causes the hydrogen evolution reaction (HER) at the cathode, reducing the operating voltage of cells because of its low cathodic potential. In this review, we examine recent material designs to increase the operating voltage by introducing alternative electrochemical reactions at the cathode, including the oxygen reduction reaction, metal-ion intercalation into transition metal oxides, and halogen ionization, all of which have higher cathodic potentials than the HER. After discussing the characteristics, constituents, and demonstration of TPBs, we conclude by exploring their potential as power sources for implants, wearables, and environmental sensing applications.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Takashi Honda
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
6
|
Gaudin M, Eveillard D, Chaffron S. Ecological associations distribution modelling of marine plankton at a global scale. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230169. [PMID: 39034696 PMCID: PMC11293856 DOI: 10.1098/rstb.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Marine plankton communities form intricate networks of interacting organisms at the base of the food chain, and play a central role in regulating ocean biogeochemical cycles and climate. However, predicting plankton community shifts in response to climate change remains challenging. While species distribution models are valuable tools for predicting changes in species biogeography under climate change scenarios, they generally overlook the key role of biotic interactions, which can significantly shape ecological processes and ecosystem responses. Here, we introduce a novel statistical framework, association distribution modelling (ADM), designed to model and predict ecological associations distribution in space and time. Applied on a Tara Oceans genome-resolved metagenomics dataset, the present-day biogeography of ADM-inferred marine plankton associations revealed four major biogeographic biomes organized along a latitudinal gradient. We predicted the evolution of these biome-specific communities in response to a climate change scenario, highlighting differential responses to environmental change. Finally, we explored the functional potential of impacted plankton communities, focusing on carbon fixation, outlining the predicted evolution of its geographical distribution and implications for ecosystem function.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| |
Collapse
|
7
|
Huber P, De Angelis D, Sarmento H, Metz S, Giner CR, Vargas CD, Maiorano L, Massana R, Logares R. Global distribution, diversity, and ecological niche of Picozoa, a widespread and enigmatic marine protist lineage. MICROBIOME 2024; 12:162. [PMID: 39232839 PMCID: PMC11373171 DOI: 10.1186/s40168-024-01874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization. RESULTS Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environments. The phylum was represented by 179 Picozoa's OTU (pOTUs) placed in five phylogenetic clades. Picozoa community structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits. CONCLUSIONS Overall, this work advances our understanding of uncharted protists' evolutionary dynamics and ecological strategies. Our results highlight the importance of understanding the species-level ecology of marine heteroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecological niches. Video Abstract.
Collapse
Affiliation(s)
- Paula Huber
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Daniele De Angelis
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Hugo Sarmento
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | | - Caterina R Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Colomban De Vargas
- Sorbonne Universités, CNRS, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Luigi Maiorano
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
9
|
Zhang Z, Zhang Q, Chen B, Yu Y, Wang T, Xu N, Fan X, Penuelas J, Fu Z, Deng Y, Zhu YG, Qian H. Global biogeography of microbes driving ocean ecological status under climate change. Nat Commun 2024; 15:4657. [PMID: 38822036 PMCID: PMC11143227 DOI: 10.1038/s41467-024-49124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiaoji Fan
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Ye Deng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
10
|
Ahme A, Happe A, Striebel M, Cabrerizo MJ, Olsson M, Giesler J, Schulte-Hillen R, Sentimenti A, Kühne N, John U. Warming increases the compositional and functional variability of a temperate protist community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171971. [PMID: 38547992 DOI: 10.1016/j.scitotenv.2024.171971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.
Collapse
Affiliation(s)
- Antonia Ahme
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Marco J Cabrerizo
- Department of Ecology, University of Granada, Campus Fuentenueva s/n 1, 18071 Granada, Spain; Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, 106 91 Stockholm, Sweden
| | - Jakob Giesler
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ruben Schulte-Hillen
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Alexander Sentimenti
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Nancy Kühne
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
11
|
Swain A, Woodhouse A, Fagan WF, Fraass AJ, Lowery CM. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 2024; 629:616-623. [PMID: 38632405 DOI: 10.1038/s41586-024-07337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
In palaeontological studies, groups with consistent ecological and morphological traits across a clade's history (functional groups)1 afford different perspectives on biodiversity dynamics than do species and genera2,3, which are evolutionarily ephemeral. Here we analyse Triton, a global dataset of Cenozoic macroperforate planktonic foraminiferal occurrences4, to contextualize changes in latitudinal equitability gradients1, functional diversity, palaeolatitudinal specialization and community equitability. We identify: global morphological communities becoming less specialized preceding the richness increase after the Cretaceous-Palaeogene extinction; ecological specialization during the Early Eocene Climatic Optimum, suggesting inhibitive equatorial temperatures during the peak of the Cenozoic hothouse; increased specialization due to circulation changes across the Eocene-Oligocene transition, preceding the loss of morphological diversity; changes in morphological specialization and richness about 19 million years ago, coeval with pelagic shark extinctions5; delayed onset of changing functional group richness and specialization between hemispheres during the mid-Miocene plankton diversification. The detailed nature of the Triton dataset permits a unique spatiotemporal view of Cenozoic pelagic macroevolution, in which global biogeographic responses of functional communities and richness are decoupled during Cenozoic climate events. The global response of functional groups to similar abiotic selection pressures may depend on the background climatic state (greenhouse or icehouse) to which a group is adapted.
Collapse
Affiliation(s)
- Anshuman Swain
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Adam Woodhouse
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Andrew J Fraass
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christopher M Lowery
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
13
|
Hörstmann C, Hattermann T, Thomé PC, Buttigieg PL, Morel I, Waite AM, John U. Biogeographic gradients of picoplankton diversity indicate increasing dominance of prokaryotes in warmer Arctic fjords. Commun Biol 2024; 7:256. [PMID: 38431695 PMCID: PMC10908816 DOI: 10.1038/s42003-024-05946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Climate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region's most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2-3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
Collapse
Affiliation(s)
- Cora Hörstmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
- Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
- Turing Center for Living Systems, Aix-Marseille University, 13009, Marseille, France.
| | - Tore Hattermann
- Norwegian Polar Institute, iC3: Centre for Ice, Cryosphere, Carbon and Climate, Framsenteret, Hjalmar Johansens gate 14, 9296, Tromsø, Norway
- Complex Systems Group, Department of Mathematics and Statistics, The Arctic University - University of Tromsø, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Pauline C Thomé
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Pier Luigi Buttigieg
- Helmholtz Metadata Collaboration, GEOMAR, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Isidora Morel
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Anya M Waite
- Ocean Frontier Institute, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada
| | - Uwe John
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, 26129, Oldenburg, Germany
| |
Collapse
|
14
|
Uttieri M, Svetlichny L. Escape performance in the cyclopoid copepod Oithona davisae. Sci Rep 2024; 14:1078. [PMID: 38212397 PMCID: PMC10784515 DOI: 10.1038/s41598-024-51288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Escaping a predator is one of the keys to success for any living creature. The performance of adults (males, females, and ovigerous females) of the cyclopoid copepod Oithona davisae exposed to an electrical stimulus is analysed as a function of temperature by measuring characteristic parameters associated with the escape movement (distance covered, duration of the appendage movement, mean and maximum escape speeds, Reynolds number). In addition, as a proxy for the efficiency of the motion, the Strouhal number was calculated. The escape performance showed temperature-dependent relationships within each adult state, as well as differences between sexes; additionally, changes owing to the presence of the egg sac were recorded in females. In a broader perspective, the results collected reveal the occurrence of different behavioural adaptations in males and females, adding to the comprehension of the mechanisms by which O. davisae interacts with its environment and shedding new light on the in situ population dynamics of this species.
Collapse
Affiliation(s)
- Marco Uttieri
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Leonid Svetlichny
- Department of Invertebrate Fauna and Systematics, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Zhang Y, Qu Z, Zhang K, Li J, Lin X. Different Microeukaryotic Trophic Groups Show Different Latitudinal Spatial Scale Dependences in Assembly Processes across the Continental Shelves of China. Microorganisms 2024; 12:124. [PMID: 38257952 PMCID: PMC10821338 DOI: 10.3390/microorganisms12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The relative role of stochasticity versus determinism is critically dependent on the spatial scale over which communities are studied. However, only a few studies have attempted to reveal how spatial scales influence the balance of different assembly processes. In this study, we investigated the latitudinal spatial scale dependences in assembly processes of microeukaryotic communities in surface water and sediment along the continental shelves of China. It was hypothesized that different microeukaryotic trophic groups (i.e., autotroph, heterotroph, mixotroph, and parasite) showed different latitudinal scale dependences in their assembly processes. Our results disclosed that the relative importance of different assembly processes depended on a latitudinal space scale for planktonic microeukaryotes. In surface water, as latitudinal difference increased, the relative contributions of homogenous selection and homogenizing dispersal decreased for the entire community, while those of heterogeneous selection and drift increased. The planktonic autotrophic and heterotrophic groups shifted from stochasticity-dominated processes to heterogeneous selection as latitudinal differences surpassed thresholds of 8° and 16°, respectively. For mixotrophic and parasitic groups, however, the assembly processes were always dominated by drift across different spatial scales. The balance of different assembly processes for the autotrophic group was mainly driven by temperature, whereas that of the heterotrophic group was driven by salinity and geographical distance. In sediment, neither the entire microeukaryotic community nor the four trophic groups showed remarkable spatial scale dependences in assembly processes; they were always overwhelmingly dominated by the drift. This work provides a deeper understanding of the distribution mechanisms of microeukaryotes along the continental shelves of China from the perspective of trophic groups.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhishuai Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Kexin Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| |
Collapse
|
16
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Wood PL, Wood MD, Kunigelis SC. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life (Basel) 2023; 13:2335. [PMID: 38137936 PMCID: PMC10744631 DOI: 10.3390/life13122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Michael D. Wood
- Child and Adolescent Psychiatry, BC Children’s and Women’s Hospital & Provincial Health Services Authority, Vancouver, BC V5Z 4H4, Canada;
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
18
|
Giesler JK, Harder T, Wohlrab S. Microbiome and photoperiod interactively determine thermal sensitivity of polar and temperate diatoms. Biol Lett 2023; 19:20230151. [PMID: 37964575 PMCID: PMC10646449 DOI: 10.1098/rsbl.2023.0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
The effect of temperature on ectothermic organisms in the context of climate change has long been considered in isolation (i.e. as a single driver). This is challenged by observations demonstrating that temperature-dependent growth is correlated to further factors. However, little is known how the chronobiological history of an organism reflected in its adaptation to re-occurring cyclic patterns in its environment (e.g. annual range of photoperiods in its habitat) and biotic interactions with its microbiome, contribute to shaping its realized niche. To address this, we conducted a full-factorial microcosm multi-stressor experiment with the marine diatoms Thalassiosira gravida (polar) and Thalassiosira rotula (temperate) across multiple levels of temperature (4°C; 9°C; 13.5°C) and photoperiod (4 h; 16 h; 24 h), both in the presence or absence of their microbiomes. While temperature-dependent growth of the temperate diatom was constrained by short and long photoperiods, the polar diatom coped with a 24 h photoperiod up to its thermal optimum (9°C). The algal microbiomes particularly supported host growth at the margins of their respective fundamental niches except for the combination of the warmest temperature tested at 24 h photoperiod. Overall, this study demonstrates that temperature tolerances may have evolved interactively and that the mutualistic effect of the microbiome can only be determined once the multifactorial abiotic niche is defined.
Collapse
Affiliation(s)
- Jakob K. Giesler
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Tilmann Harder
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359 Bremen, Germany
| | - Sylke Wohlrab
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129 Oldenburg, Germany
| |
Collapse
|
19
|
Garzke J, Forster I, Graham C, Costalago D, Hunt BPV. Future climate change-related decreases in food quality may affect juvenile Chinook salmon growth and survival. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106171. [PMID: 37716280 DOI: 10.1016/j.marenvres.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Global climate change is projected to raise global temperatures by 3.3-5.7 °C by 2100, resulting in changes in species composition, abundance, and nutritional quality of organisms at the base of the marine food web. Predicted increases in prey availability and reductions in prey nutritional quality under climate warming in certain marine systems are expected to impact higher trophic levels, such as fish and humans. There is limited knowledge of the interplay between food quantity and quality under warming, specifically when food availability is high, but quality is low. Here, we conducted an experiment assessing the effects of food quality (fatty acid composition and ratios) on juvenile Chinook salmon's (Oncorhynchus tshawytscha) body and nutritional condition, specifically focusing on RNA:DNA ratio, Fulton's K, growth, mortality and their fatty acid composition. Experimental diets represented three different climate change scenarios with 1) a present-day diet (Euphausia pacifica), 2) a control diet (commercial aquaculture diet), and 3) a predicted Intergovernmental Panel on Climate Change (IPCC) worst-case scenario diet with low essential fatty acid concentrations (IPCC SSP5-8.5). We tested how growth rates, RNA:DNA ratio, Fulton's K index, fatty acid composition and mortality rates in juvenile Chinook salmon compared across diet treatments. Fatty acids were incorporated into the salmon muscle at varying rates but, on average, reflected dietary concentrations. High dietary concentrations of DHA, EPA and high DHA:EPA ratios, under the control and present-day diets, increased fish growth and condition. In contrast, low concentrations of DHA and EPA and low DHA:EPA ratios in the diets under climate change scenario were not compensated for by increased food quantity. This result highlights the importance of considering food quality when assessing fish response to changing ocean conditions.
Collapse
Affiliation(s)
- Jessica Garzke
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, 4160 Marine Dr., West Vancouver, BC V7V 1N6, Canada
| | - Caroline Graham
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Costalago
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
20
|
Laso-Jadart R, O'Malley M, Sykulski AM, Ambroise C, Madoui MA. Holistic view of the seascape dynamics and environment impact on macro-scale genetic connectivity of marine plankton populations. BMC Ecol Evol 2023; 23:46. [PMID: 37658324 PMCID: PMC10472650 DOI: 10.1186/s12862-023-02160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Plankton seascape genomics studies have revealed different trends from large-scale weak differentiation to microscale structures. Previous studies have underlined the influence of the environment and seascape on species differentiation and adaptation. However, these studies have generally focused on a few single species, sparse molecular markers, or local scales. Here, we investigated the genomic differentiation of plankton at the macro-scale in a holistic approach using Tara Oceans metagenomic data together with a reference-free computational method. RESULTS We reconstructed the FST-based genomic differentiation of 113 marine planktonic taxa occurring in the North and South Atlantic Oceans, Southern Ocean, and Mediterranean Sea. These taxa belong to various taxonomic clades spanning Metazoa, Chromista, Chlorophyta, Bacteria, and viruses. Globally, population genetic connectivity was significantly higher within oceanic basins and lower in bacteria and unicellular eukaryotes than in zooplankton. Using mixed linear models, we tested six abiotic factors influencing connectivity, including Lagrangian travel time, as proxies of oceanic current effects. We found that oceanic currents were the main population genetic connectivity drivers, together with temperature and salinity. Finally, we classified the 113 taxa into parameter-driven groups and showed that plankton taxa belonging to the same taxonomic rank such as phylum, class or order presented genomic differentiation driven by different environmental factors. CONCLUSION Our results validate the isolation-by-current hypothesis for a non-negligible proportion of taxa and highlight the role of other physicochemical parameters in large-scale plankton genetic connectivity. The reference-free approach used in this study offers a new systematic framework to analyse the population genomics of non-model and undocumented marine organisms from a large-scale and holistic point of view.
Collapse
Affiliation(s)
- Romuald Laso-Jadart
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France
| | - Michael O'Malley
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Adam M Sykulski
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France.
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-Aux-Roses, France.
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
21
|
Khames GEY, Kherchouche A, Alioua Z, Hafferssas A. Temporal patterns of gelatinous zooplankton distribution and environmental drivers in the south-western Mediterranean Sea. Biodivers Data J 2023; 11:e101790. [PMID: 37234079 PMCID: PMC10206529 DOI: 10.3897/bdj.11.e101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
This study aims to investigate the distribution of gelatinous zooplankton in relation to environmental parameters along the coastal regions of Algeria in the south-western Mediterranean Sea. A total of 48 species were recorded from nine sampling stations located in the central (Sidi Fredj) and western (Habibas Islands) sectors of the Algerian coast. The results showed that the seasonal distribution of gelatinous species exhibits significant variations. Amongst cnidarians, P.noctiluca, M.atlantica and A.tetragona are the most abundant species. Chaetognaths are primarily represented by F.enflata and P.friderici. Tunicates display high diversity, with T.democratica, O.longicauda and D.nationalis as the most abundant species. Lastly, in molluscs, H.inflatus and L.trochiformis are the most abundant species. The nMDS and ANOSIM analysis reveal significant differences in the ecological community structures between the Habibas Islands and Sidi Fredj. Redundancy analysis results show relationships between different marine species and environmental variables, such as temperature, chlorophyll a and salinity. The studied species exhibit positive or negative correlations with these variables, suggesting an influence of these factors on their abundance and distribution. This study enhances our understanding of the factors that govern the distribution and dispersal of gelatinous zooplankton in the Mediterranean Sea and has significant implications for predicting changes in the distribution of these species under future environmental scenarios.
Collapse
Affiliation(s)
- Ghollame Ellah Yacine Khames
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-Ezzouar, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-EzzouarAlgiersAlgeria
| | - Aldjia Kherchouche
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-Ezzouar, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-EzzouarAlgiersAlgeria
| | - Zakia Alioua
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Fisheries Team. BP 32, El Alia, Bab-Ezzouar, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Fisheries Team. BP 32, El Alia, Bab-EzzouarAlgiersAlgeria
| | - Aziz Hafferssas
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-Ezzouar, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences- Laboratory of Biological Oceanography and the Marine Environment-Pelagic Ecosystem Team. BP 32, El Alia, Bab-EzzouarAlgiersAlgeria
| |
Collapse
|
22
|
Yang A, Yang S. The Impact of the Implementation of International Law on Marine Environmental Protection on International Public Health Driven by Multi-Source Network Comment Mining. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5130. [PMID: 36982037 PMCID: PMC10048820 DOI: 10.3390/ijerph20065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
With the increase of people's living space, global warming caused by the decrease of greening urban spaces and the serious decline of greenspace quality has led to extreme weather events and coastal erosion, which has become the biggest threat to the ocean and has also led to the occurrence of international public safety incidents. Therefore, it is of great practical significance to explore the tense relationship between the current marine environmental protection and global public safety for the development of an international healthy community. Firstly, this paper discusses the influence of implementing the international law of marine environmental protection on global public health after the reduction of green urban space and the decline of green space quality. Secondly, K-means and discrete particle swarm optimization algorithms are introduced and the particle swarm optimization-K-means clustering (PSO-K-means) algorithm is designed to screen and deal with the mapping relationship between latent variables and word sets about the impact of implementing the international marine ecological protection law on the international public health community in network data information. Moreover, the influencing factors are clustered and the scenarios are evaluated. The results show that the clustering analysis of the marine environment can promote the clustering of marine characteristic words. Meanwhile, the PSO-K-means algorithm can effectively cluster vulnerability data information. When the threshold is 0.45, the estimated recall rate of the corresponding model is 88.75%. Therefore, the following measures have been formulated, that is, increasing greening urban spaces and enhancing the quality of green space to enhance the protection of marine environment, which has practical reference value for realizing the protection of marine environment and the sustainable development of marine water resources and land resources.
Collapse
|
23
|
Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities. Genes (Basel) 2023; 14:genes14030623. [PMID: 36980894 PMCID: PMC10048660 DOI: 10.3390/genes14030623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Arctic microbial communities (i.e., protists and bacteria) are increasingly subjected to an intrusion of new species via Atlantification and an uncertain degree of ocean warming. As species differ in adaptive traits, these oceanic conditions may lead to compositional changes with functional implications for the ecosystem. In June 2021, we incubated water from the western Fram Strait at three temperatures (2 °C, 6 °C, and 9 °C), mimicking the current and potential future properties of the Arctic Ocean. Our results show that increasing the temperature to 6 °C only minorly affects the community, while an increase to 9 °C significantly lowers the diversity and shifts the composition. A higher relative abundance of large hetero- and mixotrophic protists was observed at 2 °C and 6 °C compared to a higher abundance of intermediate-sized temperate diatoms at 9 °C. The compositional differences at 9 °C led to a higher chlorophyll a:POC ratio, but the C:N ratio remained similar. Our results contradict the common assumption that smaller organisms and heterotrophs are favored under warming and strongly indicate a thermal limit between 6 °C and 9 °C for many Arctic species. Consequently, the magnitude of temperature increase is a crucial factor for microbial community reorganization and the ensuing ecological consequences in the future Arctic Ocean.
Collapse
|
24
|
Yan ZG, Zhu XM, Zhang SW, Jiang H, Wang SP, Wei C, Wang J, Shao Y, Liu C, Wang H. Environmental DNA sequencing reveals the regional difference in diversity and community assembly mechanisms of eukaryotic plankton in coastal waters. Front Microbiol 2023; 14:1132925. [PMID: 36846757 PMCID: PMC9956185 DOI: 10.3389/fmicb.2023.1132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The diversity and community assembly mechanisms of eukaryotic plankton in coastal waters is so far not clear. In this study, we selected the coastal waters of Guangdong-Hong Kong-Macao Greater Bay Area, which is a highly developed region in China, as the research area. By use of high-throughput sequencing technologies, the diversity and community assembly mechanisms of eukaryotic marine plankton were studied in which a total of 7,295 OTUs were obtained, and 2,307 species were annotated by doing environmental DNA survey of 17 sites consist of surface and bottom layer. Ultimately, the analysis reveals that the species abundance of bottom layer is, by and large, higher than that in the surface layer. In the bottom, Arthropoda is the first largest group, accounting for more than 20% while Arthropoda and Bacillariophyta are dominant groups in surface waters accounting for more than 40%. It is significant of the variance in alpha-diversity between sampling sites, and the difference of alpha-diversity between bottom sites is greater than that of surface sites. The result suggests that the environmental factors that have significant influence on alpha-diversity are total alkalinity and offshore distance for surface sites, and water depth and turbidity for bottom sites. Likewise, the plankton communities obey the typical distance-decay pattern. Analysis about community assembly mechanisms reveals that, overall, dispersal limitation is the major pattern of community formation, which accounts for more than 83% of the community formation processes, suggesting that stochastic processes are the crucial assembly mechanism of the eukaryotic plankton community in the study area.
Collapse
Affiliation(s)
- Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Zhen-Guang Yan, ✉
| | - Xue-Ming Zhu
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shou-Wen Zhang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hua Jiang
- Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yun Shao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hui Wang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| |
Collapse
|
25
|
Raghavan V, Eichele G, Larink O, Karin EL, Söding J. RNA sequencing indicates widespread conservation of circadian clocks in marine zooplankton. NAR Genom Bioinform 2023; 5:lqad007. [PMID: 36814456 PMCID: PMC9939569 DOI: 10.1093/nargab/lqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are important eukaryotic constituents of marine ecosystems characterized by limited motility in the water. These metazoans predominantly occupy intermediate trophic levels and energetically link primary producers to higher trophic levels. Through processes including diel vertical migration (DVM) and production of sinking pellets they also contribute to the biological carbon pump which regulates atmospheric CO2 levels. Despite their prominent role in marine ecosystems, and perhaps, because of their staggering diversity, much remains to be discovered about zooplankton biology. In particular, the circadian clock, which is known to affect important processes such as DVM has been characterized only in a handful of zooplankton species. We present annotated de novo assembled transcriptomes from a diverse, representative cohort of 17 marine zooplankton representing six phyla and eight classes. These transcriptomes represent the first sequencing data for a number of these species. Subsequently, using translated proteomes derived from this data, we demonstrate in silico the presence of orthologs to most core circadian clock proteins from model metazoans in all sequenced species. Our findings, bolstered by sequence searches against publicly available data, indicate that the molecular machinery underpinning endogenous circadian clocks is widespread and potentially well conserved across marine zooplankton taxa.
Collapse
Affiliation(s)
| | | | - Otto Larink
- Evolutionary Biology, Zoological Institute, Technical University Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Eli Levy Karin
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | | |
Collapse
|
26
|
Matek A, Bosak S, Šupraha L, Neeley A, Višić H, Cetinić I, Ljubešić Z. Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems. PeerJ 2023; 11:e14501. [PMID: 36620747 PMCID: PMC9817951 DOI: 10.7717/peerj.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/10/2022] [Indexed: 01/04/2023] Open
Abstract
Background Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. Methods Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. Results A total of 207 taxa have been determined, mostly comprised of coccolithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group "others" (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccolithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINKTREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. Conclusion Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro- to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions.
Collapse
Affiliation(s)
- Antonija Matek
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Luka Šupraha
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden,Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Aimee Neeley
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,Science Systems and Applications, Inc., Lanham, Maryland, United States of America
| | - Hrvoje Višić
- Department of Geosciences, Faculty of Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Cetinić
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,GESTAR II, Morgan State University, Baltimore, MD, United States of America
| | - Zrinka Ljubešić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
27
|
Yun MS, Sun J, Lovejoy C, Lee SH. Editorial: Microbial Response to a Rapidly Changing Marine Environment: Global Warming and Ocean Acidification, Volume II. Front Microbiol 2022; 13:1094511. [DOI: 10.3389/fmicb.2022.1094511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
|
28
|
Strack T, Jonkers L, C Rillo M, Hillebrand H, Kucera M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat Ecol Evol 2022; 6:1871-1880. [PMID: 36216906 PMCID: PMC9715429 DOI: 10.1038/s41559-022-01888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition.
Collapse
Affiliation(s)
- Tonke Strack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Lukas Jonkers
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marina C Rillo
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Michal Kucera
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
29
|
Lincoln S, Andrews B, Birchenough SNR, Chowdhury P, Engelhard GH, Harrod O, Pinnegar JK, Townhill BL. Marine litter and climate change: Inextricably connected threats to the world's oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155709. [PMID: 35525371 DOI: 10.1016/j.scitotenv.2022.155709] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The global issues of climate change and marine litter are interlinked and understanding these connections is key to managing their combined risks to marine biodiversity and ultimately society. For example, fossil fuel-based plastics cause direct emissions of greenhouse gases and therefore are an important contributing factor to climate change, while other impacts of plastics can manifest as alterations in key species and habitats in coastal and marine environments. Marine litter is acknowledged as a threat multiplier that acts with other stressors such as climate change to cause far greater damage than if they occurred in isolation. On the other hand, while climate change can lead to increased inputs of litter into the marine environment, the presence of marine litter can also undermine the climate resilience of marine ecosystems. There is increasing evidence that that climate change and marine litter are inextricably linked, although these interactions and the resulting effects vary widely across oceanic regions and depend on the particular characteristics of specific marine environments. Ecosystem resilience approaches, that integrate climate change with other local stressors, offer a suitable framework to incorporate the consideration of marine litter where that is deemed to be a risk, and to steer, coordinate and prioritise research and monitoring, as well as management, policy, planning and action to effectively tackle the combined risks and impacts from climate change and marine litter.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Barnaby Andrews
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Piyali Chowdhury
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Olivia Harrod
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - John K Pinnegar
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
30
|
Fernández I, T. Mozanzadeh M, Hao Y, Gisbert E. Editorial: Physiological Impacts of Global Warming in Aquatic Organisms. Front Physiol 2022; 13:914912. [PMID: 35615676 PMCID: PMC9125242 DOI: 10.3389/fphys.2022.914912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- I. Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Vigo, Spain
| | - M. T. Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Y. Hao
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - E. Gisbert
- Aquaculture Program, Institut de Recerca i Tecnología Agroalimentaries (IRTA), La Rápita, Spain
- *Correspondence: E. Gisbert,
| |
Collapse
|
31
|
Kuo C, Ko C, Lai Y. Assessing warming impacts on marine fishes by integrating physiology‐guided distribution projections, life‐history changes, and food web dynamics. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chi‐Yun Kuo
- Department of Biomedical Sciences and Environmental Biology Kaohsiung Medical University Kaohsiung, 80708 Taiwan
| | - Chia‐Ying Ko
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| | - Yin‐Zheng Lai
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
32
|
Disentangling the Ecological Processes Shaping the Latitudinal Pattern of Phytoplankton Communities in the Pacific Ocean. mSystems 2022; 7:e0120321. [PMID: 35089068 PMCID: PMC8725599 DOI: 10.1128/msystems.01203-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic (e.g., environmental selection) and stochastic (e.g., ecological drift) processes. How this suite of different processes regulates the biogeography of phytoplankton remains to be comprehensively explored. Using high-throughput sequencing data and null model analysis, we revealed the ecological processes shaping the latitudinal community structure of three major phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) across the Pacific Ocean (70°N, 170°W to 35°S, 170°W). At the basin scale, heterogeneous selection (selection under heterogeneous environmental conditions) dominated the assembly processes of all phytoplankton groups; however, its relative importance varied greatly at the climatic zonal scale, explaining the distinct latitudinal α- and β-diversity among phytoplankton groups. Assembly processes in Synechococcus and haptophyte communities were mainly controlled by physical and nutrient factors, respectively. High temperature drove Synechococcus communities to be more deterministic with higher diversity, while haptophyte communities were less environmentally selected at low latitudes due to their wide niche breadth and mixotrophic lifestyle. Diatom communities were overwhelmingly dominated by the selection process but with low correlation of measured environmental factors to their community compositions. This could be attributed to the high growth rate of diatoms, as indicated by their lower site occupation frequency than predicted in the neutral community model. Our study showed that heterogeneous selection is the main force that shaped the biogeography of three key phytoplankton groups in the Pacific Ocean, with a latitudinal variation of relative importance due to the distinct traits among phytoplankton. IMPORTANCE Phytoplankton are diverse and abundant as primary producers in the ocean, with diversity and community compositions varying spatially. How fundamental processes (e.g., selection, dispersal, and drift) regulate their global biogeography remains to be comprehensively explored. In this study, we disentangled the ecological processes of three key phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) along the same latitudinal gradients in the Pacific Ocean. Heterogeneous selection, by promoting species richness and reducing similarity between communities, was the dominant process shaping the communities of each phytoplankton group at the basin scale. However, its relative importance varied greatly among different phytoplankton groups in different climate zones, explaining the uneven latitudinal α- and β-diversity. We also highlight the importance of identifying key factors mediating the relative importance of assembly processes in phytoplankton communities, which will enhance our understanding of their biogeography in the ocean and future patterns under climate changes.
Collapse
|
33
|
Dynamics of the Spatial Chlorophyll-A Distribution at the Polar Front in the Marginal Ice Zone of the Barents Sea during Spring. WATER 2022. [DOI: 10.3390/w14010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Effects of the sea-ice edge and the Polar Frontal Zone on the distribution of chlorophyll-a levels in the pelagic were investigated during multi-year observations in insufficiently studied and rarely navigable regions of the Barents Sea. Samples were collected at 52 sampling stations combined into 11 oceanographic transects over a Barents Sea water area north of the latitude 75° N during spring 2016, 2018, and 2019. The species composition, abundance and biomass of the phytoplankton community, chlorophyll-a concentrations, hydrological and hydrochemical parameters were analyzed. The annual phytoplankton evolution phase, defined as an early-spring one, was determined throughout the transects. The species composition of the phytoplankton community and low chlorophyll-a levels suggested no phytoplankton blooming in April 2016 and 2019. Not yet started sea-ice melting prevented sympagic (sea-ice-associated) algae from being released into the seawater. In May 2018, ice melting began in the eastern Barents Sea and elevated chlorophyll-a levels were recorded near the ice edge. Chlorophyll-a concentrations substantially differed in waters of different genesis, especially in areas influenced by the Polar Front. The Polar Front separated the more productive Arctic waters with a chlorophyll-a concentration of 1–5 mg/m3 on average from the Atlantic waters where the chlorophyll-a content was an order of magnitude lower.
Collapse
|