1
|
Davidson MH, Hsieh A, Kastelein JJP. Cholesteryl ester transfer protein inhibition: a pathway to reducing risk of morbidity and promoting longevity. Curr Opin Lipidol 2024; 35:303-309. [PMID: 39508067 DOI: 10.1097/mol.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW To review the evidence and describe the biological plausibility for the benefits of inhibiting cholesteryl ester transfer protein (CETP) on multiple organ systems through modification of lipoprotein metabolism. RECENT FINDINGS Results from observational studies, Mendelian randomization analyses, and randomized clinical trials support the potential of CETP inhibition to reduce atherosclerotic cardiovascular disease (ASCVD) risk through a reduction of apolipoprotein B-containing lipoproteins. In contrast, raising high-density lipoprotein (HDL) particles, as previously hypothesized, did not contribute to ASCVD risk reduction. There is also an expanding body of evidence supporting the benefits of CETP inhibition for safeguarding against other conditions associated with aging, particularly new-onset type 2 diabetes mellitus and dementia, as well as age-related macular degeneration, septicemia, and possibly chronic kidney disease. The latter are likely mediated through improved functionality of the HDL particle, including its role on cholesterol efflux and antioxidative, anti-inflammatory, and antimicrobial activities. SUMMARY At present, there is robust clinical evidence to support the benefits of reducing CETP activity for ASCVD risk reduction, and plausibility exists for the promotion of longevity by reducing risks of several other conditions. An ongoing large clinical trial program of the latest potent CETP inhibitor, obicetrapib, is expected to provide further insight into CETP inhibition as a therapeutic target for these various conditions.
Collapse
|
2
|
van Vugt M, Finan C, Chopade S, Providencia R, Bezzina CR, Asselbergs FW, van Setten J, Schmidt AF. Integrating metabolomics and proteomics to identify novel drug targets for heart failure and atrial fibrillation. Genome Med 2024; 16:120. [PMID: 39434187 PMCID: PMC11492627 DOI: 10.1186/s13073-024-01395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Altered metabolism plays a role in the pathophysiology of cardiac diseases, such as atrial fibrillation (AF) and heart failure (HF). We aimed to identify novel plasma metabolites and proteins associating with cardiac disease. METHODS Mendelian randomisation (MR) was used to assess the association of 174 metabolites measured in up to 86,507 participants with AF, HF, dilated cardiomyopathy (DCM), and non-ischemic cardiomyopathy (NICM). Subsequently, we sourced data on 1567 plasma proteins and performed cis MR to identify proteins affecting the identified metabolites as well as the cardiac diseases. Proteins were prioritised on cardiac expression and druggability, and mapped to biological pathways. RESULTS We identified 35 metabolites associating with cardiac disease. AF was affected by seventeen metabolites, HF by nineteen, DCM by four, and NCIM by taurine. HF was particularly enriched for phosphatidylcholines (p = 0.029) and DCM for acylcarnitines (p = 0.001). Metabolite involvement with AF was more uniform, spanning for example phosphatidylcholines, amino acids, and acylcarnitines. We identified 38 druggable proteins expressed in cardiac tissue, with a directionally concordant effect on metabolites and cardiac disease. We recapitulated known associations, for example between the drug target of digoxin (AT1B2), taurine and NICM risk. Additionally, we identified numerous novel findings, such as higher RET values associating with phosphatidylcholines and decreasing AF and HF. RET is targeted by drugs such as regorafenib which has known cardiotoxic side-effects. Pathway analysis implicated involvement of GDF15 signalling through RET, and ghrelin regulation of energy homeostasis in cardiac pathogenesis. CONCLUSIONS This study identified 35 plasma metabolites involved with cardiac diseases and linked these to 38 druggable proteins, providing actionable leads for drug development.
Collapse
Affiliation(s)
- Marion van Vugt
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Division Heart & Lungs, Utrecht, The Netherlands.
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK.
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands.
| | - Chris Finan
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Division Heart & Lungs, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
| | - Rui Providencia
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Connie R Bezzina
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- European Reference Network for rare, low prevalence and complex diseases of the heart: ERN GUARD-Heart , Amsterdam, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Division Heart & Lungs, Utrecht, The Netherlands
| | - A Floriaan Schmidt
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Division Heart & Lungs, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
- UCL British Heart Foundation Research Accelerator, London, UK
| |
Collapse
|
3
|
Schmidt AF, Davidson MH, Ditmarsch M, Kastelein JJ, Finan C. Lower activity of cholesteryl ester transfer protein (CETP) and the risk of dementia: a Mendelian randomization analysis. Alzheimers Res Ther 2024; 16:228. [PMID: 39415269 PMCID: PMC11481778 DOI: 10.1186/s13195-024-01594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Elevated concentrations of low-density lipoprotein cholesterol (LDL-C) are linked to dementia risk, and conversely, increased plasma concentrations of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein-A1 (Apo-A1) associate with decreased dementia risk. Inhibition of cholesteryl ester transfer protein (CETP) meaningfully affects the concentrations of these blood lipids and may therefore provide an opportunity to treat dementia. METHODS Drug target Mendelian randomization (MR) was employed to anticipate the on-target effects of lower CETP concentration (μg/mL) on plasma lipids, cardiovascular disease outcomes, autopsy confirmed Lewy body dementia (LBD), as well as Parkinson's dementia. RESULTS MR analysis of lower CETP concentration recapitulated the blood lipid effects observed in clinical trials of CETP-inhibitors, as well as protective effects on coronary heart disease (odds ratio (OR) 0.92, 95% confidence interval (CI) 0.89; 0.96), heart failure, abdominal aortic aneurysm, any stroke, ischemic stroke, and small vessel stroke (0.90, 95%CI 0.85; 0.96). Consideration of dementia related traits indicated that lower CETP concentrations were associated higher total brain volume (0.04 per standard deviation, 95%CI 0.02; 0.06), lower risk of LBD (OR 0.81, 95%CI 0.74; 0.89) and Parkinson's dementia risk (OR 0.26, 95%CI 0.14; 0.48). APOE4 stratified analyses suggested the LBD effect was most pronounced in APOE-ε4 + participants (OR 0.61 95%CI 0.51; 0.73), compared to APOE-ε4- (OR 0.89 95%CI 0.79; 1.01); interaction p-value 5.81 × 10- 4. CONCLUSIONS These results suggest that inhibition of CETP may be a viable strategy to treat dementia, with a more pronounced effect expected in APOE-ε4 carriers.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London, WC1E 6HX, UK.
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London, WC1E 6HX, UK.
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, Amsterdam Zuidoost, 1100 DD, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Michael H Davidson
- Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
| | - Marc Ditmarsch
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
| | - John J Kastelein
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, Amsterdam Zuidoost, 1100 DD, The Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London, WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London, WC1E 6HX, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
4
|
Gill D, Dib MJ, Cronjé HT, Karhunen V, Woolf B, Gagnon E, Daghlas I, Nyberg M, Drakeman D, Burgess S. Common pitfalls in drug target Mendelian randomization and how to avoid them. BMC Med 2024; 22:473. [PMID: 39407214 PMCID: PMC11481744 DOI: 10.1186/s12916-024-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Drug target Mendelian randomization describes the use of genetic variants as instrumental variables for studying the effects of pharmacological agents. The paradigm can be used to inform on all aspects of drug development and has become increasingly popular over the last decade, particularly given the time- and cost-efficiency with which it can be performed even before commencing clinical studies. MAIN BODY In this review, we describe the recent emergence of drug target Mendelian randomization, its common pitfalls, how best to address them, as well as potential future directions. Throughout, we offer advice based on our experiences on how to approach these types of studies, which we hope will be useful for both practitioners and those translating the findings from such work. CONCLUSIONS Drug target Mendelian randomization is nuanced and requires a combination of biological, statistical, genetic, epidemiological, clinical, and pharmaceutical expertise to be utilized to its full potential. Unfortunately, these skillsets are relatively infrequently combined in any given study.
Collapse
Affiliation(s)
- Dipender Gill
- Sequoia Genetics, London, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, 90 Wood Lane, London, W12 0BZ, UK.
| | - Marie-Joe Dib
- Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Héléne T Cronjé
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ville Karhunen
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Benjamin Woolf
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Iyas Daghlas
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Nyberg
- Cardiovascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Donald Drakeman
- University of Cambridge Centre for Health Leadership & Enterprise, Judge Business School, Trumpington Street, Cambridge, UK
- Advent Venture Partners, London, UK
| | - Stephen Burgess
- Sequoia Genetics, London, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Harada-Shiba M, Davdison MH, Ditmarsch M, Hsieh A, Wuerdeman E, Kling D, Nield A, Dicklin MR, Nakata A, Sueyoshi A, Kuroyanagi S, Kastelein JJ. Obicetrapib as an Adjunct to Stable Statin Therapy in Japanese Subjects: Results from a Randomized Phase 2 Trial. J Atheroscler Thromb 2024; 31:1386-1397. [PMID: 38569868 PMCID: PMC11456355 DOI: 10.5551/jat.64828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/15/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS Obicetrapib is a highly selective cholesteryl ester transfer protein (CETP) inhibitor shown to reduce low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apoB), when taken as monotherapy and in combination with ezetimibe on a background of statins, in clinical trials predominantly conducted in Northern European/Caucasian participants. We characterized the efficacy, safety, and tolerability of obicetrapib within an Asian-Pacific region population. METHODS This double-blind, randomized, phase 2 trial examined obicetrapib 2.5, 5, and 10 mg/d, compared with placebo, for 8 weeks as an adjunct to stable statin therapy (atorvastatin 10 or 20 mg/d or rosuvastatin 5 or 10 mg/d) in Japanese men and women who had not achieved 2022 Japan Atherosclerosis Society Guidelines and had LDL-C >70 mg/dL or non-high-density lipoprotein cholesterol (non-HDL-C) >100 mg/dL and triglycerides (TG) <400 mg/dL. Endpoints included LDL-C, non-HDL-C, HDL-C, very low-density lipoprotein cholesterol, apolipoproteins, TG, steady state pharmacokinetics (PK) in obicetrapib arms, safety, and tolerability. RESULTS In the 102 randomized subjects (mean age 64.8 y, 71.6% male), obicetrapib significantly lowered median LDL-C, apoB, and non-HDL-C, and raised HDL-C at all doses; responses in the obicetrapib 10 mg group were -45.8%, -29.7%, -37.0%, and +159%, respectively (all p<0.0001 vs. placebo). The PK profile demonstrated near complete elimination of drug by 4 weeks. Obicetrapib was well tolerated and there were no adverse safety signals. CONCLUSIONS All doses of obicetrapib taken as an adjunct to stable statin therapy significantly lowered atherogenic lipoprotein lipid parameters, showed near complete elimination of drug by 4 weeks, and were safe and well tolerated in a Japanese population, similar to previous studies of obicetrapib conducted in predominantly Caucasian participants.
Collapse
Affiliation(s)
- Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | | | | | | | | | | | - Annie Nield
- NewAmsterdam Pharma B.V. Naarden, Netherlands
| | | | - Akitaka Nakata
- Department of Cardiology, Sanai Hospital, Saitama, Japan
| | - Atsushi Sueyoshi
- Department of Diabetes Internal Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Satoshi Kuroyanagi
- Department of Cardiovascular Surgery, Kishiwada Tokushukai Hospital, Osaka, Japan
| | | |
Collapse
|
6
|
Pan J, Li C, Zhang J, Sun Z, Yu X, Wan Q, Ruan Z, Wang W, Li Y. Association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and diabetic kidney disease in patients with diabetes in the United States: a cross-sectional study. Lipids Health Dis 2024; 23:317. [PMID: 39334123 PMCID: PMC11437633 DOI: 10.1186/s12944-024-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This paper investigated the link between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and diabetic kidney disease (DKD) in adult diabetic patients and identified the optimal NHHR value for impacting DKD. METHODS This cross-sectional research made use of records from the National Health and Nutrition Examination Survey (NHANES) executed between 2005 and 2016. The link of NHHR to DKD risk was analyzed by logistic regression and restricted cubic spline (RCS) models. The stability and reliability of the results were assessed by subgroup analysis and sensitivity analysis. RESULTS In total, 4,177 participants were involved. As a continuous variable, NHHR was markedly connected to an increased risk of DKD (OR 1.07, 95% CI 1.02, 1.12, P < 0.01). When NHHR was grouped in quartiles, relative to the reference set, the highest NHHR group was also linked to a heightened risk of DKD (OR 1.23, 95% CI 1.01, 1.50, P < 0.05). The outcome of RCS show a "J" shaped correlation between NHHR and DKD risk (P for nonlinear = 0.0136). The risk of developing DKD was the lowest when NHHR equals 2.66. Subgroup analysis revealed that the link of NHHR to DKD persisted in participants aged below 40, females, non-smokers, and those without hyperuricemia. Sensitivity analysis demonstrated a certain robustness in this association. CONCLUSION A meaningful link is present between NHHR and DKD. An NHHR value of around 2.66 could represent the ideal cutoff for assessing DKD risk.
Collapse
Affiliation(s)
- Jingjing Pan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Changnian Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Jiayi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Zhenhua Sun
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Xiaoying Yu
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Qianhui Wan
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Zhishen Ruan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Wenbo Wang
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Jinan, 250000, Shandong Province, People's Republic of China.
| | - Yujie Li
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.
- Department of Geriatrics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Jinan, 250000, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Liu YH, Chen MT, He YY, Chen M, Liang JR, Jia FJ, Huang Q, Zhou R, Hou CL. Cognitive impairment and depression precede increased HDL-C levels in middle-aged and older Chinese adults: cross-lagged panel analyses. Lipids Health Dis 2024; 23:288. [PMID: 39252009 PMCID: PMC11382475 DOI: 10.1186/s12944-024-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND High-density lipoprotein cholesterol (HDL-C) is widely recognized for its protective effects against cognitive decline. However, recent studies have presented conflicting results, with some suggesting no significant cognitive benefits or even an increased risk of dementia associated with high HDL-C levels. For those who suffer from depression, the cognitive benefits of HDL-C may be diminished or reversed. The purpose of this study is to investigate the associations between HDL-C, cognitive ability, and depressive symptoms in middle-aged and older Chinese adults. METHODS The datasets utilized were sourced from the China Health and Retirement Longitudinal Study (CHARLS) for the years 2011 and 2015, comprising 4,302 participants. Cross-lagged models were employed to explore the temporal sequence between cognitive performance and HDL-C levels, and to examine the interplay among depression, cognition, and HDL-C. Confounding factors such as sociodemographic characteristics, sleep conditions, and history of chronic diseases were controlled for. RESULTS The analysis revealed unidirectional effects of baseline impaired cognition and greater severity of depression on increased HDL-C levels at follow-up (β = - 0.036 and β = 0.028, respectively, P < 0.05). However, higher baseline HDL-C levels did not significantly predict cognitive performance or depression 4 years later (β = - 0.008 and β = 0.023, respectively, P > 0.05). Depressive symptoms and cognition were found to have a significant bidirectional association (β = - 0.026 and β = - 0.053, respectively, P < 0.05). CONCLUSIONS Cognitive impairment and depression are associated with higher HDL-C levels, whereas higher HDL-C levels do not appear to protect against cognitive decline or depressive symptoms. These findings underscore the importance of preserving cognitive and mental health, which may lower the likelihood of cardiovascular disease and dementia. Future studies should validate these findings and develop targeted interventions tailored to specific populations.
Collapse
Affiliation(s)
- Yi-Hui Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China
| | - Mu-Tong Chen
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yong-Yi He
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China
| | - Jia-Rong Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China
| | - Fu-Jun Jia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China
| | - Quan Huang
- Psychiatry/Psychology Department, Guangzhou Red Cross Hospital, No. 396, Tongfuzhong Road, Guangzhou, Guangdong, 510240, China
| | - Rui Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Psychiatry/Psychology Department, Guangzhou Red Cross Hospital, No. 396, Tongfuzhong Road, Guangzhou, Guangdong, 510240, China.
| | - Cai-Lan Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510180, China.
| |
Collapse
|
8
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
9
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Godbole S, Solomon JL, Johnson M, Srivastava A, Carsons SE, Belilos E, De Leon J, Reiss AB. Treating Cardiovascular Disease in the Inflammatory Setting of Rheumatoid Arthritis: An Ongoing Challenge. Biomedicines 2024; 12:1608. [PMID: 39062180 PMCID: PMC11275112 DOI: 10.3390/biomedicines12071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors alone cannot be applied because they underestimate CVD risk in rheumatoid arthritis, missing the window of opportunity for prompt intervention to decrease morbidity and mortality. The lipid profile is insufficient to assess CVD risk. This review delves into the connection between systemic inflammation in rheumatoid arthritis and the premature onset of CVD. The shared inflammatory and immunologic pathways between the two diseases that result in subclinical atherosclerosis and disrupted cholesterol homeostasis are examined. The treatment armamentarium for rheumatoid arthritis is summarized, with a particular focus on each medication's cardiovascular effect, as well as the mechanism of action, risk-benefit profile, safety, and cost. A clinical approach to CVD screening and treatment for rheumatoid arthritis patients is proposed based on the available evidence. The mortality gap between rheumatoid arthritis and non-rheumatoid arthritis populations due to premature CVD represents an urgent research need in the fields of cardiology and rheumatology. Future research areas, including risk assessment tools and novel immunotherapeutic targets, are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (J.L.S.); (M.J.); (A.S.); (S.E.C.); (E.B.); (J.D.L.)
| |
Collapse
|
11
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
12
|
Zheng S, Tsao PS, Pan C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat Commun 2024; 15:5652. [PMID: 38969659 PMCID: PMC11226445 DOI: 10.1038/s41467-024-49921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Shufen Zheng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
- Stanford Cardiovascular Institute, Stanford University, California, USA.
- VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Cuiping Pan
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China.
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Kothari V, Ho TW, Cabodevilla AG, He Y, Kramer F, Shimizu-Albergine M, Kanter JE, Snell-Bergeon J, Fisher EA, Shao B, Heinecke JW, Wobbrock JO, Lee WL, Goldberg IJ, Vaisar T, Bornfeldt KE. Imbalance of APOB Lipoproteins and Large HDL in Type 1 Diabetes Drives Atherosclerosis. Circ Res 2024; 135:335-349. [PMID: 38828596 PMCID: PMC11223987 DOI: 10.1161/circresaha.123.323100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.
Collapse
MESH Headings
- Adult
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Apolipoprotein A-I/blood
- Apolipoprotein A-I/metabolism
- Apolipoprotein B-100/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/blood
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/blood
- Atherosclerosis/pathology
- Cholesterol Ester Transfer Proteins/genetics
- Cholesterol Ester Transfer Proteins/metabolism
- Cholesterol Ester Transfer Proteins/blood
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/blood
- Disease Models, Animal
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Tse W.W. Ho
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, Canada (T.W.W.H., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (T.W.W.H., W.L.L.)
| | | | - Yi He
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Masami Shimizu-Albergine
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Jenny E. Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora (J.S.-B.)
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (E.A.F.)
| | - Baohai Shao
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Jay W. Heinecke
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | | | - Warren L. Lee
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, Canada (T.W.W.H., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (T.W.W.H., W.L.L.)
- Interdepartmental Division of Critical Care and the Department of Biochemistry, University of Toronto, Canada (W.L.L.)
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism (A.G.C., I.J.G.)
| | - Tomas Vaisar
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
14
|
Schmidt AF, Finan C, Chopade S, Ellmerich S, Rossor MN, Hingorani AD, Pepys M. Genetic evidence for serum amyloid P component as a drug target in neurodegenerative disorders. Open Biol 2024; 14:230419. [PMID: 39013416 PMCID: PMC11251762 DOI: 10.1098/rsob.230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral Aβ amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis-Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10-3), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10-5) and plasma tau concentration (0.06 log2(ng l-1) 95%CI 0.03; 0.08, p = 4.55 × 10-6). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective.
Collapse
Affiliation(s)
- A. Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, 1100 DD Amsterdam, Zuidoost, The Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Martin N. Rossor
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London WC1N 3BG, UK
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London WC1E 6HX, UK
| | - Mark B. Pepys
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
15
|
Dunca D, Chopade S, Gordillo-Marañón M, Hingorani AD, Kuchenbaecker K, Finan C, Schmidt AF. Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study. Nat Commun 2024; 15:5302. [PMID: 38906890 PMCID: PMC11192935 DOI: 10.1038/s41467-024-49109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
CETP inhibitors are a class of lipid-lowering drugs in development for treatment of coronary heart disease (CHD). Genetic studies in East Asian ancestry have interpreted the lack of CETP signal with low-density lipoprotein cholesterol (LDL-C) and lack of drug target Mendelian randomization (MR) effect on CHD as evidence that CETP inhibitors might not be effective in East Asian participants. Capitalizing on recent increases in sample size of East Asian genetic studies, we conducted a drug target MR analysis, scaled to a standard deviation increase in high-density lipoprotein cholesterol. Despite finding evidence for possible neutral effects of lower CETP levels on LDL-C, systolic blood pressure and pulse pressure in East Asians (interaction p-values < 1.6 × 10-3), effects on cardiovascular outcomes were similarly protective in both ancestry groups. In conclusion, on-target inhibition of CETP is anticipated to decrease cardiovascular disease in individuals of both European and East Asian ancestries.
Collapse
Affiliation(s)
- Diana Dunca
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.
- UCL Genetics Institute, University College London, London, UK.
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Karoline Kuchenbaecker
- UCL Genetics Institute, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Department of Cardiology, Amsterdam UMC Heart Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Patel A, Gill D, Shungin D, Mantzoros CS, Knudsen LB, Bowden J, Burgess S. Robust use of phenotypic heterogeneity at drug target genes for mechanistic insights: Application of cis-multivariable Mendelian randomization to GLP1R gene region. Genet Epidemiol 2024; 48:151-163. [PMID: 38379245 PMCID: PMC7616158 DOI: 10.1002/gepi.22551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.
Collapse
Affiliation(s)
- Ashish Patel
- MRC Biostatistics Unit, University of Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Dmitry Shungin
- Human Genetics Centre of Excellence, AI and Digital Research, Novo Nordisk, Denmark
| | - Christos S. Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
- Department of Internal Medicine, Boston VA Healthcare System, Harvard Medical School, USA
| | - Lotte Bjerre Knudsen
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Denmark
| | - Jack Bowden
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, U.K
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, UK
| |
Collapse
|
17
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
18
|
Hukerikar N, Hingorani AD, Asselbergs FW, Finan C, Schmidt AF. Prioritising genetic findings for drug target identification and validation. Atherosclerosis 2024; 390:117462. [PMID: 38325120 DOI: 10.1016/j.atherosclerosis.2024.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets is often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation. In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target. We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable. In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.
Collapse
Affiliation(s)
- Nikita Hukerikar
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK.
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Folkert W Asselbergs
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical, Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical, Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Gagnon E, Daghlas I, Zagkos L, Sargurupremraj M, Georgakis MK, Anderson CD, Cronje HT, Burgess S, Arsenault BJ, Gill D. Mendelian Randomization Applied to Neurology: Promises and Challenges. Neurology 2024; 102:e209128. [PMID: 38261980 PMCID: PMC7615637 DOI: 10.1212/wnl.0000000000209128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024] Open
Abstract
The Mendelian randomization (MR) paradigm allows for causal inferences to be drawn using genetic data. In recent years, the expansion of well-powered publicly available genetic association data related to phenotypes such as brain tissue gene expression, brain imaging, and neurologic diseases offers exciting opportunities for the application of MR in the field of neurology. In this review, we discuss the basic principles of MR, its myriad applications to research in neurology, and potential pitfalls of injudicious applications. Throughout, we provide examples where MR-informed findings have shed light on long-standing epidemiologic controversies, provided insights into the pathophysiology of neurologic conditions, prioritized drug targets, and informed drug repurposing opportunities. With the ever-expanding availability of genome-wide association data, we project MR to become a key driver of progress in the field of neurology. It is therefore paramount that academics and clinicians within the field are familiar with the approach.
Collapse
Affiliation(s)
- Eloi Gagnon
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Iyas Daghlas
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Loukas Zagkos
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Muralidharan Sargurupremraj
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Marios K Georgakis
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Christopher D Anderson
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Helene T Cronje
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Stephen Burgess
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Benoit J Arsenault
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Dipender Gill
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
20
|
Lin L, Yu H, Xue Y, Wang L, Zhu P. Proteome-wide mendelian randomization investigates potential associations in heart failure and its etiology: emphasis on PCSK9. BMC Med Genomics 2024; 17:59. [PMID: 38383373 PMCID: PMC10882912 DOI: 10.1186/s12920-024-01826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a prevalent clinical syndrome with diverse etiologies. It is crucial to identify novel therapeutic targets based on underlying causes. Here, we aimed to use proteome-wide Mendelian randomization (MR) analyses to identify the associations between genetically predicted elevated levels of circulating proteins and distinct HF outcomes, along with specific HF etiologies. METHODS Protein quantitative trait loci (pQTL) data for circulating proteins were sourced from the Atherosclerosis Risk in Communities (ARIC) study, encompassing 7,213 individuals and profiling 4,657 circulating proteins. Genetic associations for outcomes were obtained from the HERMES Consortium and the FinnGen Consortium. Colocalization analysis was employed to assess the impact of linkage disequilibrium on discovered relationships. For replication, two-sample MR was conducted utilizing independent pQTL data from the deCODE study. Multivariable MR (MVMR) and two-step MR were further conducted to investigate potential mediators. RESULTS Two proteins (PCSK9 and AIDA) exhibited associations with HF in patients with coronary heart disease (CHD), and four proteins (PCSK9, SWAP70, NCF1, and RELT) were related with HF in patients receiving antihypertensive medication. Among these associations, strong evidence from subsequent analyses supported the positive relationship between genetically predicted PCSK9 levels and the risk of HF in the context of CHD. Notably, MVMR analysis revealed that CHD and LDL-C did not exert a complete mediating effect in this relationship. Moreover, two-step MR results yielded valuable insights into the potential mediating proportions of CHD or LDL-C in this relationship. CONCLUSIONS Our findings provide robust evidence supporting the association between PCSK9 and concomitant HF and CHD. This association is partly elucidated by the influence of CHD or LDL-C, underscoring the imperative for additional validation of this connection and a thorough exploration of the mechanisms through which PCSK9 directly impacts ischemic HF.
Collapse
Affiliation(s)
- Lichao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Huizhen Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, People's Republic of China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, People's Republic of China
- Fujian Provincial Center for Geriatrics, Fuzhou, People's Republic of China
- Department of Cardiology in South Branch, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Yan Xue
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liman Wang
- Department of Pharmacy in South Branch, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Pengli Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China.
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, People's Republic of China.
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, People's Republic of China.
- Fujian Provincial Center for Geriatrics, Fuzhou, People's Republic of China.
| |
Collapse
|
21
|
Zhu XB, Xu YY, Li LC, Sun JB, Wang YZ, Chen J, Wang C, Zhang S, Jin LY. Function of proprotein convertase subtilisin/kexin type 9 and its role in central nervous system diseases: An update on clinical evidence. Drug Dev Res 2024; 85:e22131. [PMID: 37943623 DOI: 10.1002/ddr.22131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has attracted lots of attention in preventing the clearance of plasma low-density lipoprotein cholesterol (LDL-C). PCSK9 inhibitors are developed to primarily reduce the cardiovascular risk by lowering LDL-C level. Recently, a number of pleiotropic extrahepatic functions of PCSK9 beyond the regulation of cholesterol metabolism, particularly its effects on central nervous system (CNS) diseases have been increasingly identified. Emerging clinical evidence have revealed that PCSK9 may play a significant role in neurocognition, depression, Alzheimer's disease, and stroke. The focus of this review is to elucidate the functions of PCSK9 and highlight the effects of PCSK9 in CNS diseases, with the aim of identifying the potential risks that may arise from low PCSK9 level (variant or inhibitor) in the clinical practice.
Collapse
Affiliation(s)
- Xiao-Bin Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao-Yao Xu
- Department of Pharmacy, Pingyang Hospital Affiliated to Wenzhou Medical University (The People's Hospital of Pingyang), Wenzhou, China
| | - Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Bin Sun
- Department of Pharmacy, Deqing People's Hospital, Huzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Su Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang-Yan Jin
- Department of Pharmacy, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Kastelein JJP, Hsieh A, Dicklin MR, Ditmarsch M, Davidson MH. Obicetrapib: Reversing the Tide of CETP Inhibitor Disappointments. Curr Atheroscler Rep 2024; 26:35-44. [PMID: 38133847 PMCID: PMC10838241 DOI: 10.1007/s11883-023-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW To discuss the history of cardiovascular outcomes trials of cholesteryl ester transfer protein (CETP) inhibitors and to describe obicetrapib, a next-generation, oral, once-daily, low-dose CETP inhibitor in late-stage development for dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS Phase 1 and 2 trials have evaluated the safety and lipid/lipoprotein effects of obicetrapib as monotherapy, in conjunction with statins, on top of high-intensity statins (HIS), and with ezetimibe on top of HIS. In ROSE2, 10 mg obicetrapib monotherapy and combined with 10 mg ezetimibe, each on top of HIS, significantly reduced low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B, total LDL particles, small LDL particles, small, dense LDL-C, and lipoprotein (a), and increased HDL-C. Phase 3 pivotal registration trials including a cardiovascular outcomes trial are underway. Obicetrapib has an excellent safety and tolerability profile and robustly lowers atherogenic lipoproteins and raises HDL-C. As such, obicetrapib may be a promising agent for the treatment of ASCVD.
Collapse
|
23
|
Zheng WC, Chan W, Dart A, Shaw JA. Novel therapeutic targets and emerging treatments for atherosclerotic cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:53-67. [PMID: 37813820 DOI: 10.1093/ehjcvp/pvad074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality worldwide. Even with excellent control of low-density lipoprotein cholesterol (LDL-C) levels, adverse cardiovascular events remain a significant clinical problem worldwide, including among those without any traditional ASCVD risk factors. It is necessary to identify novel sources of residual risk and to develop targeted strategies that address them. Lipoprotein(a) has become increasingly recognized as a new cardiovascular risk determinant. Large-scale clinical trials have also signalled the potential additive cardiovascular benefits of decreasing triglycerides beyond lowering LDL-C levels. Since CANTOS (Anti-inflammatory Therapy with Canakinumab for Atherosclerotic Disease) demonstrated that antibodies against interleukin-1β may decrease recurrent cardiovascular events in secondary prevention, various anti-inflammatory medications used for rheumatic conditions and new monoclonal antibody therapeutics have undergone rigorous evaluation. These data build towards a paradigm shift in secondary ASCVD prevention, underscoring the value of targeting multiple biological pathways in the management of both lipid levels and systemic inflammation. Evolving knowledge of the immune system, and the gut microbiota may result in opportunities for modifying previously unrecognized sources of residual inflammatory risk. This review provides an overview of novel therapeutic targets for ASCVD and emerging treatments with a focus on mechanisms, efficacy, and safety.
Collapse
Affiliation(s)
- Wayne C Zheng
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - William Chan
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anthony Dart
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James A Shaw
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Chen Y, Zhang F, Sun J, Zhang L. Identifying the natural products in the treatment of atherosclerosis by increasing HDL-C level based on bioinformatics analysis, molecular docking, and in vitro experiment. J Transl Med 2023; 21:920. [PMID: 38115108 PMCID: PMC10729509 DOI: 10.1186/s12967-023-04755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that high-density lipoprotein cholesterol (HDL-C) plays an anti-atherosclerosis role through reverse cholesterol transport. Several studies have validated the efficacy and safety of natural products in treating atherosclerosis (AS). However, the study of raising HDL-C levels through natural products to treat AS still needs to be explored. METHODS The gene sets associated with AS were collected and identified by differential gene analysis and database query. By constructing a protein-protein interaction (PPI) network, the core submodules in the network are screened out. At the same time, by calculating node importance (Nim) in the PPI network of AS disease and combining it with Kyoto Encyclopedia of genes and genomes (KEGG) pathways enrichment analysis, the key target proteins of AS were obtained. Molecular docking is used to screen out small natural drug molecules with potential therapeutic effects. By constructing an in vitro foam cell model, the effects of small molecules on lipid metabolism and key target expression of foam cells were investigated. RESULTS By differential gene analysis, 451 differential genes were obtained, and a total of 313 disease genes were obtained from 6 kind of databases, then 758 AS-related genes were obtained. The enrichment analysis of the KEGG pathway showed that the enhancement of HDL-C level against AS was related to Lipid and atherosclerosis, Cholesterol metabolism, Fluid shear stress and atherosclerosis, PPAR signaling pathway, and other pathways. Then we intersected 31 genes in the core module of the PPI network, the top 30 genes in Nims, and 32 genes in the cholesterol metabolism pathway, and finally found 3 genes. After the above analysis and literature collection, we focused on the following three related gene targets: APOA1, LIPC, and CETP. Molecular docking showed that Genistein has a good binding affinity for APOA1, CETP, and LIPC. In vitro, experiments showed that Genistein can up-regulated APOA1, LIPC, and CETP levels. CONCLUSIONS Based on our research, Genistein may have the effects of regulating HDL-C and anti-atherosclerosis. Its mechanism of action may be related to the regulation of LIPC, CETP, and APOA1 to improve lipid metabolism.
Collapse
Affiliation(s)
- Yilin Chen
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengwei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J 2023; 44:4913-4924. [PMID: 37935836 PMCID: PMC10719501 DOI: 10.1093/eurheartj/ehad736] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Large-scale genome-wide association studies conducted over the last decade have uncovered numerous genetic variants associated with cardiometabolic traits and risk factors. These discoveries have enabled the Mendelian randomization (MR) design, which uses genetic variation as a natural experiment to improve causal inferences from observational data. By analogy with the random assignment of treatment in randomized controlled trials, the random segregation of genetic alleles when DNA is transmitted from parents to offspring at gamete formation is expected to reduce confounding in genetic associations. Mendelian randomization analyses make a set of assumptions that must hold for valid results. Provided that the assumptions are well justified for the genetic variants that are employed as instrumental variables, MR studies can inform on whether a putative risk factor likely has a causal effect on the disease or not. Mendelian randomization has been increasingly applied over recent years to predict the efficacy and safety of existing and novel drugs targeting cardiovascular risk factors and to explore the repurposing potential of available drugs. This review article describes the principles of the MR design and some applications in cardiovascular epidemiology.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Hassen CB, Machado‐Fragua MD, Landré B, Fayosse A, Dumurgier J, Kivimaki M, Sabia S, Singh‐Manoux A. Change in lipids before onset of dementia, coronary heart disease, and mortality: A 28-year follow-up Whitehall II prospective cohort study. Alzheimers Dement 2023; 19:5518-5530. [PMID: 37243914 PMCID: PMC10679471 DOI: 10.1002/alz.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/07/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION The association of lipids with dementia remains a subject of debate. Using data from 7,672 participants of the Whitehall II prospective cohort study, we examined whether timing of exposure, length of follow-up, or sex modifies this association. METHODS Twelve markers of lipid levels were measured from fasting blood and eight among them a further five times. We performed time-to-event as well as trajectory analyses. RESULTS No associations were observed in men; in women most lipids were associated with the risk of dementia, but only for events occurring after the first 20 years of follow-up. Differences in lipid trajectories in men emerged only in the years immediately before diagnosis whereas in women total cholesterol (TC), LDL-cholesterol (LDL-C), non-HDL-cholesterol (non-HDL-C), TC/HDL-C, and LDL-C/HDL-C were higher in midlife among dementia cases before declining progressively. DISCUSSION Abnormal lipid levels in midlife seem to be associated with a higher risk of dementia in women.
Collapse
Affiliation(s)
- Céline Ben Hassen
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
| | - Marcos D Machado‐Fragua
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
| | - Benjamin Landré
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
| | - Aurore Fayosse
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
| | - Julien Dumurgier
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
- Cognitive Neurology Center, Lariboisière – Fernand Widal Hospital, AP‐HPUniversité Paris CitéParisFrance
| | - Mika Kivimaki
- Department of Mental Health of Older People, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Séverine Sabia
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
- Department of Mental Health of Older People, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Archana Singh‐Manoux
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseasesParisFrance
- Department of Mental Health of Older People, Faculty of Brain SciencesUniversity College LondonLondonUK
| |
Collapse
|
27
|
Patel A, Gill D, Newcombe P, Burgess S. Conditional inference in cis-Mendelian randomization using weak genetic factors. Biometrics 2023; 79:3458-3471. [PMID: 37337418 PMCID: PMC7615409 DOI: 10.1111/biom.13888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Mendelian randomization (MR) is a widely used method to estimate the causal effect of an exposure on an outcome by using genetic variants as instrumental variables. MR analyses that use variants from only a single genetic region (cis-MR) encoding the protein target of a drug are able to provide supporting evidence for drug target validation. This paper proposes methods for cis-MR inference that use many correlated variants to make robust inferences even in situations, where those variants have only weak effects on the exposure. In particular, we exploit the highly structured nature of genetic correlations in single gene regions to reduce the dimension of genetic variants using factor analysis. These genetic factors are then used as instrumental variables to construct tests for the causal effect of interest. Since these factors may often be weakly associated with the exposure, size distortions of standard t-tests can be severe. Therefore, we consider two approaches based on conditional testing. First, we extend results of commonly-used identification-robust tests for the setting where estimated factors are used as instruments. Second, we propose a test which appropriately adjusts for first-stage screening of genetic factors based on their relevance. Our empirical results provide genetic evidence to validate cholesterol-lowering drug targets aimed at preventing coronary heart disease.
Collapse
Affiliation(s)
- Ashish Patel
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Dipender Gill
- Department of Epidemiology and BiostatisticsImperial College LondonLondonUK
- Chief Scientific Advisor OfficeResearch and Early DevelopmentNovo Nordisk, CopenhagenDenmark
| | - Paul Newcombe
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Stephen Burgess
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Cardiovascular Epidemiology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Mehta N, Dangas K, Ditmarsch M, Rensen PCN, Dicklin MR, Kastelein JJP. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol Res 2023; 197:106972. [PMID: 37898443 DOI: 10.1016/j.phrs.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.
Collapse
Affiliation(s)
- Nehal Mehta
- Mobius Scientific, Inc., JLABS @ Washington, DC, Washington, DC, USA
| | | | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Yang S, Shen W, Zhang HZ, Wang CX, Yang PP, Wu QH. Effect of PCSK9 Monoclonal Antibody Versus Placebo/Ezetimibe on Atrial Fibrillation in Patients at High Cardiovascular Risk: A Meta-Analysis of 26 Randomized Controlled Trials. Cardiovasc Drugs Ther 2023; 37:927-940. [PMID: 35511323 DOI: 10.1007/s10557-022-07338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients at high cardiovascular risk are closely associated with an increased risk of atrial fibrillation (AF). Whether proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9 mAbs) can attenuate AF progression remains unknown. METHODS To compare PCSK9 mAbs with placebo or ezetimibe to explore the effect of PCSK9 mAbs therapy on the end-point of incidence of AF, we searched PubMed, Embase, and ClinicalTrials.gov for articles. We used Mantel-Haenszel risk ratio (RR) with corresponding 95% CI for the categorical data, including the incidence of AF and predefined other outcomes of interest. RESULTS We included 21 articles consisting of 26 randomized controlled trials with a total of 95,635 participants. Quantitative synthesis revealed that PCSK9 mAbs significantly reduce the incidence of AF events (RR 0.84; 95% CI 0.72-0.98; p = 0.03), whereas no obvious differences were seen between the PCSK9 mAbs group and the ezetimibe group (RR 0.90; 95% CI 0.29-2.76; p = 0.85). PCSK9 mAbs also markedly decreased the incidence of cerebrovascular events (RR 0.75; 95% CI 0.66-0.85; p < 0.0001) and new-onset hypertension (RR 0.92; 95% CI 0.87-0.97; p = 0.003), but not the risk of cardiovascular death (RR 0.95; 95% CI 0.85-1.07; p = 0.40) and new-onset diabetes mellitus (RR 1.01; 95% CI 0.95-1.08; p = 0.67). CONCLUSIONS Overall, the PCSK9 mAbs therapy reduced AF and presented certain cardiovascular benefits in patients at high cardiovascular risk. Further big-scale and long follow-up duration randomized controlled trials that compare PCSK9 mAbs with ezetimibe are required to evaluate the effect of PCSK9 mAbs versus ezetimibe on AF.
Collapse
Affiliation(s)
- Shuai Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen Shen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Zhou Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Chen-Xi Wang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ping-Ping Yang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hua Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Cardiovascular Disease Prevention and Treatment Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
30
|
Boxall R, Holmes MV, Walters RG. bubbleHeatmap: an R package for visualization of nightingale health metabolomics datasets. BIOINFORMATICS ADVANCES 2023; 3:vbad123. [PMID: 37750069 PMCID: PMC10518075 DOI: 10.1093/bioadv/vbad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Summary We present bubbleHeatmap, an R plotting package which combines elements of a bubble plot and heatmap to conveniently display two numerical variables for each data point across a categorical two dimensional grid. This has particular advantages for visualizing the 251 metabolomic measures produced by the automated, high-throughput, 1H-NMR-based platform provided by Nightingale Health, which includes 12 measures repeated across each of 14 lipoprotein subclasses. As these metabolomic profiles are currently available for large biobanks, we provide a figure template to aid the use of bubbleHeatmap in displaying results from analyses using these data. Availability and implementation https://cran.r-project.org/web/packages/bubbleHeatmap.
Collapse
Affiliation(s)
- Ruth Boxall
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Brandts J, Ray KK. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat Rev Cardiol 2023; 20:600-616. [PMID: 37055535 DOI: 10.1038/s41569-023-00860-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
Lowering the levels of LDL cholesterol in the plasma has been shown to reduce the risk of atherosclerotic cardiovascular disease (ASCVD). Several other lipoproteins, such as triglyceride-rich lipoproteins, HDL and lipoprotein(a) are associated with atherosclerosis and ASCVD, with strong evidence supporting causality for some. In this Review, we discuss novel and upcoming therapeutic strategies targeting different pathways in lipid metabolism to potentially attenuate the risk of cardiovascular events. Key proteins involved in lipoprotein metabolism, such as PCSK9, angiopoietin-related protein 3, cholesteryl ester transfer protein and apolipoprotein(a), have been identified as viable targets for therapeutic intervention through observational and genetic studies. These proteins can be targeted using a variety of approaches, such as protein inhibition or interference, inhibition of translation at the mRNA level (with the use of antisense oligonucleotides or small interfering RNA), and the introduction of loss-of-function mutations through base editing. These novel and upcoming strategies are complementary to and could work synergistically with existing therapies, or in some cases could potentially replace therapies, offering unprecedented opportunities to prevent ASCVD. Moreover, a major challenge in the prevention and treatment of non-communicable diseases is how to achieve safe, long-lasting reductions in causal exposures. This challenge might be overcome with approaches such as small interfering RNAs or genome editing, which shows how far the field has advanced from when the burden of achieving this goal was placed upon patients through rigorous adherence to daily small-molecule drug regimens.
Collapse
Affiliation(s)
- Julia Brandts
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
- Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
32
|
Schmidt AF, Finan C, Chopade S, Ellmerich S, Rossor MN, Hingorani AD, Pepys MB. Genetic evidence for serum amyloid P component as a drug target for treatment of neurodegenerative disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.15.23293564. [PMID: 37645746 PMCID: PMC10462209 DOI: 10.1101/2023.08.15.23293564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The direct causes of neurodegeneration underlying Alzheimer's disease (AD) and many other dementias, are not known. Here we identify serum amyloid P component (SAP), a constitutive plasma protein normally excluded from the brain, as a potential drug target. After meta-analysis of three genome-wide association studies, comprising 44,288 participants, cis-Mendelian randomization showed that genes responsible for higher plasma SAP values are significantly associated with AD, Lewy body dementia and plasma tau concentration. These genetic findings are consistent with experimental evidence of SAP neurotoxicity and the strong, independent association of neocortex SAP content with dementia at death. Depletion of SAP from the blood and from the brain, as is provided by the safe, well tolerated, experimental drug, miridesap, may therefore contribute to treatment of neurodegeneration.
Collapse
Affiliation(s)
- A Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, London, United Kingdom
| | - Martin N Rossor
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
33
|
Xie W, Li J, Du H, Xia J. Causal relationship between PCSK9 inhibitor and autoimmune diseases: a drug target Mendelian randomization study. Arthritis Res Ther 2023; 25:148. [PMID: 37580807 PMCID: PMC10424393 DOI: 10.1186/s13075-023-03122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND In addition to decreasing the level of cholesterol, proprotein convertase subtilis kexin 9 (PCSK9) inhibitor has pleiotropic effects, including immune regulation. However, the impact of PCSK9 on autoimmune diseases is controversial. Therefore, we used drug target Mendelian randomization (MR) analysis to investigate the effect of PCSK9 inhibitor on different autoimmune diseases. METHODS We collected single nucleotide polymorphisms (SNPs) of PCSK9 from published genome-wide association studies statistics and conducted drug target MR analysis to detect the causal relationship between PCSK9 inhibitor and the risk of autoimmune diseases. 3-Hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitor, the drug target of statin, was used to compare the effect with that of PCSK9 inhibitor. With the risk of coronary heart disease as a positive control, primary outcomes included the risk of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), myasthenia gravis (MG), multiple sclerosis (MS), asthma, Crohn's disease (CD), ulcerative colitis (UC), and type 1 diabetes (T1D). RESULTS PCSK9 inhibitor significantly reduced the risk of SLE (OR [95%CI] = 0.47 [0.30 to 0.76], p = 1.74 × 10-3) but increased the risk of asthma (OR [95%CI] = 1.15 [1.03 to 1.29], p = 1.68 × 10-2) and CD (OR [95%CI] = 1.38 [1.05 to 1.83], p = 2.28 × 10-2). In contrast, HMGCR inhibitor increased the risk of RA (OR [95%CI] = 1.58 [1.19 to 2.11], p = 1.67 × 10-3), asthma (OR [95%CI] = 1.21 [1.04 to 1.40], p = 1.17 × 10-2), and CD (OR [95%CI] = 1.60 [1.08 to 2.39], p = 2.04 × 10-2). CONCLUSIONS PCSK9 inhibitor significantly reduced the risk of SLE but increased the risk of asthma and CD. In contrast, HMGCR inhibitor may be a risk factor for RA, asthma, and CD.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Mohamed F, Mansfield B, Raal FJ. Targeting PCSK9 and Beyond for the Management of Low-Density Lipoprotein Cholesterol. J Clin Med 2023; 12:5082. [PMID: 37568484 PMCID: PMC10419884 DOI: 10.3390/jcm12155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels is crucial to the prevention of atherosclerotic cardiovascular disease (ASCVD). However, many patients, especially those at very high ASCVD risk or with familial hypercholesterolemia (FH), do not achieve target LDL-C levels with statin monotherapy. The underutilization of novel lipid-lowering therapies (LLT) globally may be due to cost concerns or therapeutic inertia. Emerging approaches have the potential to lower LDL-C and reduce ASCVD risk further, in addition to offering alternatives for statin-intolerant patients. Shifting the treatment paradigm towards initial combination therapy and utilizing novel LLT strategies can complement existing treatments. This review discusses innovative approaches including combination therapies involving statins and agents like ezetimibe, bempedoic acid, cholesterol ester transfer protein (CETP) inhibitors as well as strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and angiopoietin-like protein 3 (ANGPTL3) inhibition. Advances in nucleic acid-based therapies and gene editing are innovative approaches that will improve patient compliance and adherence. These strategies demonstrate significant LDL-C reductions and improved cardiovascular outcomes, offering potential for optimal LDL-C control and reduced ASCVD risk. By addressing the limitations of statin monotherapy, these approaches provide new management options for elevated LDL-C levels.
Collapse
Affiliation(s)
| | | | - Frederick J. Raal
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (F.M.); (B.M.)
| |
Collapse
|
35
|
Vernardis SI, Demichev V, Lemke O, Grüning NM, Messner C, White M, Pietzner M, Peluso A, Collet TH, Henning E, Gille C, Campbell A, Hayward C, Porteous DJ, Marioni RE, Mülleder M, Zelezniak A, Wareham NJ, Langenberg C, Farooqi IS, Ralser M. The Impact of Acute Nutritional Interventions on the Plasma Proteome. J Clin Endocrinol Metab 2023; 108:2087-2098. [PMID: 36658456 PMCID: PMC10348471 DOI: 10.1210/clinem/dgad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
CONTEXT Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.
Collapse
Affiliation(s)
- Spyros I Vernardis
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Oliver Lemke
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Matt White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Alina Peluso
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Tinh-Hai Collet
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Elana Henning
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christoph Gille
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Aleksej Zelezniak
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius SE-412 96, Lithuania
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL London, UK
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, E1 1HH, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
36
|
Piko P, Jenei T, Kosa Z, Sandor J, Kovacs N, Seres I, Paragh G, Adany R. Association of CETP Gene Polymorphisms and Haplotypes with Cardiovascular Risk. Int J Mol Sci 2023; 24:10281. [PMID: 37373432 PMCID: PMC10299660 DOI: 10.3390/ijms241210281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) is known to influence HDL-C levels, potentially altering the profile of HDL subfractions and consequently cardiovascular risk (CVR). This study aimed to investigate the effect of five single-nucleotide polymorphisms (SNPs; rs1532624, rs5882, rs708272, rs7499892, and rs9989419) and their haplotypes (H) in the CETP gene on 10-year CVR estimated by the Systematic Coronary Risk Evaluation (SCORE), the Framingham Risk Score for Coronary Heart Disease (FRSCHD) and Cardiovascular Disease (FRSCVD) algorithms. Adjusted linear and logistic regression analyses were used to investigate the association of SNPs and 10 haplotypes (H1-H10) on 368 samples from the Hungarian general and Roma populations. The T allele of rs7499892 showed a significant association with increased CVR estimated by FRS. H5, H7, and H8 showed a significant association with increased CVR based on at least one of the algorithms. The impact of H5 was due to its effect on TG and HDL-C levels, while H7 showed a significant association with FRSCHD and H8 with FRSCVD mediated by a mechanism affecting neither TG nor HDL-C levels. Our results suggest that polymorphisms in the CETP gene may have a significant effect on CVR and that this is not mediated exclusively by their effect on TG and HDL-C levels but also by presently unknown mechanisms.
Collapse
Affiliation(s)
- Peter Piko
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.P.); (T.J.); (J.S.); (N.K.)
- National Laboratory for Health Security, Center for Epidemiology and Surveillance, Semmelweis University, 1089 Budapest, Hungary
| | - Tibor Jenei
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.P.); (T.J.); (J.S.); (N.K.)
| | - Zsigmond Kosa
- Department of Health Methodology and Public Health, Faculty of Health, University of Debrecen, 4400 Nyíregyhza, Hungary;
| | - Janos Sandor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.P.); (T.J.); (J.S.); (N.K.)
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
| | - Nora Kovacs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.P.); (T.J.); (J.S.); (N.K.)
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
| | - Ildiko Seres
- Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (G.P.)
| | - Gyorgy Paragh
- Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (G.P.)
| | - Roza Adany
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.P.); (T.J.); (J.S.); (N.K.)
- National Laboratory for Health Security, Center for Epidemiology and Surveillance, Semmelweis University, 1089 Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
37
|
Tao H, Yu Z, Dong Y, Liu L, Peng L, Chen X. Lipids, lipid-lowering agents, and inflammatory bowel disease: a Mendelian randomization study. Front Immunol 2023; 14:1160312. [PMID: 37350960 PMCID: PMC10282130 DOI: 10.3389/fimmu.2023.1160312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Background To assess the causal role of lipid traits and lipid-lowering agents in inflammatory bowel disease (IBD). Methods Univariable mendelian randomization (MR) and multivariable MR (MVMR) analyses were conducted to evaluate the causal association between low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and IBD. Drug-targeted MR analyzed the effects of lipid-lowering drugs on IBD, and network MR was used to analyze potential mediation effects. Results The levels of HDL-C had an inverse relationship with the risk of Crohn's disease (CD, OR: 0.85, 95% CI: 0.73-0.98, P = 0.024). In MVMR, the inverse relationships were found in all three outcomes. Drug-targeted MR analyses showed that with one-SD LDL-C decrease predicted by variants at or near proprotein convertase subtilisin/kexin type 9 (PCSK9), the OR values of people diagnosed with IBD, ulcerative colitis (UC) and CD were 1.75 (95%CI: 1.13-2.69, P = 0.011), 2.1 (95%CI: 1.28-3.42, P = 0.003) and 2.24 (95%CI: 1.11-4.5, P = 0.024), respectively. With one-SD LDL-C decrease predicted by variants at or near cholesteryl ester transfer protein (CETP), the OR value of people diagnosed with CD was 0.12 (95%CI: 0.03-0.51, P = 0.004). Network-MR showed that HDL-C mediated the causal pathway from variants at or near CETP to CD. Conclusion Our study suggested a causal association between HDL-C and IBD, UC and CD. Genetically proxied inhibition of PCSK9 increased the risk of IBD, UC and CD, while inhibition of CETP decreased the risk of CD. Further studies are needed to clarify the long-term effect of lipid-lowering drugs on the gastrointestinal disorders.
Collapse
Affiliation(s)
- Heqing Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yongqiang Dong
- Deartment of Thyroid Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ligang Liu
- Institute of Therapeutic Innovations and Outcomes, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Liang Peng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xueqing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
39
|
Schmidt AF, Bourfiss M, Alasiri A, Puyol-Anton E, Chopade S, van Vugt M, van der Laan SW, Gross C, Clarkson C, Henry A, Lumbers TR, van der Harst P, Franceschini N, Bis JC, Velthuis BK, te Riele AS, Hingorani AD, Ruijsink B, Asselbergs FW, van Setten J, Finan C. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. SCIENCE ADVANCES 2023; 9:eadd4984. [PMID: 37126556 PMCID: PMC10132758 DOI: 10.1126/sciadv.add4984] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease. In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (providing indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 druggable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known oncological indications or side effects. These findings provide leads to facilitate drug development for cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-based adverse effects.
Collapse
Affiliation(s)
- Amand F. Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Abdulrahman Alasiri
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Esther Puyol-Anton
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Marion van Vugt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christian Gross
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chris Clarkson
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Albert Henry
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
| | - Tom R. Lumbers
- UCL BHF Research Accelerator Centre, London, UK
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
| | - Pim van der Harst
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Birgitta K. Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anneline S. J. M. te Riele
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
- Member of the European Reference Network for rare, low prevalence, and complex diseases of the heart (ERN GUARD HEART; http://guardheart.ern-net.eu)
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Bram Ruijsink
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Folkert W. Asselbergs
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
- Member of the European Reference Network for rare, low prevalence, and complex diseases of the heart (ERN GUARD HEART; http://guardheart.ern-net.eu)
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
41
|
Xiao J, Ji J, Zhang N, Yang X, Chen K, Chen L, Huang W. Association of genetically predicted lipid traits and lipid-modifying targets with heart failure. Eur J Prev Cardiol 2023; 30:358-366. [PMID: 36520639 DOI: 10.1093/eurjpc/zwac290] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
AIMS To assess the association of genetically predicted lipid traits and lipid-modification via licensed or investigational targets with heart failure (HF). METHODS AND RESULTS Two-sample Mendelian randomization (MR) study was conducted using summary-level genome-wide association studies (GWASs) from UK Biobank and HERMES Consortium. Genetic variants obtained from UK Biobank GWAS data were selected as instrumental variables to predict the level of lipid traits [LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), triglyceride (TG), apolipoprotein B (ApoB), and apolipoprotein AI (ApoAI)] and lipid-modifying effect of eight drug targets [HMGCR, PCSK9, NPC1L1, PPARA, lipoprotein lipase (LPL), ANGPTL3, APOC3, and cholesteryl ester transfer protein (CETP)]. In this study, we observed that genetically predicted LDL-C, TG, HDL-C or ApoB were significantly related to HF, which were mainly mediated by coronary heart disease (CHD). Drug target MR analyses identified PCSK9, CETP, and LPL as potential targets to prevent HF. The genetic proxy of LDL-C and ApoB increase modified by PCSK9 showed similar evidence in increasing risk of HF (PLDL-C = 1.27*10-4; PApoB = 1.94*10-4); CETP played a role in HF risk via modifying all investigational lipid traits with the strongest evidence though ApoB (P = 5.87*10-6); LPL exerted effects on HF via modifying most lipid traits with the strongest evidence observed via modifying TG (P = 3.73*10-12). CONCLUSION This two-sample MR study provided genetic evidence of the associations between lipid traits and HF risk, which were mostly mediated by CHD. Besides, drug target MR studies indicated that PCSK9 inhibition, CETP inhibition, and LPL activation were effective in HF reduction.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, 350001, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, No. 29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Xi Yang
- Fujian Provincial Special Reserve Talents Laboratory, No. 6 Xuefu Southern Road, 350100, Fuzhou, Fujian, China
| | - Keyuan Chen
- Fujian Provincial Special Reserve Talents Laboratory, No. 6 Xuefu Southern Road, 350100, Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, 350001, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, No. 29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, No. 1, Xue Yuan Road, University Town, 350108, Fuzhou, Fujian, China
| |
Collapse
|
42
|
Burgess S, Mason AM, Grant AJ, Slob EAW, Gkatzionis A, Zuber V, Patel A, Tian H, Liu C, Haynes WG, Hovingh GK, Knudsen LB, Whittaker JC, Gill D. Using genetic association data to guide drug discovery and development: Review of methods and applications. Am J Hum Genet 2023; 110:195-214. [PMID: 36736292 PMCID: PMC9943784 DOI: 10.1016/j.ajhg.2022.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.
Collapse
Affiliation(s)
- Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Amy M Mason
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Andrew J Grant
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric A W Slob
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Ashish Patel
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Haodong Tian
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Cunhao Liu
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - William G Haynes
- Novo Nordisk Research Centre Oxford, Novo Nordisk, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Global Chief Medical Office, Novo Nordisk, Copenhagen, Denmark
| | - Lotte Bjerre Knudsen
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| | - John C Whittaker
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| |
Collapse
|
43
|
Zhou QQ, Xiao HT, Yang F, Wang YD, Li P, Zheng ZG. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol Res 2023; 188:106627. [PMID: 36566001 DOI: 10.1016/j.phrs.2022.106627] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The development and application of traditional drugs represented by small molecule chemical drugs and biological agents, especially inhibitors, have become the mainstream drug development. In recent years, targeted protein degradation (TPD) technology has become one of the most promising methods to remove specific disease-related proteins using cell self-destruction mechanisms. Many different TPD strategies are emerging based on the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), including but not limited to proteolysis-targeting chimeras (PROTAC), molecular glues (MG), lysosome targeting chimeras (LYTAC), chaperone-mediated autophagy (CMA)-targeting chimeras, autophagy-targeting chimera (AUTAC), autophagosome-tethering compound (ATTEC), and autophagy-targeting chimera (AUTOTAC). The advent of targeted degradation technology can change most protein targets in human cells from undruggable to druggable, greatly expanding the therapeutic prospect of refractory diseases such as metabolic syndrome. Here, we summarize the latest progress of major TPD technologies, especially in metabolic syndrome and look forward to providing new insights for drug discovery.
Collapse
Affiliation(s)
- Qian-Qian Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Fan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yong-Dan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Schooling CM, Zhao JV. Insights into Causal Cardiovascular Risk Factors from Mendelian Randomization. Curr Cardiol Rep 2023; 25:67-76. [PMID: 36640254 DOI: 10.1007/s11886-022-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes major insights into causal risk factors for cardiovascular disease (CVD) by using Mendelian randomization (MR) to obtain unconfounded estimates, contextualized within its strengths and weaknesses. RECENT FINDINGS MR studies have confirmed the role of major CVD risk factors, including alcohol, smoking, adiposity, blood pressure, type 2 diabetes, lipids, and possibly inflammation, but added that the relation with alcohol is likely linear, confirmed the role of diastolic blood pressure, identified apolipoprotein B as the major target lipid, and foreshadowed results of some trials concerning anti-inflammatories. Identifying a healthy diet and the role of early life influences, such as birth weight, has proved more difficult. Use of MR has winnowed empirically driven hypotheses about CVD into a set of genetically validated targets of intervention. Greater inclusion of global diversity in genetic studies and the use of an overarching framework would enable even more informative MR studies.
Collapse
Affiliation(s)
- C M Schooling
- School of Public Health and Health Policy, City University of New York, 55 West 125th St, NY, 10027, New York, USA. .,School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - J V Zhao
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Schmidt AF, Joshi R, Gordillo-Marañón M, Drenos F, Charoen P, Giambartolomei C, Bis JC, Gaunt TR, Hughes AD, Lawlor DA, Wong A, Price JF, Chaturvedi N, Wannamethee G, Franceschini N, Kivimaki M, Hingorani AD, Finan C. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes. COMMUNICATIONS MEDICINE 2023; 3:9. [PMID: 36670186 PMCID: PMC9859819 DOI: 10.1038/s43856-022-00234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Higher concentrations of cholesterol-containing low-density lipoprotein (LDL-C) increase the risk of cardiovascular disease (CVD). The association of LDL-C with non-CVD traits remains unclear, as are the possible independent contributions of other cholesterol-containing lipoproteins and apolipoproteins. METHODS Nuclear magnetic resonance spectroscopy was used to measure the cholesterol content of high density (HDL-C), very low-density (VLDL-C), intermediate-density (IDL-C), as well as low-density lipoprotein fractions, the apolipoproteins Apo-A1 and Apo-B, as well as total triglycerides (TG), remnant-cholesterol (Rem-Chol) and total cholesterol (TC). The causal effects of these exposures were assessed against 33 outcomes using univariable and multivariable Mendelian randomization (MR). RESULTS The majority of cholesterol containing lipoproteins and apolipoproteins affect coronary heart disease (CHD), carotid intima-media thickness, carotid plaque, C-reactive protein (CRP) and blood pressure. Multivariable MR indicated that many of these effects act independently of HDL-C, LDL-C and TG, the most frequently measured lipid fractions. Higher concentrations of TG, VLDL-C, Rem-Chol and Apo-B increased heart failure (HF) risk; often independently of LDL-C, HDL-C or TG. Finally, a subset of these exposures associated with non-CVD traits such as Alzheimer's disease (AD: HDL-C, LDL-C, IDL-C, Apo-B), type 2 diabetes (T2DM: VLDL-C, IDL-C, LDL-C), and inflammatory bowel disease (IBD: LDL-C, IDL-C). CONCLUSIONS The cholesterol content of a wide range of lipoprotein and apolipoproteins associate with measures of atherosclerosis, blood pressure, CRP, and CHD, with a subset affecting HF, T2DM, AD and IBD risk. Many of the observed effects appear to act independently of LDL-C, HDL-C, and TG, supporting the targeting of lipid fractions beyond LDL-C for disease prevention.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK.
- UCL BHF Research Accelerator Centre, London, UK.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Roshni Joshi
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Maria Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Fotios Drenos
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pimphen Charoen
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok, 10400, Thailand
| | - Claudia Giambartolomei
- Istituto Italiano di Tecnologia, Non-coding RNAs and RNA-based Therapeutics, Via Morego, 30, 16163, Genova, Italy
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Alun D Hughes
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
- Population Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | | | - Nishi Chaturvedi
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Goya Wannamethee
- Primary Care and Population Health, University College London, London, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mika Kivimaki
- Department of Mental Health of Older People, Division of Brain Sciences, University College London, London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Nicholls SJ, Nelson AJ. CETP Inhibitors: Should We Continue to Pursue This Pathway? Curr Atheroscler Rep 2022; 24:915-923. [PMID: 36409446 DOI: 10.1007/s11883-022-01070-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW For more than 20 years there has been considerable interest in the development of pharmacological inhibitors of cholesteryl ester transfer protein (CETP) by virtue of their ability to raise levels of high-density lipoprotein cholesterol. This review endeavors to integrate existing data from prior clinical trials with emerging data to understand whether there is a pathway forward to develop CETP inhibitors to prevent cardiovascular disease. RECENT FINDINGS Large clinical trials have proved disappointing with successive reports of a failure to reduce cardiovascular events. The one clinical development program that did demonstrate a reduction in cardiovascular risk found adipose tissue accumulation and did not proceed for regulatory approval. More recent observations suggest that less CETP activity may prevent cardiovascular events, but due to lipid lowering rather than raising high-density lipoprotein cholesterol. In addition, treatment with CETP inhibitors appears to have a beneficial impact on glycemic control in the setting of diabetes. Advances in the field of CETP inhibition suggest a potentially protective effect on the risk of both cardiovascular disease and diabetes. This has implications for how to best design future clinical development programs and leaves the door open to potentially bring CETP inhibitors to the preventive cardiology clinic.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia.
| | - Adam J Nelson
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We reviewed current and future therapeutic options for patients with homozygous familial hypercholesterolemia (HoFH) and place this evidence in context of an adaptable treatment algorithm. RECENT FINDINGS Lowering LDL-C levels to normal in patients with HoFH is challenging, but a combination of multiple lipid-lowering therapies (LLT) is key. Patients with (near) absence of LDL receptor expression are most severely affected and frequently require regular lipoprotein apheresis on top of combined pharmacologic LLT. Therapies acting independently of the LDL receptor pathway, such as lomitapide and evinacumab, are considered game changers for many patients with HoFH, and may reduce the need for lipoprotein apheresis in future. Liver transplantation is to be considered a treatment option of last resort. Headway is being made in gene therapy strategies, either aiming to permanently replace or knock out key lipid-related genes, with first translational steps into humans being made. Cardiovascular disease risk management beyond LDL-C, such as residual Lp(a) or inflammatory risk, should be evaluated and addressed accordingly in HoFH. SUMMARY Hypercholesterolemia is notoriously difficult to control in most patients with HoFH, but multi-LLT, including newer drugs, allows reduction of LDL-C to levels unimaginable until a few years ago. Cost and availability of these new therapies are important future challenges to be addressed.
Collapse
Affiliation(s)
- Tycho R. Tromp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Nicholls SJ, Ray KK, Nelson AJ, Kastelein JJP. Can we revive CETP-inhibitors for the prevention of cardiovascular disease? Curr Opin Lipidol 2022; 33:319-325. [PMID: 36345867 DOI: 10.1097/mol.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW To review recent developments in the field of cholesteryl ester transfer protein (CETP) inhibition from clinical trials and genomic analyses which have the potential to impact future clinical programs. RECENT FINDINGS CETP plays an important role in remodelling of lipoproteins. A large body of evidence suggests that the presence of low CETP activity should have favourable effects on lipid profiles and cardiovascular risk. However, a number of clinical development programs of pharmacological CETP inhibitors have been disappointing with reports of toxicity and clinical futility. These findings have led many to consider abandoning CETP inhibition as a potential strategy for cardiovascular prevention. However, recent observations from genomic analyses and post hoc observations of prior clinical trials have given greater insights into the potential relationship between CETP inhibition and cardiovascular risk. This has highlighted the importance of lowering levels of atherogenic lipoproteins. SUMMARY These findings provide a pathway for ongoing clinical development of CETP inhibitors, where the potential to play an important role in the prevention of cardiovascular disease may still be possible. The lessons learned and pathway forward for new CETP inhibitors will be reviewed.
Collapse
Affiliation(s)
| | | | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - John J P Kastelein
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Dangas K, Navar AM, Kastelein JJP. The effect of CETP inhibitors on new-onset diabetes: a systematic review and meta-analysis. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2022; 8:622-632. [PMID: 35441656 PMCID: PMC9729761 DOI: 10.1093/ehjcvp/pvac025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite the increasing prevalence of type 2 diabetes mellitus (T2DM), limited pharmacologic options are available for prevention. Cholesteryl ester transfer protein inhibitors (CETPis) have been studied primarily as a therapy to reduce cardiovascular disease, but have also been shown to reduce new-onset diabetes. As new trial data have become available, this meta-analysis examines the effect of CETP inhibitors on new-onset diabetes and related glycaemic measures. METHODS AND RESULTS We searched MEDLINE, EMBASE, and Cochrane databases (all articles until 4 March, 2021) for randomised controlled trials (RCT) ≥1-year duration, with at least 500 participants, comparing CETPi to placebo, and that reported data on new-onset diabetes or related glycaemic measures [haemoglobin A1C (HbA1C), fasting plasma glucose, insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)]. A fixed effects meta-analysis model was applied to all eligible studies to quantify the effect of CETPi therapy on new-onset diabetes. Four RCTs (n = 75 102) were eligible for quantitative analysis of the effect of CETPi on new-onset diabetes. CETPis were found to significantly decrease the risk of new-onset diabetes by 16% (RR: 0.84; 95% CI: 0.78, 0.91; P < 0.001), with low between-trial heterogeneity (I2 = 4.1%). Glycaemic measures were also significantly improved or trended towards improvement in those with and without diabetes across most trials. CONCLUSION Although RCTs have shown mixed results regarding the impact of CETPi on cardiovascular disease, they have shown a consistent reduction in the risk of new-onset diabetes with CETPi therapy. Future trials of CETPis and potentially other HDL-raising agents should therefore specify new-onset diabetes and reversal of existing T2DM as secondary endpoints.
Collapse
Affiliation(s)
| | - Ann-Marie Navar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam 1081, Netherlands
| |
Collapse
|
50
|
Cupido AJ, Reeskamp LF, Hingorani AD, Finan C, Asselbergs FW, Hovingh GK, Schmidt AF. Joint Genetic Inhibition of PCSK9 and CETP and the Association With Coronary Artery Disease: A Factorial Mendelian Randomization Study. JAMA Cardiol 2022; 7:955-964. [PMID: 35921096 PMCID: PMC9350849 DOI: 10.1001/jamacardio.2022.2333] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/29/2022] [Indexed: 12/30/2022]
Abstract
Importance Cholesteryl ester transfer protein inhibition (CETP) has been shown to increase levels of high-density lipoprotein cholesterol (HDL-C) and reduce levels of low-density lipoprotein cholesterol (LDL-C). Current LDL-C target attainment is low, and novel phase 3 trials are underway to investigate whether CETP inhibitors result in reduction of cardiovascular disease risk in high-risk patients who may be treated with PCSK9-inhibiting agents. Objective To explore the associations of combined reduction of CETP and PCSK9 concentrations with risk of coronary artery disease (CAD) and other clinical and safety outcomes. Design, Setting, and Participants Two-sample 2 × 2 factorial Mendelian randomization study in a general population sample that includes data for UK Biobank participants of European ancestry. Exposures Separate genetic scores were constructed for CETP and PCSK9 plasma protein concentrations, which were combined to determine the associations of combined genetically reduced CETP and PCSK9 concentrations with disease. Main Outcomes and Measures Blood lipid and lipoprotein concentrations, blood pressure, CAD, age-related macular degeneration, type 2 diabetes, any stroke and ischemic stroke, Alzheimer disease, vascular dementia, heart failure, atrial fibrillation, chronic kidney disease, asthma, and multiple sclerosis. Results Data for 425 354 UKB participants were included; the median (IQR) age was 59 years (51-64), and 229 399 (53.9%) were female. The associations of lower CETP and lower PCSK9 concentrations with CAD are similar when scaled per 10-mg/dL reduction in LDL-C concentrations (CETP: odds ratio [OR], 0.74; 95% CI, 0.67 to 0.81; PCSK9: OR, 0.75; 95% CI, 0.71 to 0.79). Combined exposure to lower CETP and PCSK9 concentrations was associated with an additive magnitude with lipids and all outcomes, and we did not observe any nonadditive interactions, most notably for LDL-C (CETP: effect size, -1.11 mg/dL; 95% CI, -1.40 to -0.82; PCSK9: effect size, -2.13 mg/dL; 95% CI, -2.43 to -1.84; combined: effect size, -3.47 mg/dL; 95% CI, -3.76 to -3.18; P = .34 for interaction) and CAD (CETP: OR, 0.96; 95% CI, 0.94 to 1.00; PCSK9: OR, 0.94; 95% CI, 0.91 to 0.97; combined: OR, 0.90; 95% CI, 0.87 to 0.93; P = .83 for interaction). In addition, when corrected for multiple testing, lower CETP concentrations were associated with increased age-related macular degeneration (OR, 1.11; 95% CI, 1.04 to 1.19). Conclusions and Relevance Our results suggest that joint inhibition of CETP and PCSK9 has additive effects on lipid traits and disease risk, including a lower risk of CAD. Further research may explore whether a combination of CETP- and PCSK9-related therapeutics can benefit high-risk patients who are unable to reach treatment targets with existing options.
Collapse
Affiliation(s)
- Arjen J. Cupido
- Amsterdam UMC location, University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Division of Cardiology, Department of Medicine, University of California, Los Angeles
| | - Laurens F. Reeskamp
- Amsterdam UMC location, University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Chris Finan
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Folkert W. Asselbergs
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - G. Kees Hovingh
- Amsterdam UMC location, University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Amand F. Schmidt
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| |
Collapse
|