1
|
Wang L, Liu J, Yin P, Gao Y, Jiang Y, Kan H, Zhou M, Ao H, Chen R. Mortality risk and burden of sudden cardiac arrest associated with hot nights, heatwaves, cold spells, and non-optimum temperatures in 0.88 million patients: An individual-level case-crossover study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175208. [PMID: 39097015 DOI: 10.1016/j.scitotenv.2024.175208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Sudden cardiac arrest (SCA) is a global health concern, imposing a substantial mortality burden. However, the understanding of the impact of various extreme temperature events, when accounting for the effect of daily average temperature on SCA, remains incomplete. Additionally, the assessment of SCA mortality burden associated with temperatures from an individual-level design is limited. This nationwide case-crossover study collected individual SCA death records across all (2844) county-level administrative units in the Chinese Mainland from 2013 to 2019. Four definitions for hot nights and ten for both cold spells and heatwaves were established using various temperature thresholds and durations. Conditional logistic regression models combined with distributed lag nonlinear models were employed to estimate the cumulative exposure-response relationships. Based on 887,662 SCA decedents, this analysis found that both hot nights [odds ratio (OR): 1.28; attributable fraction (AF): 1.32 %] and heatwaves (OR: 1.40; AF: 1.29 %) exhibited significant added effects on SCA mortality independent of daily average temperatures, while cold spells were not associated with an elevated SCA risk after accounting for effects of temperatures. Cold temperatures [below the minimum mortality temperature (MMT)] accounted for a larger mortality burden than high temperatures (above the MMT) [AF: 12.2 % vs. 1.5 %]. Higher temperature-related mortality risks and burdens were observed in patients who experienced out-of-hospital cardiac arrest compared to those with in-hospital cardiac arrest. This nationwide study presents the most compelling and comprehensive evidence of the elevated mortality risk and burden of SCA associated with extreme temperature events and ambient temperatures amid global warming.
Collapse
Affiliation(s)
- Lijun Wang
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangdong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yixuan Jiang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Seinkmane E, Edmondson A, Peak-Chew SY, Zeng A, Rzechorzek NM, James NR, West J, Munns J, Wong DC, Beale AD, O'Neill JS. Circadian regulation of macromolecular complex turnover and proteome renewal. EMBO J 2024; 43:2813-2833. [PMID: 38778155 PMCID: PMC11217436 DOI: 10.1038/s44318-024-00121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Although costly to maintain, protein homeostasis is indispensable for normal cellular function and long-term health. In mammalian cells and tissues, daily variation in global protein synthesis has been observed, but its utility and consequences for proteome integrity are not fully understood. Using several different pulse-labelling strategies, here we gain direct insight into the relationship between protein synthesis and abundance proteome-wide. We show that protein degradation varies in-phase with protein synthesis, facilitating rhythms in turnover rather than abundance. This results in daily consolidation of proteome renewal whilst minimising changes in composition. Coupled rhythms in synthesis and turnover are especially salient to the assembly of macromolecular protein complexes, particularly the ribosome, the most abundant species of complex in the cell. Daily turnover and proteasomal degradation rhythms render cells and mice more sensitive to proteotoxic stress at specific times of day, potentially contributing to daily rhythms in the efficacy of proteasomal inhibitors against cancer. Our findings suggest that circadian rhythms function to minimise the bioenergetic cost of protein homeostasis through temporal consolidation of protein turnover.
Collapse
Affiliation(s)
- Estere Seinkmane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Edmondson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nina M Rzechorzek
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nathan R James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - James West
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Cs Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Rodan AR. Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. Physiology (Bethesda) 2024; 39:0. [PMID: 38411570 PMCID: PMC11368518 DOI: 10.1152/physiol.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Rodríguez SG, Crosby P, Hansen LL, Grünewald E, Beale AD, Spangler RK, Rabbitts BM, Partch CL, Stangherlin A, O’Neill JS, van Ooijen G. Potassium rhythms couple the circadian clock to the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587153. [PMID: 38617352 PMCID: PMC11014554 DOI: 10.1101/2024.04.02.587153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Circadian (~24 h) rhythms are a fundamental feature of life, and their disruption increases the risk of infectious diseases, metabolic disorders, and cancer1-6. Circadian rhythms couple to the cell cycle across eukaryotes7,8 but the underlying mechanism is unknown. We previously identified an evolutionarily conserved circadian oscillation in intracellular potassium concentration, [K+]i9,10. As critical events in the cell cycle are regulated by intracellular potassium11,12, an enticing hypothesis is that circadian rhythms in [K+]i form the basis of this coupling. We used a minimal model cell, the alga Ostreococcus tauri, to uncover the role of potassium in linking these two cycles. We found direct reciprocal feedback between [K+]i and circadian gene expression. Inhibition of proliferation by manipulating potassium rhythms was dependent on the phase of the circadian cycle. Furthermore, we observed a total inhibition of cell proliferation when circadian gene expression is inhibited. Strikingly, under these conditions a sudden enforced gradient of extracellular potassium was sufficient to induce a round of cell division. Finally, we provide evidence that interactions between potassium and circadian rhythms also influence proliferation in mammalian cells. These results establish circadian regulation of intracellular potassium levels as a primary factor coupling the cell- and circadian cycles across diverse organisms.
Collapse
Affiliation(s)
- Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Louise L. Hansen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Andrew D. Beale
- UKRI MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, United Kingdom
| | - Rebecca K. Spangler
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Beverley M. Rabbitts
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Joseph-Stelzmann-Str, 50931, Cologne, Germany
| | - John S. O’Neill
- UKRI MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, United Kingdom
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| |
Collapse
|
6
|
Chawla S, O’Neill J, Knight MI, He Y, Wang L, Maronde E, Rodríguez SG, van Ooijen G, Garbarino-Pico E, Wolf E, Dkhissi-Benyahya O, Nikhat A, Chakrabarti S, Youngstedt SD, Zi-Ching Mak N, Provencio I, Oster H, Goel N, Caba M, Oosthuizen M, Duffield GE, Chabot C, Davis SJ. Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking. J Circadian Rhythms 2024; 22:2. [PMID: 38617710 PMCID: PMC11011957 DOI: 10.5334/jcr.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/16/2024] Open
Abstract
Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.
Collapse
Affiliation(s)
| | - John O’Neill
- MRC Laboratory of Molecular Biology Cambridge, UK
| | | | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Erik Maronde
- Institut für Anatomie II, Dr. Senckenbergische Anatomie, Goethe-Universität Frankfurt, Theodor-Stern-Kai-7, 60590 Frankfurt, DE
| | - Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, AR
- CONICET-UNC, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, AR
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch- Weg 17, 55128 Mainz, DE
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, UniversitéClaude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, FR
| | - Anjoom Nikhat
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shawn D. Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, US
- Department of Medicine, University of Arizona, Tucson, AZ, US
| | | | - Ignacio Provencio
- Department of Biology and Department of Ophthalmology, University of Virginia, Charlottesville, VA, US
| | - Henrik Oster
- Institute of Neurobiology, Center for Brain, Behavior & Metabolism (CBBM), University of Luebeck, 23562 Luebeck, DE
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, US
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., MX
| | - Maria Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, ZA
- Mammal Research Institute, University of Pretoria, Hatfield, ZA
| | - Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, US
| | - Christopher Chabot
- Department of Biological Sciences, Plymouth State University, Plymouth, NH 03264, US
| | - Seth J. Davis
- Department of Biology, University of York, York YO105DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, CN
| |
Collapse
|
7
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
8
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Subramanya AR, Boyd-Shiwarski CR. Molecular Crowding: Physiologic Sensing and Control. Annu Rev Physiol 2024; 86:429-452. [PMID: 37931170 PMCID: PMC11472293 DOI: 10.1146/annurev-physiol-042222-025920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.
Collapse
Affiliation(s)
- Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Köchl R, Tybulewicz VLJ. T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023; 14:7844. [PMID: 38057317 PMCID: PMC10700356 DOI: 10.1038/s41467-023-43423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.
Collapse
Affiliation(s)
- Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Serena Melgrati
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Alexander Griffiths
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Renata Magueta
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Alexander Morrell
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
11
|
Samuel Russell PP, Alaeen S, Pogorelov TV. In-Cell Dynamics: The Next Focus of All-Atom Simulations. J Phys Chem B 2023; 127:9863-9872. [PMID: 37793083 PMCID: PMC10874638 DOI: 10.1021/acs.jpcb.3c05166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The cell is a crowded space where large biomolecules and metabolites are in continuous motion. Great strides have been made in in vitro studies of protein dynamics, folding, and protein-protein interactions, and much new data are emerging of how they differ in the cell. In this Perspective, we highlight the current progress in atomistic modeling of in-cell environments, both bacteria and mammals, with emphasis on classical all-atom molecular dynamics simulations. These simulations have been recently used to capture and characterize functional and non-functional protein-protein interactions, protein folding dynamics of small proteins with varied topologies, and dynamics of metabolites. We further discuss the challenges and efforts for updating modern force fields critical to the progress of cellular environment simulations. We also briefly summarize developments in relevant state-of-the-art experimental techniques. As computational and experimental methodologies continue to progress and produce more directly comparable data, we are poised to capture the complex atomistic picture of the cell.
Collapse
Affiliation(s)
- Premila P Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Crozier L, Foy R, Adib R, Kar A, Holt JA, Pareri AU, Valverde JM, Rivera R, Weston WA, Wilson R, Regnault C, Whitfield P, Badonyi M, Bennett LG, Vernon EG, Gamble A, Marsh JA, Staples CJ, Saurin AT, Barr AR, Ly T. CDK4/6 inhibitor-mediated cell overgrowth triggers osmotic and replication stress to promote senescence. Mol Cell 2023; 83:4062-4077.e5. [PMID: 37977118 DOI: 10.1016/j.molcel.2023.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Collapse
Affiliation(s)
- Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rozita Adib
- MRC Laboratory of Medical Sciences, London, UK
| | - Ananya Kar
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Juan M Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rene Rivera
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Rona Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clement Regnault
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Phil Whitfield
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Laura G Bennett
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Ellen G Vernon
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Amelia Gamble
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Christopher J Staples
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK.
| | - Alexis R Barr
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
13
|
Pracucci E, Graham RT, Alberio L, Nardi G, Cozzolino O, Pillai V, Pasquini G, Saieva L, Walsh D, Landi S, Zhang J, Trevelyan AJ, Ratto GM. Daily rhythm in cortical chloride homeostasis underpins functional changes in visual cortex excitability. Nat Commun 2023; 14:7108. [PMID: 37925453 PMCID: PMC10625537 DOI: 10.1038/s41467-023-42711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability.
Collapse
Affiliation(s)
- Enrico Pracucci
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Robert T Graham
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Alberio
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gabriele Nardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Giacomo Pasquini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Luciano Saieva
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Darren Walsh
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Silvia Landi
- Institute of Neuroscience CNR, Pisa, Italy
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Institute of Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology. Research Center of Chemical Kinomics, Shangai. Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gian-Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
- Institute of Neuroscience CNR, Pisa, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
14
|
Watson JL, Seinkmane E, Styles CT, Mihut A, Krüger LK, McNally KE, Planelles-Herrero VJ, Dudek M, McCall PM, Barbiero S, Vanden Oever M, Peak-Chew SY, Porebski BT, Zeng A, Rzechorzek NM, Wong DCS, Beale AD, Stangherlin A, Riggi M, Iwasa J, Morf J, Miliotis C, Guna A, Inglis AJ, Brugués J, Voorhees RM, Chambers JE, Meng QJ, O'Neill JS, Edgar RS, Derivery E. Macromolecular condensation buffers intracellular water potential. Nature 2023; 623:842-852. [PMID: 37853127 PMCID: PMC10665201 DOI: 10.1038/s41586-023-06626-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.
Collapse
Affiliation(s)
| | | | | | - Andrei Mihut
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | - Patrick M McCall
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Alessandra Stangherlin
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jörg Morf
- Laboratory of Nuclear Dynamics, Babraham Institute, Cambridge, UK
| | | | - Alina Guna
- California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Brugués
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | | | - Rachel S Edgar
- Department of Infectious Disease, Imperial College London, London, UK.
| | | |
Collapse
|
15
|
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, Dani N, Grant B, Pragana A, Head JP, Gupta S, Shannon ML, Chifamba FF, Hawks-Mayer H, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Andermann ML, Kanarek N, Lipton JO, Lehtinen MK. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 2023; 14:3720. [PMID: 37349305 PMCID: PMC10287727 DOI: 10.1038/s41467-023-39326-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paul A Soden
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bradford Grant
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Vernon
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Lyterian Therapeutics, South San Francisco, 94080, CA, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan O Lipton
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Ma Y, Chang MC, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med 2023; 19:873-882. [PMID: 36692177 PMCID: PMC10152358 DOI: 10.5664/jcsm.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES Heart rate variability (HRV) measures provide valuable insights into physiology; however, gaps remain in understanding circadian patterns in heart rate dynamics. We aimed to explore day-night differences in heart rate dynamics in patients with chronic cardiopulmonary disease compared with healthy controls. METHODS Using 24-hour heart rate data from patients with chronic obstructive pulmonary disease (COPD) and/or heart failure (n = 16) and healthy adult controls (older group: ≥50 years, n = 42; younger group: 20-49 years, n = 136), we compared day-night differences in conventional time and frequency domain HRV indices and a multiscale-entropy-based complexity index (CI1-20) of HRV among the 3 groups. RESULTS Twenty-four-hour HRV showed significant day-night differences (marked with "△") among younger healthy (mean age: 34.5 years), older healthy (mean age: 61.6 years), and cardiopulmonary patients (mean age: 68.4 years), including change in percentage of adjacent intervals that differ > 50 ms (△pNN50), high frequency (△HF), normalized low frequency (△nLF), ratio (△LF/HF), and △CI1-20. Among these, △LF/HF (2.13 ± 2.35 vs 1.1 ± 2.47 vs -0.35 ± 1.25; P < .001) and △CI1-20 (0.15 ± 0.24 vs 0.02 ± 0.28 vs -0.21 ± 0.27; P < .001) were significant in each pairwise comparison following analysis of variance tests. Average CI1-20 was highest in younger healthy individuals and lowest in cardiopulmonary patients (1.37 ± 0.12 vs 1.01 ± 0.27; P < .001). Younger healthy patients showed a heart rate complexity dipping pattern (night < day), older healthy patients showed nondipping, and cardiopulmonary patients showed reverse dipping (night > day). CONCLUSIONS As measures of 24-hour variability, traditional and complexity-based metrics of HRV exhibit large day-night differences in healthy individuals; these differences are blunted, or even reversed, in individuals with cardiopulmonary pathology. Measures of diurnal dynamics may be useful indices of reduced adaptive capacity in patients with cardiopulmonary conditions. CITATION Ma Y, Chang M-C, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med. 2023;19(5):873-882.
Collapse
Affiliation(s)
- Yan Ma
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mei-Chu Chang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel Litrownik
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Wayne
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gloria Y. Yeh
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Liu T, Li X, Wang Y, Zhou M, Liang F. Computational modeling of electromechanical coupling in human cardiomyocyte applied to study hypertrophic cardiomyopathy and its drug response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107372. [PMID: 36736134 DOI: 10.1016/j.cmpb.2023.107372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Knowledge of electromechanical coupling in cardiomyocyte and how it is influenced by various pathophysiological factors is fundamental to understanding the pathogenesis of myocardial disease and its response to medication, which is however hard to be thoroughly addressed by clinical/experimental studies due to technical limitations. At this point, computational modeling offers an alternative approach. The main objective of the study was to develop a computational model capable of simulating the process of electromechanical coupling and quantifying the roles of various factors in play in the human left ventricular cardiomyocyte. METHODS A new electrophysiological model was firstly built by combining several existing electrophysiological models and incorporating the mechanism of electrophysiological homeostasis, which was subsequently coupled to models representing the cross-bridge dynamics and active force generation during excitation-contraction coupling and the passive mechanical properties of cardiomyocyte to yield an integrative electromechanical model. Model parameters were calibrated or optimized based on a large amount of experimental data. The resulting model was applied to delineate the characteristics of electromechanical coupling and explore underlying determinant factors in hypertrophic cardiomyopathy (HCM) cardiomyocyte, as well as quantify their changes in response to different medications. RESULTS Model predictions captured the major electromechanical characteristics of cardiomyocyte under both normal physiological and HCM conditions. In comparison with normal cardiomyocyte, HCM cardiomyocyte suffered from systemic changes in both electrophysiological and mechanical variables. Numerical simulations of drug response revealed that Mavacamten and Metoprolol could both reduce the active contractility and alleviate calcium overload but had marked differential influences on many other electromechanical variables, which theoretically explained why the two drugs have differential therapeutic effects. In addition, our numerical experiments demonstrated the important role of compensatory ion transport in maintaining electrophysiological homeostasis and regulating cytoplasmic volume. CONCLUSIONS A sophisticated computational model has the advantage of providing quantitative and integrative insights for understanding the pathogenesis and drug responses of HCM or other myocardial diseases at the level of cardiomyocyte, and hence may contribute as a useful complement to clinical/experimental studies. The model may also be coupled to tissue- or organ-level models to strengthen the physiological implications of macro-scale numerical simulations.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 19991, Russia.
| |
Collapse
|
18
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
19
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
21
|
Schroder EA, Ono M, Johnson SR, Rozmus ER, Burgess DE, Esser KA, Delisle BP. The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology. J Physiol 2022; 600:2037-2048. [PMID: 35301719 PMCID: PMC9980729 DOI: 10.1113/jp282402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Daily variations in cardiac electrophysiology and the incidence for different types of arrhythmias reflect ≈24 h changes in the environment, behaviour and internal circadian rhythms. This article focuses on studies that use animal models to separate the impact that circadian rhythms, as well as changes in the environment and behaviour, have on 24 h rhythms in heart rate and ventricular repolarization. Circadian rhythms are initiated at the cellular level by circadian clocks, transcription-translation feedback loops that cycle with a periodicity of 24 h. Several studies now show that the circadian clock in cardiomyocytes regulates the expression of cardiac ion channels by multiple mechanisms; underlies time-of-day changes in sinoatrial node excitability/intrinsic heart rate; and limits the duration of the ventricular action potential waveform. However, the 24 h rhythms in heart rate and ventricular repolarization are primarily driven by autonomic signalling. A functional role for the cardiomyocyte circadian clock appears to buffer the heart against perturbations. For example, the cardiomyocyte circadian clock limits QT-interval prolongation (especially at slower heart rates), and it may facilitate the realignment of the 24 h rhythm in heart rate to abrupt changes in the light cycle. Additional studies show that modifying rhythmic behaviours (including feeding behaviour) can dramatically impact the 24 h rhythms in heart rate and ventricular repolarization. If these mechanisms are conserved, these studies suggest that targeting endogenous circadian mechanisms in the heart, as well as modifying the timing of certain rhythmic behaviours, could emerge as therapeutic strategies to support heart function against perturbations and regulate 24 h rhythms in cardiac electrophysiology.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Sidney R. Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Ezekiel R. Rozmus
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| |
Collapse
|
22
|
Dunham CS, Mackenzie ME, Nakano H, Kim AR, Juda MB, Nakano A, Stieg AZ, Gimzewski JK. Pacemaker translocations and power laws in 2D stem cell-derived cardiomyocyte cultures. PLoS One 2022; 17:e0263976. [PMID: 35286321 PMCID: PMC8920264 DOI: 10.1371/journal.pone.0263976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Power laws are of interest to several scientific disciplines because they can provide important information about the underlying dynamics (e.g. scale invariance and self-similarity) of a given system. Because power laws are of increasing interest to the cardiac sciences as potential indicators of cardiac dysfunction, it is essential that rigorous, standardized analytical methods are employed in the evaluation of power laws. This study compares the methods currently used in the fields of condensed matter physics, geoscience, neuroscience, and cardiology in order to provide a robust analytical framework for evaluating power laws in stem cell-derived cardiomyocyte cultures. One potential power law-obeying phenomenon observed in these cultures is pacemaker translocations, or the spatial and temporal instability of the pacemaker region, in a 2D cell culture. Power law analysis of translocation data was performed using increasingly rigorous methods in order to illustrate how differences in analytical robustness can result in misleading power law interpretations. Non-robust methods concluded that pacemaker translocations adhere to a power law while robust methods convincingly demonstrated that they obey a doubly truncated power law. The results of this study highlight the importance of employing comprehensive methods during power law analysis of cardiomyocyte cultures.
Collapse
Affiliation(s)
- Christopher S. Dunham
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Madelynn E. Mackenzie
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Haruko Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
| | - Alexis R. Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Michal B. Juda
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Atsushi Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, United States of America
- Department of Cell Physiology, The Jikei University, Tokyo, Japan
| | - Adam Z. Stieg
- California NanoSystems Institute, University of California, Los Angeles, California, United States of America
- International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science, Tsukuba, Japan
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California, Los Angeles, California, United States of America
- International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science, Tsukuba, Japan
| |
Collapse
|
23
|
Stangherlin A, Seinkmane E, O'Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:None. [PMID: 34950808 PMCID: PMC8660647 DOI: 10.1016/j.coisb.2021.100391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are ∼24 h cycles of organismal and cellular activity ubiquitous to mammalian physiology. A prevailing paradigm suggests that timing information flows linearly from rhythmic transcription via protein abundance changes to drive circadian regulation of cellular function. Challenging this view, recent evidence indicates daily variation in many cellular functions arises through rhythmic post-translational regulation of protein activity. We suggest cellular circadian timing primarily functions to maintain proteome homeostasis rather than perturb it. Indeed, although relevant to timekeeping mechanism, daily rhythms of clock protein abundance may be the exception, not the rule. Informed by insights from yeast and mammalian models, we propose that optimal bioenergetic efficiency results from coupled rhythms in mammalian target of rapamycin complex activity, protein synthesis/turnover, ion transport and protein sequestration, which drive facilitatory rhythms in metabolic flux and substrate utilisation. Such daily consolidation of proteome renewal would account for many aspects of circadian cell biology whilst maintaining osmotic homeostasis.
Collapse
|
24
|
Causton HC. SARS-CoV2 Infection and the Importance of Potassium Balance. Front Med (Lausanne) 2021; 8:744697. [PMID: 34778307 PMCID: PMC8578622 DOI: 10.3389/fmed.2021.744697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
SARS-CoV2 infection results in a range of symptoms from mild pneumonia to cardiac arrhythmias, hyperactivation of the immune response, systemic organ failure and death. However, the mechanism of action has been hard to establish. Analysis of symptoms associated with COVID-19, the activity of repurposed drugs associated with lower death rates or antiviral activity in vitro and a small number of studies describing interventions, point to the importance of electrolyte, and particularly potassium, homeostasis at both the cellular, and systemic level. Elevated urinary loss of potassium is associated with disease severity, and the response to electrolyte replenishment correlates with progression toward recovery. These findings suggest possible diagnostic opportunities and therapeutic interventions. They provide insights into comorbidities and mechanisms associated with infection by SARS-CoV2 and other RNA viruses that target the ACE2 receptor, and/or activate cytokine-mediated immune responses in a potassium-dependent manner.
Collapse
Affiliation(s)
- Helen C Causton
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|