1
|
Han L, Wang Q, Lu Y, Tao S, Zhu W, Feng X, Liang S, Bai H, Chen C, Wang K, Yang Z, Fan X, Song C, Pan F. Lead-Free Hybrid Perovskite: An Efficient Room-Temperature Spin Generator via Large Interfacial Rashba Effect. ACS NANO 2024; 18:30616-30625. [PMID: 39431976 DOI: 10.1021/acsnano.4c09413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) shows great potential for developing flexible and wearable spintronic devices by serving as spin sources via the bulk Rashba effect (BRE). However, the practical application of BRE in 2D HOIP faces huge challenges, particularly due to the toxicity of lead, which is crucial for achieving large spin-orbit coupling, and the restrictions in 2D HOIP candidates to meet specific symmetry-breaking requirements. To overcome these obstacles, we designed a strategy to exploit the interfacial Rashba effect (IRE) of lead-free 2D HOIP (C6H5CH2CH2NH3)2CuCl4 (PEA-CuCl), manifesting as an efficient spin generator at room temperature. IRE of PEA-CuCl originates from the large orbital hybridization at the interface between PEA-CuCl and adjacent ferromagnetic layers. Spin-torque ferromagnetic resonance measurements further quantify a large Rashba effective field of 14.04 Oe per 1011 A m-2, surpassing those of lead-based HOIP and traditional all-inorganic heterojunctions with noble metals. Our lead-free 2D HOIP PEA-CuCl, which harnesses large IRE for spin generation, is efficient, nontoxic, and economic, offering huge promise for future flexible and wearable spintronic devices.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Lu
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710025, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sheng Tao
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Feng
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Shixuan Liang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Fan
- The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
An LC, Li ZY, Azeem M, Li W, Qin Y, Gao FF, Han SD, Wang GM, Bu XH. Near-Full-Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible-Light Region. Angew Chem Int Ed Engl 2024; 63:e202411298. [PMID: 39011619 DOI: 10.1002/anie.202411298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3 +), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H⋅⋅⋅Br and O-H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
Collapse
Affiliation(s)
- Lian-Cai An
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zi-Ying Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Muhammad Azeem
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Yan Qin
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei-Fei Gao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) & School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| |
Collapse
|
3
|
Volochanskyi O, Haider G, Alharbi EA, Kakavelakis G, Mergl M, Thakur MK, Krishna A, Graetzel M, Kalbáč M. Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52789-52798. [PMID: 39297304 PMCID: PMC11450682 DOI: 10.1021/acsami.4c10289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
This study points out the importance of the templating effect in hybrid organic-inorganic perovskite semiconductors grown on graphene. By combining two achiral materials, we report the formation of a chiral composite heterostructure with electronic band splitting. The effect is observed through circularly polarized light emission and detection in a graphene/α-CH(NH2)2PbI3 perovskite composite, at ambient temperature and without a magnetic field. We exploit the spin-charge conversion by introducing an unbalanced spin population through polarized light that gives rise to a spin photoconductive effect rationalized by Rashba-type coupling. The prepared composite heterostructure exhibits a circularly polarized photoluminescence anisotropy gCPL of ∼0.35 at ∼2.54 × 103 W cm-2 confocal power density of 532 nm excitation. A carefully engineered interface between the graphene and the perovskite thin film enhances the Rashba field and generates the built-in electric field responsible for photocurrent, yielding a photoresponsivity of ∼105 A W-1 under ∼0.08 μW cm-2 fluence of visible light photons. The maximum photocurrent anisotropy factor gph is ∼0.51 under ∼0.16 μW cm-2 irradiance. The work sheds light on the photophysical properties of graphene/perovskite composite heterostructures, finding them to be a promising candidate for developing miniaturized spin-photonic devices.
Collapse
Affiliation(s)
- Oleksandr Volochanskyi
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
- Faculty
of Chemical Engineering, Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 14200 Prague, Czech Republic
| | - Golam Haider
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Essa A. Alharbi
- Microelectronics
and Semiconductors Institute, King Abdulaziz City for Science and
Technology (KACST), Riyadh 11442, Saudi Arabia
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - George Kakavelakis
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
- Department
of Electronic Engineering, School of Engineering, Hellenic Mediterranean University, Romanou 3, Chalepa, GR-73100 Chania, Crete, Greece
| | - Martin Mergl
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Mukesh Kumar Thakur
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Anurag Krishna
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - Michael Graetzel
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - Martin Kalbáč
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| |
Collapse
|
4
|
Yeh IH, Ghobadifard M, Feng L, Galievsky V, Radovanovic PV. Origin of Dopant-Carrier Exchange Coupling and Excitonic Zeeman Splitting in Mn 2+-Doped Lead Halide Perovskite Nanocrystals. NANO LETTERS 2024; 24:10554-10561. [PMID: 39151058 DOI: 10.1021/acs.nanolett.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Low-dimensional metal halide perovskites have unique optical and electrical properties that render them attractive for the design of diluted magnetic semiconductors. However, the nature of dopant-exciton exchange interactions that result in spin-polarization of host-lattice charge carriers as a basis for spintronics remains unexplored. Here, we investigate Mn2+-doped CsPbCl3 nanocrystals using magnetic circular dichroism spectroscopy and show that Mn2+ dopants induce excitonic Zeeman splitting which is strongly dependent on the nature of the band-edge structure. We demonstrate that the largest splitting corresponds to exchange interactions involving the excited state at the M-point along the spin-orbit split-off conduction band edge. This splitting gives rise to an absorption-like C-term excitonic MCD signal, with the estimated effective g-factor (geff) of ca. 70. The results of this work help resolve the assignment of absorption transitions observed for metal halide perovskite nanocrystals and allow for a design of new diluted magnetic semiconductor materials for spintronics applications.
Collapse
Affiliation(s)
- I-Hsuan Yeh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahdieh Ghobadifard
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lin Feng
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Victor Galievsky
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Ghosh S, Pradhan B, Bandyopadhyay A, Skvortsova I, Zhang Y, Sternemann C, Paulus M, Bals S, Hofkens J, Karki KJ, Materny A. Rashba-Type Band Splitting Effect in 2D (PEA) 2PbI 4 Perovskites and Its Impact on Exciton-Phonon Coupling. J Phys Chem Lett 2024; 15:7970-7978. [PMID: 39077842 PMCID: PMC11318034 DOI: 10.1021/acs.jpclett.4c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Supriya Ghosh
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- Department
of Chemistry and Biochemistry, The Ohio
State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Bapi Pradhan
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Arkamita Bandyopadhyay
- Bremen
Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Irina Skvortsova
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Yiyue Zhang
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | - Michael Paulus
- Fakultät
Physik/DELTA, Technische Universität
Dortmund, 44221 Dortmund, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Khadga J. Karki
- Guangdong
Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong Province 515603, P. R. China
| | - Arnulf Materny
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
6
|
Zhang Y, Abdi-Jalebi M, Larson BW, Zhang F. What Matters for the Charge Transport of 2D Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404517. [PMID: 38779825 DOI: 10.1002/adma.202404517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mojtaba Abdi-Jalebi
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
7
|
Fan CC, Liu CD, Liang BD, Ju TY, Wang W, Jin ML, Chai CY, Zhang W. Chiral three-dimensional organic-inorganic lead iodide hybrid semiconductors. Chem Sci 2024; 15:11374-11381. [PMID: 39055034 PMCID: PMC11268474 DOI: 10.1039/d4sc00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Chiral hybrid metal halides (CHMHs) have received a considerable amount of attention in chiroptoelectronics, spintronics, and ferroelectrics due to their superior optoelectrical properties and structural flexibility. Owing to limitations in synthesis, the theoretical prediction of room-temperature stable chiral three-dimensional (3D) CHFClNH3PbI3 has not been successfully prepared, and the optoelectronic properties of such structures cannot be studied. Herein, we have successfully constructed two pairs of chiral 3D lead iodide hybrids (R/S/Rac-3AEP)Pb2I6 (3R/S/Rac, 3AEP = 3-(1-aminoethyl)pyridin-1-ium) and (R/S/Rac-2AEP)Pb2I6 (2R/S/Rac, 2AEP = 2-(1-aminoethyl)pyridin-1-ium) through chiral introduction and ortho substitution strategies, and obtained bulk single crystals of 3R/S/Rac. The 3R/S exhibits optical activity and bulk photovoltaic effect induced by chirality. The 3R crystal device exhibits stable circularly polarized light performance at 565 nm with a maximum anisotropy factor of 0.07, responsivity of 0.25 A W-1, and detectivity of 3.4 × 1012 jones. This study provides new insights into the synthesis of chiral 3D lead halide hybrids and the development of chiral electronic devices.
Collapse
Affiliation(s)
- Chang-Chun Fan
- College of Materials Engineering, Jinling Institute of Technology Nanjing 211169 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Tong-Yu Ju
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
8
|
Zheng H, Ghosh A, Swamynadhan MJ, Zhang Q, Wong WPD, Wu Z, Zhang R, Chen J, Cimpoesu F, Ghosh S, Campbell BJ, Wang K, Stroppa A, Mahendiran R, Loh KP. Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites. Nat Commun 2024; 15:5556. [PMID: 38956033 PMCID: PMC11220029 DOI: 10.1038/s41467-024-49708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-β-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, ξ = p ⋅ r ( p represents the ferroelectric displacement vector and r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor's sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.
Collapse
Affiliation(s)
- Haining Zheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Arup Ghosh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - M J Swamynadhan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Rongrong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Fanica Cimpoesu
- Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest, 060021, Romania
| | - Saurabh Ghosh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Branton J Campbell
- Department of Physics & Astronomy, Brigham Young University, Provo, UT, 84602, USA
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering and Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche - University of L'Aquila, Via Vetoio, Coppito (AQ), 67100, Italy.
| | - Ramanathan Mahendiran
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Wong EL, Folpini G, Zhou Y, Albaqami MD, Petrozza A. Electron Spectroscopy and Microscopy: A Window into the Surface Electronic Properties of Polycrystalline Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310240. [PMID: 38708696 DOI: 10.1002/adma.202310240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Indexed: 05/07/2024]
Abstract
In the past years, an increasing number of experimental techniques have emerged to address the need to unveil the chemical, structural, and electronic properties of perovskite thin films with high vertical and lateral spatial resolutions. One of these is angle-resolved photoemission electron spectroscopy which can provide direct access to the electronic band structure of perovskites, with the aim of overcoming elusive and controversial information due to the complex data interpretation of purely optical spectroscopic techniques. This perspective looks at the information that can be gleaned from the direct measurement of the electronic band structure of single crystal perovskites and the challenges that remain to be overcame to extend this technique to heterogeneous polycrystalline metal halide perovskites.
Collapse
Affiliation(s)
- E Laine Wong
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, Milano, 20134, Italy
| | - Giulia Folpini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, Milano, 20134, Italy
| | - Yang Zhou
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, Milano, 20134, Italy
| | - Minirah Dukhi Albaqami
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Annamaria Petrozza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, Milano, 20134, Italy
| |
Collapse
|
10
|
Brown I, Sheffield M, Hewa Walpitage H, Yao Y, Li Y, Vardeny ZV. Electric Field Effects in Hybrid Perovskites Studied via Picosecond Kerr Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31696-31702. [PMID: 38857321 DOI: 10.1021/acsami.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We present time-resolved Kerr rotation (TRKR) spectra in thin films of CH3NH3PbI3 (MAPI) hybrid perovskite using a unique picosecond microscopy technique at 4 K having a spatial resolution of 2 μm and temporal resolution of 1 ps, subjected to both an in-plane applied magnetic field up to 700 mT and an electric field up to 104 V/cm. We demonstrate that the obtained TRKR dynamics and spectra are substantially inhomogeneous across the MAPI films with prominent resonances at the exciton energy and interband transition of this compound. From the obtained quantum beating response as a function of magnetic field in the Voigt configuration, we also extract the inhomogeneity of the electron and hole Lande g-values and spin coherence time, T2*. We also report the TRKR dependence on both the applied magnetic field and electric field. From the change in the quantum beating dynamics, we found that T2* substantially decreases upon the application of an electric field. At the same time, from the induced spatial TRKR changes, we show that the electric field induced effects are caused by ion migration in the MAPI films.
Collapse
Affiliation(s)
- Isaac Brown
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Matthew Sheffield
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Heshan Hewa Walpitage
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Yue Yao
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Yan Li
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Z Valy Vardeny
- Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Fabini DH, Honasoge K, Cohen A, Bette S, McCall KM, Stoumpos CC, Klenner S, Zipkat M, Hoang LP, Nuss J, Kremer RK, Kanatzidis MG, Yaffe O, Kaiser S, Lotsch BV. Noncollinear Electric Dipoles in a Polar Chiral Phase of CsSnBr 3 Perovskite. J Am Chem Soc 2024; 146:15701-15717. [PMID: 38819106 PMCID: PMC11177262 DOI: 10.1021/jacs.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Polar and chiral crystal symmetries confer a variety of potentially useful functionalities upon solids by coupling otherwise noninteracting mechanical, electronic, optical, and magnetic degrees of freedom. We describe two phases of the 3D perovskite, CsSnBr3, which emerge below 85 K due to the formation of Sn(II) lone pairs and their interaction with extant octahedral tilts. Phase II (77 K < T < 85 K, space group P21/m) exhibits ferroaxial order driven by a noncollinear pattern of lone pair-driven distortions within the plane normal to the unique octahedral tilt axis, preserving the inversion symmetry observed at higher temperatures. Phase I (T < 77 K, space group P21) additionally exhibits ferroelectric order due to distortions along the unique tilt axis, breaking both inversion and mirror symmetries. This polar and chiral phase exhibits second harmonic generation from the bulk and pronounced electrostriction and negative thermal expansion along the polar axis (Q22 ≈ 1.1 m4 C-2; αb = -7.8 × 10-5 K-1) through the onset of polarization. The structures of phases I and II were predicted by recursively following harmonic phonon instabilities to generate a tree of candidate structures and subsequently corroborated by synchrotron X-ray powder diffraction and polarized Raman and 81Br nuclear quadrupole resonance spectroscopies. Preliminary attempts to suppress unintentional hole doping to allow for ferroelectric switching are described. Together, the polar symmetry, small band gap, large spin-orbit splitting of Sn 5p orbitals, and predicted strain sensitivity of the symmetry-breaking distortions suggest bulk samples and epitaxial films of CsSnBr3 or its neighboring solid solutions as candidates for bulk Rashba effects.
Collapse
Affiliation(s)
- Douglas H. Fabini
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Kedar Honasoge
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Adi Cohen
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Sebastian Bette
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Kyle M. McCall
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Constantinos C. Stoumpos
- Department
of Materials Science and Technology, University
of Crete, Vassilika Voutes, Heraklion 70013, Greece
| | - Steffen Klenner
- Institut
für Anorganische und Analytische Chemie, Universität Münster, Münster 48149, Germany
| | - Mirjam Zipkat
- Department
of Chemistry, Ludwig-Maximilians-Universität, München 81377, Germany
| | - Le Phuong Hoang
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Jürgen Nuss
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | | | - Mercouri G. Kanatzidis
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefan Kaiser
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Department
of Chemistry, Ludwig-Maximilians-Universität, München 81377, Germany
| |
Collapse
|
12
|
Hazra V, Mandal A, Bhattacharyya S. Optoelectronic insights of lead-free layered halide perovskites. Chem Sci 2024; 15:7374-7393. [PMID: 38784758 PMCID: PMC11110173 DOI: 10.1039/d4sc01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Arnab Mandal
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
13
|
Guo L, Hu S, Gu X, Zhang R, Wang K, Yan W, Sun X. Emerging Spintronic Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301854. [PMID: 37309258 DOI: 10.1002/adma.202301854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Indexed: 06/14/2023]
Abstract
The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.
Collapse
Affiliation(s)
- Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Rui Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Wenjing Yan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG9 2RD, UK
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Ding Z, Chen Q, Jiang Y, Yuan M. Structure-Guided Approaches for Enhanced Spin-Splitting in Chiral Perovskite. JACS AU 2024; 4:1263-1277. [PMID: 38665652 PMCID: PMC11040671 DOI: 10.1021/jacsau.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024]
Abstract
Hybrid organic-inorganic perovskites with diverse lattice structures and chemical composition provide an ideal material platform for novel functionalization, including chirality transfer. Chiral perovskites combine organic and inorganic sublattices, therefore encoding the structural asymmetry into the electronic structures and giving rise to the spin-splitting effect. From a structural chemistry perspective, the magnitude of the spin-splitting effect crucially depends on the noncovalent and electrostatic interaction within the chiral perovskite, which induces the local site and long-range bulk inversion symmetry breaking. In this regard, we systematically retrospect the structure-property relationships in chiral perovskite. Insight into the rational design of chiral perovskites based on molecular configuration, dimensionality, and chemical composition along with their effects on spin-splitting manifestation is presented. Lastly, challenges in purposeful material design and further integration into chiral perovskite-based spintronic devices are outlined. With an understanding of fundamental chemistry and physics, we believe that this Perspective will propel the application of multifunctional spintronic devices.
Collapse
Affiliation(s)
- Zijin Ding
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Quanlin Chen
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuanzhi Jiang
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Mingjian Yuan
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300051, P. R. China
| |
Collapse
|
15
|
Zerhoch J, Bodnar S, Lerpinière JE, Liu S, Neumann T, Sergl B, Heindl MW, Shcherbakov A, Elghandour A, Klingeler R, Walker AB, Deschler F. Motional Narrowing Effects in the Excited State Spin Populations of Mn-Doped Hybrid Perovskites. J Phys Chem Lett 2024; 15:2851-2858. [PMID: 38442903 PMCID: PMC10945573 DOI: 10.1021/acs.jpclett.3c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Spin-orbit coupling in the electronic states of solution-processed hybrid metal halide perovskites forms complex spin-textures in the band structures and allows for optical manipulation of the excited state spin-polarizations. Here, we report that motional narrowing acts on the photoexcited spin-polarization in CH3NH3PbBr3 thin films, which are doped at percentage-level with Mn2+ ions. Using ultrafast circularly polarized broadband transient absorption spectroscopy at cryogenic temperatures, we investigate the spin population dynamics in these doped hybrid perovskites and find that spin relaxation lifetimes are increased by a factor of 3 compared to those of undoped materials. Using quantitative analysis of the photoexcitation cooling processes, we reveal increased carrier scattering rates in the doped perovskites as the fundamental mechanism driving spin-polarization-maintaining motional narrowing. Our work reports transition-metal doping as a concept to extend spin lifetimes of hybrid perovskites.
Collapse
Affiliation(s)
- Jonathan Zerhoch
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Stanislav Bodnar
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | | | - Shangpu Liu
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Timo Neumann
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, U.K.
| | - Barbara Sergl
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Markus W. Heindl
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Andrii Shcherbakov
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Ahmed Elghandour
- Kirchhoff
Institut für Physik, Universität
Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Rüdiger Klingeler
- Kirchhoff
Institut für Physik, Universität
Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | - Felix Deschler
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Wang X, Tian H, Li X, Wang F, Zhai L, Zhu X, Liu JM, Yang Y. Pressure-Induced Topological Phase Transition and Large Rashba Effect in Halide Double Perovskite. J Phys Chem Lett 2024; 15:1477-1483. [PMID: 38295292 DOI: 10.1021/acs.jpclett.3c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In general, hydrostatic pressure can suppress ferroelectric polarization and further reduce Rashba spin-splitting, considering the spin-orbit coupling effect. Here, we present the design of ferroelectric double perovskite Cs2SnSiI6, which exhibits the anomalous enhancement of Rashba spin-splitting parameters by pressure-induced ferroelectric topological order. The Rashba effect is nonlinear with the decrease in polarization under pressure and reaches a maximum at the pressure-induced Weyl semimetal (WSM) state between the transition from a normal insulator (NI) to a topological insulator (TI). Furthermore, we discover that controlling ferroelectric polarization with an electric field can also induce the topological transition with a large Rashba spin-splitting but under a lower critical pressure. These discoveries show a tunable gaint Rashba effect and pressure-induced topological phase transition for Cs2SnSiI6, which can promote future research on the interaction between the Rashba effect and topological order, and its application to new electronic and spintronic devices.
Collapse
Affiliation(s)
- Xinyu Wang
- The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Hao Tian
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xu Li
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Fengfei Wang
- The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangjun Zhai
- The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoqin Zhu
- The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Zhang Y, Du W, Liu X. Photophysics and its application in photon upconversion. NANOSCALE 2024; 16:2747-2764. [PMID: 38250819 DOI: 10.1039/d3nr05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interaction, where the energy of the emitted photons is higher than that of the incident photons. PL upconversion has promising applications in optoelectronic devices, displays, photovoltaics, imaging, diagnosis and treatment. In this review, we summarize the mechanism of PL upconversion and ultrafast PL physical processes. In particular, we highlight the advances in laser cooling, biological imaging, volumetric displays and photonics.
Collapse
Affiliation(s)
- Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Morais EA, Caturello NAMS, Lemes MA, Ferreira H, Ferreira FF, Acuña JJS, Brochsztain S, Dalpian GM, Souza JA. Rashba Spin Splitting Limiting the Application of 2D Halide Perovskites for UV-Emitting Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4261-4270. [PMID: 38217498 DOI: 10.1021/acsami.3c16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Layered lead halide perovskites have attracted much attention as promising materials for a new generation of optoelectronic devices. To make progress in applications, a full understanding of the basic properties is essential. Here, we study 2D-layered (BA)2PbX4 by using different halide anions (X = I, Br, and Cl) along with quantum confinement. The obtained cell parameter evolution, supported by experimental measurements and theoretical calculations, indicates strong lattice distortions of the metal halide octahedra, breaking the local inversion symmetry in (BA)2PbCl4, which strongly correlates with a pronounced Rashba spin-splitting effect. Optical measurements reveal strong photoluminescence quenching and a drastic reduction in the PL quantum yield in this larger band gap compound. We suggest that these optical results are closely related to the appearance of the Rashba effect due to the existence of a local electric dipole. The results obtained in ab initio calculations showed that the (BA)2PbCl4 possesses electrical polarization of 0.13 μC/cm2 and spin-splitting energy of about 40 meV. Our work establishes that local octahedra distortions induce Rashba spin splitting, which explains why obtaining UV-emitting materials with high PLQY is a big challenge.
Collapse
Affiliation(s)
- Eliane A Morais
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Naidel A M S Caturello
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Maykon A Lemes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Henrique Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Fabio F Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Jose J S Acuña
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Sergio Brochsztain
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Gustavo M Dalpian
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | - Jose A Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| |
Collapse
|
19
|
Hardhienata H, Ramdhani I, Alatas H, Faci S, Birowosuto MD. Investigating the Photovoltaic Performance in ABO 3 Structures via the Nonlinear Bond Model for an Arbitrary Incoming Light Polarization. MICROMACHINES 2023; 14:2063. [PMID: 38004920 PMCID: PMC10673416 DOI: 10.3390/mi14112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
ABO3 structures commonly known as perovskite are of high importance in advanced material science due to their interesting optical properties. Applications range from tunable band gaps, high absorption coefficients, and versatile electronic properties, making them ideal for solar cells to light-emitting diodes and even photodetectors. In this work, we present, for the first time, a nonlinear phenomenological bond model analysis of second harmonic generation (SHG) in tetragonal ABO3 with arbitrary input light polarization. We study the material symmetry and explore the strength of the nonlinear generalized third-rank tensorial elements, which can be exploited to produce a high SHG response if the incoming light polarization is correctly selected. We found that the calculated SHG intensity profile aligns well with existing experimental data. Additionally, as the incoming light polarization varies, we observed a smooth shift in the SHG intensity peak along with changes in the number of peaks. These observations confirm the results from existing rotational anisotropy SHG experiments. In addition, we show how spatial dispersion can contribute to the total SHG intensity. Our work highlights the possibility of studying relatively complex structures, such as ABO3, with minimal fitting parameters due to the power of the effective bond vector structure, enabling the introduction of an effective SHG hyperpolarizability rather than a full evaluation of the irreducible SHG tensor by group theoretical analysis. Such a simplification may well lead to a better understanding of the nonlinear properties in these classes of material and, in turn, can improve our understanding of the photovoltaic performance in ABO3 structures.
Collapse
Affiliation(s)
- Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building, Dramaga Campus of IPB, Bogor 16680, West Java, Indonesia; (I.R.); (H.A.)
| | - Indra Ramdhani
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building, Dramaga Campus of IPB, Bogor 16680, West Java, Indonesia; (I.R.); (H.A.)
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building, Dramaga Campus of IPB, Bogor 16680, West Java, Indonesia; (I.R.); (H.A.)
| | - Salim Faci
- ESYCOM, Université Gustave Eiffel, CNRS, CNAM, 292, rue Saint-Martin, 75003 Paris, France;
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland;
| |
Collapse
|
20
|
Ashoka A, Nagane S, Strkalj N, Sharma A, Roose B, Sneyd AJ, Sung J, MacManus-Driscoll JL, Stranks SD, Feldmann S, Rao A. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. NATURE MATERIALS 2023; 22:977-984. [PMID: 37308547 DOI: 10.1038/s41563-023-01550-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/06/2023] [Indexed: 06/14/2023]
Abstract
Photoinduced spin-charge interconversion in semiconductors with spin-orbit coupling could provide a route to optically addressable spintronics without the use of external magnetic fields. However, in structurally disordered polycrystalline semiconductors, which are being widely explored for device applications, the presence and role of spin-associated charge currents remains unclear. Here, using femtosecond circular-polarization-resolved pump-probe microscopy on polycrystalline halide perovskite thin films, we observe the photoinduced ultrafast formation of spin domains on the micrometre scale formed through lateral spin currents. Micrometre-scale variations in the intensity of optical second-harmonic generation and vertical piezoresponse suggest that the spin-domain formation is driven by the presence of strong local inversion symmetry breaking via structural disorder. We propose that this leads to spatially varying Rashba-like spin textures that drive spin-momentum-locked currents, leading to local spin accumulation. Ultrafast spin-domain formation in polycrystalline halide perovskite films provides an optically addressable platform for nanoscale spin-device physics.
Collapse
Affiliation(s)
- Arjun Ashoka
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Satyawan Nagane
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nives Strkalj
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Ashish Sharma
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bart Roose
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Jooyoung Sung
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | | | - Samuel D Stranks
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Simbula A, Wu L, Pitzalis F, Pau R, Lai S, Liu F, Matta S, Marongiu D, Quochi F, Saba M, Mura A, Bongiovanni G. Exciton dissociation in 2D layered metal-halide perovskites. Nat Commun 2023; 14:4125. [PMID: 37433858 DOI: 10.1038/s41467-023-39831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Layered 2D perovskites are making inroads as materials for photovoltaics and light emitting diodes, but their photophysics is still lively debated. Although their large exciton binding energies should hinder charge separation, significant evidence has been uncovered for an abundance of free carriers among optical excitations. Several explanations have been proposed, like exciton dissociation at grain boundaries or polaron formation, without clarifying yet if excitons form and then dissociate, or if the formation is prevented by competing relaxation processes. Here we address exciton stability in layered Ruddlesden-Popper PEA2PbI4 (PEA stands for phenethylammonium) both in form of thin film and single crystal, by resonant injection of cold excitons, whose dissociation is then probed with femtosecond differential transmission. We show the intrinsic nature of exciton dissociation in 2D layered perovskites, demonstrating that both 2D and 3D perovskites are free carrier semiconductors and their photophysics is described by a unique and universal framework.
Collapse
Affiliation(s)
- Angelica Simbula
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Luyan Wu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Riccardo Pau
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 09747, AG, Groningen, The Netherlands
| | - Stefano Lai
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Fang Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Selene Matta
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| |
Collapse
|
22
|
Qin J, Tang Y, Zhang J, Shen T, Karlsson M, Zhang T, Cai W, Shi L, Ni WX, Gao F. From optical pumping to electrical pumping: the threshold overestimation in metal halide perovskites. MATERIALS HORIZONS 2023; 10:1446-1453. [PMID: 36789680 DOI: 10.1039/d2mh01382g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The threshold carrier density, conventionally evaluated from optical pumping, is a key reference parameter towards electrically pumped lasers with the widely acknowledged assumption that optically excited charge carriers relax to the band edge through an ultrafast process. However, the characteristically slow carrier cooling in perovskites challenges this assumption. Here, we investigate the optical pumping of state-of-the-art bromide- and iodine-based perovskites. We find that the threshold decreases by one order of magnitude with decreasing excitation energy from 3.10 eV to 2.48 eV for methylammonium lead bromide perovskite (MAPbBr3), indicating that the low-energy photon excitation facilitates faster cooling and hence enables efficient carrier accumulation for population inversion. Our results are then interpreted due to the coupling of phonon scattering in connection with the band structure of perovskites. This effect is further verified in the two-photon pumping process, where the carriers relax to the band edge with a smaller difference in phonon momentum that speeds up the carrier cooling process. Furthermore, by extrapolating the optical pumping threshold to the band edge excitation as an analog of the electrical carrier injection to the perovskite, we obtain a critical threshold carrier density of ∼1.9 × 1017 cm-3, which is one order of magnitude lower than that estimated from the conventional approach. Our work thus highlights the feasibility of metal halide perovskites for electrically pumped lasers.
Collapse
Affiliation(s)
- Jiajun Qin
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Yang Tang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Jia Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Tangyao Shen
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Max Karlsson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Tiankai Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Weidong Cai
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Wei-Xin Ni
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| |
Collapse
|
23
|
Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations. Sci Rep 2023; 13:4446. [PMID: 36932128 PMCID: PMC10023785 DOI: 10.1038/s41598-023-31220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Two-dimensional hybrid lead iodide perovskites based on methylammonium (MA) cation and butylammonium (BA) organic spacer-such as [Formula: see text]-are one of the most explored 2D hybrid perovskites in recent years. Correlating the atomistic profile of these systems with their optoelectronic properties is a challenge for theoretical approaches. Here, we employed first-principles calculations via density functional theory to show how the cation partially canceled dipole moments through the [Formula: see text] terminal impact the structural/electronic properties of the [Formula: see text] sublattices. Even though it is known that at high temperatures, the organic cation assumes a spherical-like configuration due to the rotation of the cations inside the cage, our results discuss the correct relative orientation according to the dipole moments for ab initio simulations at 0 K, correlating well structural and electronic properties with experiments. Based on the combination of relativistic quasiparticle correction and spin-orbit coupling, we found that the MA horizontal-like configuration concerning the inorganic sublattice surface leads to the best relationship between calculated and experimental gap energy throughout n = 1, 2, 3, 4, and 5 number of layers. Conversely, the dipole moments cancellation (as in BA-MA aligned-like configuration) promotes the closing of the gap energies through an electron depletion mechanism. We found that the anisotropy [Formula: see text] isotropy optical absorption conversion (as a bulk convergence) is achieved only for the MA horizontal-like configuration, which suggests that this configuration contribution is the majority in a scenario under temperature effects.
Collapse
|
24
|
Volosniev AG, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. Spin-Electric Coupling in Lead Halide Perovskites. PHYSICAL REVIEW LETTERS 2023; 130:106901. [PMID: 36962044 DOI: 10.1103/physrevlett.130.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH_{3}NH_{3}PbBr_{3} in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k·p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.
Collapse
Affiliation(s)
- Artem G Volosniev
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Abhishek Shiva Kumar
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Dusan Lorenc
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Younes Ashourishokri
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ayan A Zhumekenov
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zhanybek Alpichshev
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
25
|
de Araujo LO, Rêgo CRC, Wenzel W, Silveira DN, Piotrowski MJ, Sabino FP, Pramudya Y, Guedes-Sobrinho D. How cation nature controls the bandgap and bulk Rashba splitting of halide perovskites. J Comput Chem 2023; 44:1395-1403. [PMID: 36805580 DOI: 10.1002/jcc.27094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Because of instability issues presented by metal halide perovskites based on methylammonium (MA), its replacement to Cs $$ \mathrm{Cs} $$ has emerged as an alternative to improve the materials' durability. However, the impact of this replacement on electronic properties, especially gap energy and bulk Rashba splitting remains unclear since electrostatic interactions from organic cations can play a crucial role. Through first-principles calculations, we investigated how organic/inorganic cations impact the electronic properties of MAPbI 3 $$ {\mathrm{MAPbI}}_3 $$ and CsPbI 3 $$ {\mathrm{CsPbI}}_3 $$ perovskites. Although at high temperatures the organic cation can assume spherical-like configurations due to its rotation into the cages, our results provide a complete electronic mechanism to show, from a chemical perspective based on ab initio calculations at 0 K $$ 0\ \mathrm{K} $$ , how the MA $$ \mathrm{MA} $$ dipoles suppression can reduce the MAPbI 3 $$ {\mathrm{MAPbI}}_3 $$ gap energy by promoting a degeneracy breaking in the electronic states from the PbI 3 $$ {\mathrm{PbI}}_3 $$ framework, while the dipole moment reinforcement is crucial to align theory ↔ $$ \leftrightarrow $$ experiment, increasing the bulk Rashba splitting through higher Pb $$ \mathrm{Pb} $$ off-centering motifs. The lack of permanent dipole moment in Cs $$ \mathrm{Cs} $$ results in CsPbI 3 $$ {\mathrm{CsPbI}}_3 $$ polymorphs with a pronounced Pb $$ \mathrm{Pb} $$ on-centering-like feature, which causes suppression in their respective bulk Rashba effect.
Collapse
Affiliation(s)
| | - Celso R C Rêgo
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - W Wenzel
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Danilo N Silveira
- Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Fernando P Sabino
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - Yohanes Pramudya
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
26
|
Yumoto G, Kanemitsu Y. Biexciton dynamics in halide perovskite nanocrystals. Phys Chem Chem Phys 2022; 24:22405-22425. [PMID: 36106456 DOI: 10.1039/d2cp02826c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead halide perovskite nanocrystals are attracting considerable interest as next-generation optoelectronic materials. Optical responses of nanocrystals are determined by excitons and exciton complexes such as trions and biexcitons. Understanding of their dynamics is indispensable for the optimal design of optoelectronic devices and the development of new functional properties. Here, we summarize the recent advances on the exciton and biexciton photophysics in lead halide perovskite nanocrystals revealed by femtosecond time-resolved spectroscopy and single-dot spectroscopy. We discuss the impact of the biexciton dynamics on controlling and improving the optical gain.
Collapse
Affiliation(s)
- Go Yumoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
27
|
Xie Y, Song R, Singh A, Jana MK, Blum V, Mitzi DB. Kinetically Controlled Structural Transitions in Layered Halide-Based Perovskites: An Approach to Modulate Spin Splitting. J Am Chem Soc 2022; 144:15223-15235. [PMID: 35951556 DOI: 10.1021/jacs.2c05574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional hybrid organic-inorganic perovskite (HOIP) semiconductors with pronounced spin splitting, mediated by strong spin-orbit coupling and inversion symmetry breaking, offer the potential for spin manipulation in future spintronic applications. However, HOIPs exhibiting significant conduction/valence band splitting are still relatively rare, given the generally observed preference for (near)centrosymmetric inorganic (especially lead-iodide-based) sublattices, and few approaches are available to control this symmetry breaking within a given HOIP. Here, we demonstrate, using (S-2-MeBA)2PbI4 (S-2-MeBA = (S)-(-)-2-methylbutylammonium) as an example, that a temperature-induced structural transition (at ∼180 K) serves to change the degree of chirality transfer to and inversion symmetry breaking within the inorganic layer, thereby enabling modulation of HOIP structural and electronic properties. The cooling rate is shown to dictate whether the structural transition occurs─i.e., slow cooling induces the transition while rapid quenching inhibits it. Ultrafast calorimetry indicates a minute-scale structural relaxation time at the transition temperature, while quenching to lower temperatures allows for effectively locking in the metastable room-temperature phase, thus enabling kinetic control over switching between distinct states with different degrees of structural distortions within the inorganic layers at these temperatures. Density functional theory further highlights that the low-temperature phase of (S-2-MeBA)2PbI4 shows more significant spin splitting relative to the room-temperature phase. Our work opens a new pathway to use kinetic control of crystal-to-crystal transitions and thermal cycling to modulate spin splitting in HOIPs for future spintronic applications, and further points to using such "sluggish" phase transitions for switching and control over other physical phenomena, particularly those relying on structural distortions and lattice symmetry.
Collapse
Affiliation(s)
- Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Akash Singh
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Manoj K Jana
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
28
|
Bianca G, Trovatello C, Zilli A, Zappia MI, Bellani S, Curreli N, Conticello I, Buha J, Piccinni M, Ghini M, Celebrano M, Finazzi M, Kriegel I, Antonatos N, Sofer Z, Bonaccorso F. Liquid-Phase Exfoliation of Bismuth Telluride Iodide (BiTeI): Structural and Optical Properties of Single-/Few-Layer Flakes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34963-34974. [PMID: 35876692 PMCID: PMC9354013 DOI: 10.1021/acsami.2c07704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).
Collapse
Affiliation(s)
- Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Trovatello
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Attilio Zilli
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marilena Isabella Zappia
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C Rende, Cosenza 87036, Italy
| | | | - Nicola Curreli
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Irene Conticello
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| | - Joka Buha
- Nanochemistry
Department, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Marco Piccinni
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Michele Ghini
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Michele Celebrano
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marco Finazzi
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ilka Kriegel
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Nikolas Antonatos
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| |
Collapse
|