1
|
Chen Y, Luo J, Ling L, Zhan Z, Liu J, Gao Z, Lam JCH, Feng C, Lei Y. In situ evolution of electrocatalysts for enhanced electrochemical nitrate reduction under realistic conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100492. [PMID: 39398413 PMCID: PMC11470436 DOI: 10.1016/j.ese.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Electrochemical nitrate reduction to ammonia (ENRA) is gaining attention for its potential in water remediation and sustainable ammonia production, offering a greener alternative to the energy-intensive Haber-Bosch process. Current research on ENRA is dedicated to enhancing ammonia selectively and productivity with sophisticated catalysts. However, the performance of ENRA and the change of catalytic activity in more complicated solutions (i.e., nitrate-polluted groundwater) are poorly understood. Here we first explored the influence of Ca2+ and bicarbonate on ENRA using commercial cathodes. We found that the catalytic activity of used Ni or Cu foam cathodes significantly outperforms their pristine ones due to the in situ evolution of new catalytic species on used cathodes during ENRA. In contrast, the nitrate conversion performance with nonactive Ti or Sn cathode is less affected by Ca2+ or bicarbonate because of their original poor activity. In addition, the coexistence of Ca2+ and bicarbonate inhibits nitrate conversion by forming scales (CaCO3) on the in situ-formed active sites. Likewise, ENRA is prone to fast performance deterioration in treating actual groundwater over continuous flow operation due to the presence of hardness ions and possible organic substances that quickly block the active sites toward nitrate reduction. Our work suggests that more work is required to ensure the long-term stability of ENRA in treating natural nitrate-polluted water bodies and to leverage the environmental relevance of ENRA in more realistic conditions.
Collapse
Affiliation(s)
- Yingkai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayu Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Ling
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Qi M, Zheng X, Tong H, Liu Y, Li D, Yan Z, Jiang D. Synergizing ruthenium oxide with bimetallic Co 2CrO 4 for highly efficient oxygen evolution reaction. J Colloid Interface Sci 2025; 677:548-556. [PMID: 39111090 DOI: 10.1016/j.jcis.2024.07.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024]
Abstract
Designing efficient and stable oxygen evolution reaction (OER) catalyst is the basis for the development of sustainable electrolytic water energy techniques. In this work, we presented a heterogeneous-structured electrocatalyst composed of bimetallic oxides-modified RuO2 nanosheets supported on nikel foam (Co2CrO4/RuO2) using a hybrid hydrothermal, ion-exchange and calcination method. The unique synergy and interfacial coupling between Co2CrO4/RuO2 heterostructures are favorable for optimizing the electronic configuration at this interface and strengthening the charge transport capacity, thus strengthening the catalytic activity of the Co2CrO4/RuO2 catalyst. The experimental data demonstrate that Cr leaching facilitates the rapid reconstruction of the catalyst into oxyhydroxides (CoOOH), which are acknowledged to be the real active species of OER. Theoretical calculations show that the Co2CrO4/RuO2 heterostructure increases the density state at the Fermi energy level and lowers the d-band center, thereby strengthening the catalytic activity. The synthesized Co2CrO4/RuO2 catalyst exhibited OER performance with an overpotential of 209 mV at 10 mA cm-2 and displayed a low Tafel slope of 78.2 mV dec-1, which outperforms most reported advanced alkaline OER catalysts. This work contributes to a new tactic for the design and development of ruthenium oxide/bimetallic oxides electrocatalysts.
Collapse
Affiliation(s)
- Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Zaoxue Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Dai Y, Chen XH, Fu HC, Zhang Q, Li T, Li NB, Luo HQ. In-situ revealed inhibition of W 2C to excessive oxidation of CoOOH for high-efficiency alkaline overall water splitting. J Colloid Interface Sci 2024; 676:425-434. [PMID: 39033677 DOI: 10.1016/j.jcis.2024.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The design of low-cost, efficient, and stable multifunctional basic catalysts to replace the high-cost noble metal catalysts remains a challenge. In this work, we report a dual-component Co-W2C catalytic system which achieves excellent properties of hydrogen evolution reaction (HER, η10 = 63 mV), oxygen evolution reaction (OER, η10 = 259 mV) and overall water splitting (η10 = 1.53 V) by adjusting the interfacial electronic structure of the material. Further density functional theory (DFT) calculations indicate that the efficient electronic modulation at the W2C/Co interface leads to the generation of favorable hydroxyl and hydrogen species energetics on the hybrid surface. The results of the in-situ Raman spectra show that W2C can suppress the excessive oxidation of the active site during the OER process, and the existence of core-shell structure also protects the W2C substrate. The stable and efficient catalytic performance of Co-W2C is attributed to the common advantages of structural and interface manipulation.
Collapse
Affiliation(s)
- Yu Dai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Tong H, Zheng X, Qi M, Li D, Zhu J, Jiang D. Synergistically coupled CoMo/Fe 2O 3 electrocatalyst for highly efficient and stable overall water splitting. J Colloid Interface Sci 2024; 676:837-846. [PMID: 39067219 DOI: 10.1016/j.jcis.2024.07.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Constructing bifunctional non-precious metal electrocatalysts with advanced industrial value and excellent electrocatalytic performance to achieve efficient overall water splitting is important but difficult. Herein, a heterogeneous electrocatalyst comprising of CoMo alloys anchored Fe2O3 nanosheets was prepared by hydrothermal and electrodeposition methods. The strongly coupled interfaces between the CoMo alloys and Fe2O3 nanosheets promote charge redistribution, which could improve electron transfer efficiency and accelerate reaction kinetics, potentially optimizing reactant adsorption energy. Further density functional theory (DFT) calculations reveal that the construction of CoMo/Fe2O3/NF heterostructured catalyst facilitates to promote interfacial charge redistribution and enhance charge transfer capacity, thus boosting the catalytic performance. Benefiting from this, the optimal CoMo/Fe2O3/NF heterostructure demonstrates a minimal overpotential of 71 mV at 10 mA cm-2 for the HER and 266 mV at 50 mA cm-2 for the OER. Remarkably, the catalyst served as a bifunctional electrode for water splitting, resulting in a cell voltage down to 1.5 V at a current density of 10 mA cm-2. This research provides an effective way for the construction of non-precious iron oxides-based bifunctional electrocatalysts using alloy/metal oxide interfacial engineering strategy.
Collapse
Affiliation(s)
- Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Zhang Y, Ma J, Wang B, Lv A, Zhang Q, Zhuo S. Aldehyde Directed In Situ Loading of Ag Nanodots Around the Open Metal Sites of MOFs for the Tandem Catalysis of Nitrate to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408602. [PMID: 39523753 DOI: 10.1002/smll.202408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both spatial arrangement and intrinsic activity of electrocatalysts with dual-active sites are widely designed to match the coupling reaction between nitrate and water, in which most of the reactive intermediates can be optimized to achieve a high yield rate of ammonia. Herein, by introducing the aldehyde group inside metal-organic frameworks (MOFs) in advance, an aldehyde-induced method is achieved to direct the in situ nucleation of Ag nanodots depending on the mesopores of MOFs via a simple silver mirror reaction. The key point here is that the spatial arrangement between the aldehyde group and open metal sites is fixed end to end, which makes the aldehyde group a built-in redox-active site to drive the in situ nucleation of Ag nanodots next to the open metal sites of MOFs. Accordingly, by varying the metal sites of MOFs, a group of M-MOFs@Ag (M = Fe, Co, Ni, Cu, etc.) hybrids with dual active sites are acquired. Taking Ni-MOFs@Ag as an example, the interaction between Ni2+ and Ag sites makes it available for the tandem catalysis of nitrate-to-ammonia, in which the H· and NO2 - generated on the open Ni2+ sites and Ag nanodots, respectively, can migrate to each other to evolve into ammonia.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Anqi Lv
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
6
|
Zhang J, Huang L, Tjiu WW, Wu C, Zhang M, Bin Dolmanan S, Wang S, Wang M, Xi S, Aabdin Z, Lum Y. Evidence for Distinct Active Sites on Oxide-Derived Cu for Electrochemical Nitrate Reduction. J Am Chem Soc 2024; 146:30708-30714. [PMID: 39440633 DOI: 10.1021/jacs.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cu is a promising catalyst for electrochemical nitrate (NO3-) reduction. However, desorption of the nitrite (NO2-) intermediate can occur, leading to lowered ammonia productivity and Faradaic efficiency. Here, we discovered that this does not occur with oxide-derived Cu due to the presence of at least two distinct types of cooperative active sites: one for NO3- → NO2- and another for NO2- → NH3. As a result, oxide-derived Cu exhibits enhanced ammonia productivity with a mixed NO3-/NO2- feed relative to pure NO3- or NO2-. In contrast, this was not observed with a standard Cu sample, implying the presence of only a single type of active site. Our dual-site hypothesis was supported by attenuated total reflection surface enhanced infrared absorption spectroscopy and isotopic labeling experiments involving co-reduction of 15NO3-/14NO2-. We also successfully simulated our experimental results using a mathematical model involving two different adsorption sites. These findings motivate the need for further study and rational design of such active sites.
Collapse
Affiliation(s)
- Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Linrong Huang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Surani Bin Dolmanan
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sibo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Zainul Aabdin
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore 117580, Republic of Singapore
| |
Collapse
|
7
|
Li J, Yu W, Yuan H, Wang Y, Chen Y, Jiang D, Wu T, Song K, Jiang X, Liu H, Hu R, Huang M, Zhou W. Lattice hydrogen transfer in titanium hydride enhances electrocatalytic nitrate to ammonia conversion. Nat Commun 2024; 15:9499. [PMID: 39489774 PMCID: PMC11532501 DOI: 10.1038/s41467-024-53833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
The electrocatalytic reduction of nitrate toward ammonia under mild conditions addresses many challenges of the Haber-Bosch reaction, providing a sustainable method for ammonia synthesis, yet it is limited by sluggish reduction kinetics and multiple competing reactions. Here, the titanium hydride electrocatalyst is synthesized by electrochemical hydrogenation reconstruction of titanium fiber paper, which achieves a large ammonia yield rate of 83.64 mg h-1 cm-2 and a high Faradaic efficiency of 99.11% with an ampere-level current density of 1.05 A cm-2 at -0.7 V versus the reversible hydrogen electrode. Electrochemical evaluation and kinetic studies indicate that the lattice hydrogen transfer from titanium hydride promotes the electrocatalytic performance of nitrate reduction reaction and the reversible equilibrium reaction between lattice hydrogen and activate hydrogen not only improves the electrocatalytic activity of nitrate reduction reaction but also demonstrates notable catalytic stability. These finding offers a universal design principle for metal hydrides as catalysts for effectively electrochemical ammonia production, highlighting their potential for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Jiawei Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Wanqiang Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Haifeng Yuan
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Yujie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Di Jiang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan, Shandong, P. R. China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, P. R. China
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, P. R. China.
| | - Man Huang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China.
| |
Collapse
|
8
|
Xiong Y, Wang Y, Sun M, Chen J, Zhou J, Hao F, Liu F, Lu P, Meng X, Guo L, Liu Y, Xi S, Zhang Q, Huang B, Fan Z. Regulating the Electrochemical Nitrate Reduction Performance with Controllable Distribution of Unconventional Phase Copper on Alloy Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407889. [PMID: 39240011 DOI: 10.1002/adma.202407889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is emerging as a promising strategy for nitrate removal and ammonia (NH3) production using renewable electricity. Although great progresses have been achieved, the crystal phase effect of electrocatalysts on NO3RR remains rarely explored. Here, the epitaxial growth of unconventional 2H Cu on hexagonal close-packed (hcp) IrNi template, resulting in the formation of three IrNiCu@Cu nanostructures, is reported. IrNiCu@Cu-20 shows superior catalytic performance, with NH3 Faradaic efficiency (FE) of 86% at -0.1 (vs reversible hydrogen electrode [RHE]) and NH3 yield rate of 687.3 mmol gCu -1 h-1, far better than common face-centered cubic Cu. In sharp contrast, IrNiCu@Cu-30 and IrNiCu@Cu-50 covered by hcp Cu shell display high selectivity toward nitrite (NO2 -), with NO2 - FE above 60% at 0.1 (vs RHE). Theoretical calculations have demonstrated that the IrNiCu@Cu-20 has the optimal electronic structures for NO3RR due to the highest d-band center and strongest reaction trend with the lowest energy barriers. The high electroactivity of IrNiCu@Cu-20 originates from the abundant low coordination of Cu sites on the surface, which guarantees the fast electron transfer to accelerate the intermediate conversions. This work provides a feasible tactic to regulate the product distribution of NO3RR by crystal phase engineering of electrocatalysts.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Chen
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yuqian Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
9
|
Yan Q, Zhao R, Yu L, Zhao Z, Liu L, Xi J. Enhancing Compatibility of Two-Step Tandem Catalytic Nitrate Reduction to Ammonia Over P-Cu/Co(OH) 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408680. [PMID: 39258370 DOI: 10.1002/adma.202408680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Qiuyu Yan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rundong Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lihong Yu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyu Xi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
10
|
Suh J, Choi H, Kong Y, Oh J. Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407250. [PMID: 39297330 PMCID: PMC11558078 DOI: 10.1002/advs.202407250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Indexed: 11/14/2024]
Abstract
Electrochemical conversion of waste nitrate (NO3 -) to ammonia (NH3) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH3 Faradaic efficiency of 91.2% at low potential (-0.3 V vs. RHE) due to synergism between the heterogenous active sites. Electrochemical analyses reveal that Cu in Co─Cu SCC preferentially catalyzes the NO3 --to-NO2 - pathway, whereupon Co catalyzes the NO2 --to-NH3 pathway. This tandem electroreduction bypasses the rate-determining steps (RDSs) for Co and Cu to lower the reaction energy barrier and surpass scaling relationship limitations. The electrocatalytic performance is amplified by the subnanoscale catalyst to increase the partial current density of NH3 by 2.3 and 5.4 times compared to those of individual Co, Cu single-atom/cluster catalysts (Co SCC, Cu SCC), respectively. This Co─Cu SCC is operated stably for 32 h in a long-term bipolar membrane (BPM)-based membrane electrode assembly (MEA) system for high-concentration NH3 synthesis to produce over 1 m NH3 for conversion into high-purity NH4Cl at 2.1 g day-1.
Collapse
Affiliation(s)
- Jungwon Suh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yujin Kong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jihun Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
11
|
Fan Z, Cao C, Yang X, Yuan W, Qin F, Hu Y, Sun X, Liu G, Tian Y, Xu L. Interfacial Electronic Interactions Promoted Activation for Nitrate Electroreduction to Ammonia over Ag-Modified Co 3O 4. Angew Chem Int Ed Engl 2024; 63:e202410356. [PMID: 39107253 DOI: 10.1002/anie.202410356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86 %, ammonia Faradaic efficiency of 96.11 %, and ammonia selectivity of ~100 %. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3 -) as well as intermediates (NO2 - and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3 - reduction to NO2 - predominantly occurs at Ag sites while NO2 - tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.
Collapse
Affiliation(s)
- Zhenhai Fan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingchuan Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenchuang Yuan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feiyang Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yating Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaobo Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guoji Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yun Tian
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Li Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
13
|
Liu J, Li Y, Jia X, Shen J, Zhu Y, Li C. Enrichment of Active Hydrogen at Amorphous CoO/Cu 2O Heterojunction Interfaces Enhances Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408279. [PMID: 39444058 DOI: 10.1002/smll.202408279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The reduction of nitrate into valuable ammonia via electrocatalysis offers a green and sustainable synthetic pathway for ammonia. The electrocatalytic nitrate reduction reaction (NO3RR) encompasses two crucial reaction steps: nitrate deoxygenation and nitrite hydrogenation. Notably, the nitrite hydrogenation reaction is regarded as the rate-determining step of the process. Herein, the amorphous CoO support introduced for the construction of the a-CoO/Cu2O tandem catalyst provides sufficient active hydrogen and synergistically catalyzes the NO3RR. The a-CoO/Cu2O catalyst showed excellent performance with a maximum NH3 Faradaic efficiency of 95.72% and a maximum yield rate of 0.96 mmol h-1 mgcat -1 at -0.4 V. In the flow cell, the maximum NH3 yield rate of 12.14 mmol h-1 mgcat -1 is achieved at -800 mA. The high NO3RR activity of a-CoO/Cu2O is attributed to the synergistic cascade effect of amorphous CoO and Cu2O at the heterojunction interface, where Cu2O serves as the adsorption site for NO3 -, while the accelerated active hydrogen generation of amorphous CoO promotes the nitrite hydrogenation reaction. This work provides a strategy for designing multi-site cascade catalysts centered on amorphous structures to achieve efficient NO3RR.
Collapse
Affiliation(s)
- Jiahao Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yufeng Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaojie Jia
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianhua Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
15
|
Zhou J, Zhao J, Liu J, Song D, Xu W, Yang A, Li J, Wang N. Fine tuning dual active sites in modulating cascade electrocatalytic nitrate reduction over covalent organic framework. J Colloid Interface Sci 2024; 672:512-519. [PMID: 38852353 DOI: 10.1016/j.jcis.2024.05.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Conversion of NO3- to NH3 proceeds stepwise in natural system under two different enzymes involving intermediate NO2-. Artificial electro-driven NO3- reduction also faces the obstacle of low faradaic efficiency due to insufficient utilization of this intermediate. Herein, we demonstrate a bimetallic COF-based electrocatalyst for the cascade catalysis of NO3--to-NO2--to-NH3 for the first time. TpBpy-Cu2Co4 exhibits a significantly improved performance, with an enhancement factor of 1.4-2 compared to monometallic TpBpy-M. The NH3 yield rate achieves 25.6 mg h-1 mgcat.-1 at -0.55 V vs RHE over TpBpy-Cu2Co4, together with excellent faradaic efficiency (93.4 %). This achievement demonstrates cascade catalysis between Co and Cu units, and their distinct roles are investigated through electrochemical experiments and theory calculations. In electrocatalytic process, Cu site facilities *NO3-to-*NO3H step, while the Co site significantly decreases the energy barrier of *NHOH-to-*NH. The present work provides a valuable inspiration in designing efficient catalysts for cascade reaction.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiani Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Anjin Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
16
|
Zhang K, Li B, Guo F, Graham N, He W, Yu W. Unveiling the Dual Role of Oxophilic Cr 4+ in Cr-Cu 2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia. Angew Chem Int Ed Engl 2024:e202411796. [PMID: 39394644 DOI: 10.1002/anie.202411796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/13/2024]
Abstract
Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3 -) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+-O-Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+-O-Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+-O-Cu+ from Cr4+-O-Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+-O-Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fengchen Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street, Changchun, 130022, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
17
|
Cechanaviciute IA, Kumari B, Alfes LM, Andronescu C, Schuhmann W. Gas Diffusion Electrodes for Electrocatalytic Oxidation of Gaseous Ammonia: Stepping Over the Nitrogen Energy Canyon. Angew Chem Int Ed Engl 2024; 63:e202404348. [PMID: 38923429 DOI: 10.1002/anie.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
As ammonia continues to gain more and more interest as a promising hydrogen carrier compound, so does the electrochemical ammonia oxidation reaction (AmOR). To avoid the liberation of H2 in a reverse Haber-Bosch reaction under release of the energetically more favorable N2, we propose the oxidation of ammonia to value-added nitrite (NO2 -), which is usually obtained during the Ostwald process. We investigated the anodic oxidation of gaseous ammonia directly supplied to a gas diffusion electrode (GDE) using a variety of compositionally different multi-metal catalysts coated on Ni foam under the simultaneous formation of H2 at the cathode. This will double the amount of H2 per ammonia molecule while applying a lower overpotential than that required for water electrolysis (1.4-1.8 V vs. RHE at 50 mA ⋅ cm-2). A selectivity study demonstrated that some of the catalyst compositions were able to produce significant amounts of NO2 -, and further investigations using the most promising catalyst composition Nif_AlCoCrCuFe integrated within a GDE demonstrated up to 88 % Faradaic efficiency for NO2 - at the anode coupled to close to 100 % Faradaic efficiency for the cathodic H2 production.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Bhawana Kumari
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Lars M Alfes
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
18
|
Liu XB, Zhao R, Xu MM, Wei SX, Cheng XF, He JH. Conversion of Nitrate to Ammonia by Amidinothiourea-Coordinated Metal Molecular Electrocatalysts with d-π Conjugation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365186 DOI: 10.1021/acsami.4c11747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The electrochemical reduction of nitrate to ammonia (NO3RR) provides a desired alternative of the traditional Haber-Bosch route for ammonia production, igniting a research boom in the development of electrocatalysts with high activity. Among them, molecular electrocatalysts hold considerable promise for the NO3RR, suppressing the competing hydrogen evolution reaction. However, the complicated synthesis procedure, usage of environmentally unfriendly organic solvents, and poor stability of Cu-based molecular electrocatalysts greatly limit their employment in NO3RR, and the development of desired Cu-based molecular catalysts remains challenging. Herein, a simple nonorganic solvent involving a one-step strategy was proposed to synthesize d-π-conjugated molecular electrocatalysts metal-amidinothiourea (M-ATU). Cu-ATU is composed of Cu coordinated with two S and two N atoms, whereas Ni-ATU is formed by Ni with four N atoms from two ATU ligands. Remarkably, Cu-ATU with a Cu-N2S2 coordination configuration exhibits superior NO3RR activity with a NH3 yield rate of 159.8 mg h-1 mgcat-1 (-1.54 V) and Faradaic efficiency of 91.7% (-1.34 V), outperforming previously reported molecular catalysts. Compared to Ni-ATU, Cu-ATU transfers more electrons to the *NO intermediate, effectively breaking the strong sp2 hybridization system and weakening the energy of N═O bonds. The increase in free energy of *NO reduced the energy barriers of the rate-determining step, facilitating the further hydrogenation process over Cu-ATU. Our work opened up a new horizon for exploring molecular electrocatalysts for nitrate activation and paved a way for the in-depth understanding of catalytic behaviors, aligning more closely with industrial demands.
Collapse
Affiliation(s)
- Xue-Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Rui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Min-Min Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shang-Xiong Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Feng Cheng
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223000, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
19
|
Yang C, Tang Y, Yang Q, Wang B, Liu X, Li Y, Yang W, Zhao K, Wang G, Wang Z, Yu F. Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136036. [PMID: 39366050 DOI: 10.1016/j.jhazmat.2024.136036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Reducing nitrate (NO3-) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH3-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi0.75-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi0.75-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO3RR). The CuNi0.75-MOF/NF catalyst exhibited excellent electrocatalytic NO3RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH3 yield of 51.78 mg h-1 cm-2. The 15N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO3RR was the NO3- in the electrolyte. The reaction pathway for the electrocatalytic NO3RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi0.75-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO3RR.
Collapse
Affiliation(s)
- Chenxia Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Ying Tang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Qian Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Bo Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xianghao Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yuxiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Weixia Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Carbon Neutralization and Environmental Catalytic Technology Laboratory (CN&ECT Lab), Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China
| | - Kunxuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zongyuan Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Carbon Neutralization and Environmental Catalytic Technology Laboratory (CN&ECT Lab), Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
20
|
Zhang J, Quast T, Eid B, Chen YT, Zerdoumi R, Dieckhöfer S, Junqueira JRC, Seisel S, Schuhmann W. In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia. Nat Commun 2024; 15:8583. [PMID: 39362855 PMCID: PMC11450097 DOI: 10.1038/s41467-024-52780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The electroreduction of nitrate offers a promising, sustainable, and decentralized route to generate valuable ammonia. However, a key challenge in the nitrate reduction reaction is the energy efficiency of the reaction, which requires both a high ammonia yield rate and a high Faradaic efficiency of ammonia at a low working potential (≥-0.2 V versus reversible hydrogen electrode). We propose a bimetallic Co-B/Ru12 electrocatalyst which utilizes complementary effects of Co-B and Ru to modulate the quantity of adsorbed hydrogen and to favor the specific hydrogenation for initiating nitrate reduction reaction at a low overpotential. This effect enables the catalyst to achieve a Faradaic efficiency for ammonia of 90.4 ± 9.2% and a remarkable half-cell energy efficiency of 40.9 ± 4% at 0 V versus reversible hydrogen electrode. The in-situ electrochemical reconstruction of the catalyst contributes to boosting the ammonia yield rate to a high level of 15.0 ± 0.7 mg h-1 cm-2 at -0.2 V versus reversible hydrogen electrode. More importantly, by employing single-entity electrochemistry coupled with identical location transmission electron microscopy, we gain systematic insights into the correlation between the increase in the catalyst's active sites and its structural transformations during the nitrate reduction reaction.
Collapse
Affiliation(s)
- Jian Zhang
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Bashir Eid
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Yen-Ting Chen
- Center for Solvation Science (ZEMOS), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ridha Zerdoumi
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
21
|
Wu G, Zhang W, Yu R, Yang Y, Jiang J, Sun M, Du A, He W, Dai L, Mao X, Chen Z, Qin Q. p-d Orbital Hybridization in Ag-based Electrocatalysts for Enhanced Nitrate-to-Ammonia Conversion. Angew Chem Int Ed Engl 2024; 63:e202410251. [PMID: 38973470 DOI: 10.1002/anie.202410251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5±1.85 % for NH3 at -0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3±14.1 mg h-1 mgcat. -1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm-2 with an NH3 yield of 78.6 mg h-1 cm-2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p-d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L-1, high power density of 18.1 mW cm-2, and continuous NH3 production.
Collapse
Affiliation(s)
- Guanzheng Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Rui Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yidong Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jiadi Jiang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mengmiao Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qing Qin
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
22
|
Gnanasekar P, Peramaiah K, Zhang H, Alsayoud IG, Subbiah AS, Babics M, Ng TK, Gan Q, De Wolf S, Huang KW, Ooi BS. Solar-Powered Gram-Scale Ammonia Production from Nitrate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404249. [PMID: 38953366 DOI: 10.1002/smll.202404249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.
Collapse
Affiliation(s)
- Paulraj Gnanasekar
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Karthik Peramaiah
- KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huafan Zhang
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ibrahim G Alsayoud
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anand S Subbiah
- KAUST Photovoltaics Laboratory, KAUST Solar Center, Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maxime Babics
- KAUST Photovoltaics Laboratory, KAUST Solar Center, Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiaoqiang Gan
- Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefaan De Wolf
- KAUST Photovoltaics Laboratory, KAUST Solar Center, Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Geng Z, Feng Z, Kong H, Su J, Zhang K, Li J, Sun X, Liu X, Ge L, Gai P, Li F. Ruthenium Anchored Laser-Induced Graphene as Binder-Free and Free-Standing Electrode for Selective Electrosynthesis of Ammonia from Nitrate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406843. [PMID: 39136290 PMCID: PMC11497038 DOI: 10.1002/advs.202406843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Indexed: 10/25/2024]
Abstract
Developing effective electrocatalysts for the nitrate reduction reaction (NO3RR) is a promising alternative to conventional industrial ammonia (NH3) synthesis. Herein, starting from a flexible laser-induced graphene (LIG) film with hierarchical and interconnected macroporous architecture, a binder-free and free-standing Ru-modified LIG electrode (Ru-LIG) is fabricated for electrocatalytic NO3RR via a facile electrodeposition method. The relationship between the laser-scribing parameters and the NO3RR performance of Ru-LIG electrodes is studied in-depth. At -0.59 VRHE, the Ru-LIG electrode exhibited the optimal and stable NO3RR performance (NH3 yield rate of 655.9 µg cm-2 h-1 with NH3 Faradaic efficiency of up to 93.7%) under a laser defocus setting of +2 mm and an applied laser power of 4.8 W, outperforming most of the reported NO3RR electrodes operated under similar conditions. The optimized laser-scribing parameters promoted the surface properties of LIG with increased graphitization degree and decreased charge-transfer resistance, leading to synergistically improved Ru electrodeposition with more exposed NO3RR active sites. This work not only provides a new insight to enhance the electrocatalytic NO3RR performance of LIG-based electrodes via the coordination with metal electrocatalysts as well as identification of the critical laser-scribing parameters but also will inspire the rational design of future advanced laser-induced electrocatalysts for NO3RR.
Collapse
Affiliation(s)
- Zekun Geng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Zhiliang Feng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Haoran Kong
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaqi Su
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Kaiyan Zhang
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaxin Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Lei Ge
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Feng Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
24
|
Wang C, Liu Z, Peng Q, Xing D, Hu T, Du F, Li C, Ma R, Yang H, Guo C. Bimetallic Cu 11Ag 3 Nanotips for Ultrahigh Yield Rate of Nitrate-to-Ammonium. Angew Chem Int Ed Engl 2024:e202415259. [PMID: 39354328 DOI: 10.1002/anie.202415259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Electrochemical reduction of nitrate to ammonia (NRA) offers a sustainable approach for NH3 production and NO3 - removal but suffers from low NH3 yield rate (<1.20 mmol h-1 cm-2). We present bimetallic Cu11Ag3 nanotips with tailored local environment, which achieve an ultrahigh NH3 yield rate of 2.36 mmol h-1 cm-2 at a low applied potential of -0.33 V vs. RHE, a high Faradaic efficiency (FE) of 98.8 %, and long-term operation stability at 1800 mg-N L-1 NO3 -, outperforming most of the recently reported catalysts. At a NO3 - concentration as low as 15 mg-N L-1, it still delivers a high FE of 86.9 % and an NH3 selectivity of 93.8 %. Finite-element method and density functional theory calculations reveal that the Cu11Ag3 exhibits reduced adsorption energy barrier of *N intermediates, favorable water dissociation for *H generation and high energy barrier for H2 formation, while its tip-enhanced enrichment promoting NO3 - accumulation.
Collapse
Affiliation(s)
- Changhong Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Zhengyang Liu
- Shanghai Applied Radiation Institute, Shanghai University, 200444, Shanghai, P. R. China
| | - Quanxiao Peng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Dandan Xing
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Tao Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Feng Du
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China
| |
Collapse
|
25
|
Gao J, Ma Q, Wang Z, Rittmann BE, Zhang W. Direct electrosynthesis and separation of ammonia and chlorine from waste streams via a stacked membrane-free electrolyzer. Nat Commun 2024; 15:8455. [PMID: 39349480 PMCID: PMC11443043 DOI: 10.1038/s41467-024-52830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
Electrosynthesis, a viable path to decarbonize the chemical industry, has been harnessed to generate valuable chemicals under ambient conditions. Here, we present a membrane-free flow electrolyzer for paired electrocatalytic upcycling of nitrate (NO3-) and chloride (Cl-) to ammonia (NH3) and chlorine (Cl2) gases by utilizing waste streams as substitutes for traditional electrolytes. The electrolyzer concurrently couples electrosynthesis and gaseous-product separation, which minimizes the undesired redox reaction between NH3 and Cl2 and thus prevents products loss. Using a three-stacked-modules electrolyzer system, we efficiently processed a reverse osmosis retentate waste stream. This yielded high concentrations of (NH4)2SO4 (83.8 mM) and NaClO (243.4 mM) at an electrical cost of 7.1 kWh per kilogram of solid products, while residual NH3/NH4+ (0.3 mM), NO2- (0.2 mM), and Cl2/HClO/ClO- (0.1 mM) pollutants in the waste stream could meet the wastewater discharge regulations for nitrogen- and chlorine-species. This study underscores the value of pairing appropriate half-reactions, utilizing waste streams to replace traditional electrolytes, and merging product synthesis with separation to refine electrosynthesis platforms.
Collapse
Affiliation(s)
- Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | - Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, US
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, US.
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, NJ, US.
| |
Collapse
|
26
|
Cheng M, Wang S, Dai Z, Xia J, Zhang B, Feng P, Zhu Y, Zhang Y, Zhang G. Rectifying Heterointerface Facilitated C-N Coupling Dynamics Enables Efficient Urea Electrosynthesis Under Ultralow Potentials. Angew Chem Int Ed Engl 2024:e202413534. [PMID: 39319367 DOI: 10.1002/anie.202413534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Electrocatalytic C-N coupling for urea synthesis from carbon dioxide (CO2) and nitrate (NO3 -) offers a sustainable alternative to the traditional Bosch-Meiser method. However, the complexity of intermediates in co-reduction hampers simultaneous improvement in urea yield and Faradaic efficiency (FE). Herein, we developed a Cu/Cu2O Mott-Schottky catalyst with nanoscale rectifying heterointerfaces through precise controllable in situ electroreduction of Cu2O nanowires, achieving notable FE (32.6-47.0 %) and substantial yields (6.08-30.4 μmol h-1 cm-2) across a broad range of ultralow applied potentials (0 to -0.3 V vs. RHE). Operando synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR) confirmed the formation of *CO intermediates and C-N bonds, subsequently density functional theory (DFT) calculations deciphered that the Cu/Cu2O rectifying heterointerface modulated *CO adsorption, significantly enhancing subsequent C-N coupling dynamics between *CO and *NOH intermediates. This work not only provides a groundbreaking and advanced pathway for C-N coupling, but also offers deep insights into copper-based heterointerface catalysts for urea synthesis.
Collapse
Affiliation(s)
- Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Shao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Zechuan Dai
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Bocheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Pingyi Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China
| |
Collapse
|
27
|
Han C, Sun L, Han S, Liu B. Stabilizing Hydrogen Radicals in Two-Dimensional Cobalt-Copper Mesoporous Nanoplates for Complete Nitrate Reduction Electrocatalysis to Ammonia. Angew Chem Int Ed Engl 2024:e202416910. [PMID: 39319605 DOI: 10.1002/anie.202416910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
Ambient electrochemical reduction of waste nitrate (NO3 -) represents an alternative green route for sustainable ammonia (NH3) electrosynthesis in water. Despites some encouraged achievements, sluggish eight electron and nine proton reduction routes that involve multi-step hydrogenation pathways have severely hindered their NH3 Faradaic efficiency (FENH3) and yield rate. Herein, we develop a robust two-dimensional mesoporous cobalt-copper (meso-CoCu) nanoplate electrocatalyst that delivers excellent performance of complete NO3 - reduction reaction (NO3RR), including superior FENH3 of 98.8 %, high NH3 yield rate of 3.39 mol h-1 g-1 and energy efficiency of 49.8 %, and good cycling stability. Mechanism investigations unveil that active hydrogen (*H) radicals produced from water splitting on Co sites spillover to adjacent Cu sites and further stabilize within confined mesopores, which kinetically promote its coupling hydrogenation reactions of nitrogen intermediates and thus facilitate complete NO3RR for favorable NH3 electrosynthesis. Moreover, meso-CoCu nanoplates perform well as a bifunctional electrocatalyst in the two-electrode coupling system that concurrently synthesizes NH3 from NO3 - at cathode and 2,5-furanedicarboxylic acid from 5-hydroxymethylfurfural at anode. This work in stabilizing *H radicals in mesoporous microenvironment provides some insights applied to various hydrogenation reactions for selective electrosynthesis of high value-added chemicals in water.
Collapse
Affiliation(s)
- Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
28
|
Feng Z, He Y, Cui Y, Qu Y, Ding G, Chen X, Sui C, Wei Q, Wang Z, Jiang Q. Efficient Tandem Electrocatalytic Nitrate Reduction to Ammonia on Bimodal Nanoporous Ag/Ag-Co across Broad Nitrate Concentrations. NANO LETTERS 2024; 24:11929-11936. [PMID: 39264715 DOI: 10.1021/acs.nanolett.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.
Collapse
Affiliation(s)
- Zixuan Feng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuexuan He
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuhuan Cui
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xue Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunyu Sui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qianling Wei
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
29
|
Zhao H, Duan Y, Cheng X, Fan C, Wang YQ. Fe 2O 3/ZnO heterojunction for efficient electrochemical nitrate reduction to ammonia. Dalton Trans 2024; 53:15674-15680. [PMID: 39248282 DOI: 10.1039/d4dt01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Electrochemical nitrate reduction to ammonia (ENO3RR) has attracted great attention owing to its characteristics of treating wastewater while producing high value-added ammonia. In this study, we successfully prepared a heterojunction electrocatalyst Fe2O3/ZnO consisting of Fe2O3 nanosheets and ZnO nanoparticles, where the construction of the Fe2O3/ZnO heterojunction not only increased the exposure of the active sites of the catalyst, accelerated the interfacial electron transfer, and improved the conductivity of the catalyst but also optimized its overall electronic structure. Thus, Fe2O3/ZnO demonstrated a high Faraday efficiency of 97.4% and an ammonia yield of 6327.2 μg h-1 cm-2 at -1.0 V (vs. RHE) in 0.1 M KNO3 and 0.1 M PBS. DFT calculations also confirmed that the constructed Fe2O3/ZnO heterojunction effectively decreased the reaction energy barrier of *NO → *NHO and accelerated the reaction kinetics, which is favourable for ENO3RR. This study provides a new and facile design strategy of catalysts for electrochemical nitrate reduction to ammonia.
Collapse
Affiliation(s)
- Huilin Zhao
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Yun Duan
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Xuetao Cheng
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Chao Fan
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| |
Collapse
|
30
|
Song X, Ma X, Chen T, Xu L, Feng J, Wu L, Jia S, Zhang L, Tan X, Wang R, Chen C, Ma J, Zhu Q, Kang X, Sun X, Han B. Urea Synthesis via Coelectrolysis of CO 2 and Nitrate over Heterostructured Cu-Bi Catalysts. J Am Chem Soc 2024; 146:25813-25823. [PMID: 39236157 DOI: 10.1021/jacs.4c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Electrocatalytic coupling of CO2 and NO3- to urea is a promising way to mitigate greenhouse gas emissions, reduce waste from industrial processes, and store renewable energy. However, the poor selectivity and activity limit its application due to the multistep process involving diverse reactants and reactions. Herein, we report the first work to design heterostructured Cu-Bi bimetallic catalysts for urea electrosynthesis. A high urea Faradaic efficiency (FE) of 23.5% with a production rate of 2180.3 μg h-1 mgcat-1 was achieved in H-cells, which surpassed most reported electrocatalysts in the literature. Moreover, the catalyst had a remarkable recycling stability. Experiments and density functional theory calculations demonstrated that introduction of moderate Bi induced the formation of the Bi-Cu/O-Bi/Cu2O heterostructure with abundant phase boundaries, which are beneficial for NO3-, CO2, and H2O activation and enhance C-N coupling and promote *HONCON intermediate formation. Moreover, favorable *HNCONH2 protonation and urea desorption processes were also validated, further explaining the reason for high activity and selectivity toward urea.
Collapse
Affiliation(s)
- Xinning Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Chen
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruhan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
31
|
Fang Y, Li M, Gao Y, Wen Y, Shan B. Static Organic p-n Junctions in Photoelectrodes for Solar Ammonia Production with 86 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2024:e202415729. [PMID: 39294096 DOI: 10.1002/anie.202415729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
For photoelectrocatalytic cells, a limitation exists in finding appropriate photoelectrode configurations that couple efficient extraction of high-energy electrons from absorbed photons and selective catalysis. Here we report an organic p-n junction approach to fabricate molecular photoelectrodes for conversion of solar energy and nitrate into valuable ammonia product. Solar irradiation of the photoelectrode generates charge-separated states with electrons and holes spatially separated at the n-type and p-type components, as revealed by surface photovoltage mapping, at a quantum yield of 90 %. The high-flux photogenerated electrons are rapidly transferred to the catalyst for solar ammonia production from nitrate reduction at an external quantum efficiency (EQE) and an internal quantum efficiency (IQE) of 57 % and 86 %, respectively. Time-resolved spectroscopic studies reveal that the large IQE originates from the combined high efficiencies for photoelectron generation, catalyst activation and dark catalysis. In a flow-cell setup coupled with a silicon solar cell, the photoelectrode without bias generates photocurrent of 57 mA cm-2 and ammonia at an EQE of 52 %.
Collapse
Affiliation(s)
- Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yingke Wen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Hangzhou, 310058, China
| |
Collapse
|
32
|
Hong F, Su X, Fang Y, He X, Shan B. Manipulating Photoconduction in Supramolecular Networks for Solar-Driven Nitrate Conversion to Ammonia and Oxygen. J Am Chem Soc 2024; 146:25200-25210. [PMID: 39222384 DOI: 10.1021/jacs.4c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
For photoelectrodes to be used in practical catalytic applications, challenges exist in achieving the efficient production and transport of photogenerated charge-separated states. Analogous concepts in traditional inorganic photoelectrodes can be applied to their organic-polymer counterparts with improved charge-separation efficiencies. In this work, we develop photoconductive organic networks to form a high-performance photoelectrode for NO3- reduction to NH3. In the integrated network, interfaces between the organic electron-donating photoconductor and electron-accepting catalyst can generate charge carriers efficiently upon illumination, leading to enhanced charge separation for photoelectrocatalysis. The photoelectrode network is capable of converting NO3- to NH3 at an external quantum efficiency of 13%. By coupling with a BiVO4 photoanode in tandem, the system reduces NO3- to NH3 and oxidizes H2O to O2 simultaneously at Faradaic efficiencies of 95-98% with sustained photocurrents and production yields. Investigation of the photoconductive network by steady-state/time-resolved spectroscopies reveals the efficient generation and transport of free charge carriers in the photoelectrode, providing a basis for high photoelectrocatalytic performances.
Collapse
Affiliation(s)
- Feiyang Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinhao Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinjia He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
33
|
Guo X, Yu J, Ren S, Gao RT, Wu L, Wang L. Controlled Defective Engineering on CuIr Catalyst Promotes Nitrate Selective Reduction to Ammonia. ACS NANO 2024; 18:24252-24261. [PMID: 39169609 DOI: 10.1021/acsnano.4c05772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3-RR) is a promising low-carbon and environmentally friendly approach for the production of ammonia (NH3). Herein, we develop a high-temperature quenched copper (Cu) catalyst with the aim of inducing nonequilibrium phase transformation, revealing the multiple defects (distortion, dislocations, vacancies, etc.) presented in Cu, which lead to low overpotential for NO3-RR and high efficiency for NH3 production. Further loading a low content of iridium (Ir) species on the Cu surface improves the reactivity and ammonia selectivity. The resultant CuIr electrode exhibits a Faradaic efficiency of 93% and a record yield of 6.01 mmol h-1 cm-2 at -0.22 VRHE exceeding those of state-of-the-art NO3-RR catalysts. Detailed investigations have demonstrated that the synergistic effect between multiple defects and Ir decoration effectively regulate the d-band center of copper, change the adsorption state of the catalyst surface, and promote the adsorption and reduction of intermediates and reactants. The strong H* adsorption ability of the Ir element provides more active hydrogen for the generation of ammonia, promoting the reduction of nitrate to NH3.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
34
|
Zhang H, Ma C, Wang YC, Zhu X, Qu K, Ma X, He C, Han S, Liu AH, Wang Q, Cao W, Lin W, Xia J, Zhu L, Gu L, Yun Q, Wang AL, Lu Q. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024:e202409515. [PMID: 39228207 DOI: 10.1002/anie.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3 - battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaiyu Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ai-Hua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Lin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, 511458, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
35
|
Xiao Y, Tan X, Du B, Guo Y, He W, Cui H, Wang C. Strained Au skin on Mesoporous Intermetallic AuCu 3 Nanocoral for Electrocatalytic Conversion of Nitrate to Ammonia across a Wide Concentration Range. Angew Chem Int Ed Engl 2024; 63:e202408758. [PMID: 38899532 DOI: 10.1002/anie.202408758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Electrochemical nitrate reduction reaction (NitRR) uses nitrate from wastewater, offering a hopeful solution for environmental issues and ammonia production. Yet, varying nitrate levels in real wastewater greatly affect NitRR, slowing down its multi-step process. Herein, a multi-strategy approach was explored through the design of ordered mesoporous intermetallic AuCu3 nanocorals with ultrathin Au skin (meso-i-AuCu3@ultra-Au) as an efficient and concentration-versatile catalyst for NitRR. The highly penetrated structure, coupled with the compressive stress exerted on the skin layer, not only facilitates rapid electron/mass transfer, but also effectively modulates the surface electronic structure, addressing the concentration-dependent challenges encountered in practical NitRR process. As expected, the novel catalyst demonstrates outstanding NitRR activities and Faradaic efficiencies exceeding 95 % across a real and widespread concentration range (10-2000 mM). Notably, its performance at each concentration matched or exceeded that of the best-known catalyst designed for that concentration. Multiple operando spectroscopies unveiled the catalyst concurrently optimized the adsorption behavior of different intermediates (adsorbed *NOx and *H) while expediting the hydrogenation steps, leading to an efficient overall reduction process. Moreover, the catalyst also displays promising potential for use in ammonia production at industrial-relevant current densities and in conceptual zinc-nitrate batteries, serving trifunctional nitrate conversion, ammonia synthesis and power supply.
Collapse
Affiliation(s)
- Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Binjie Du
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
36
|
Hu Y, Lan H, He J, Fang W, Zhang WD, Lu S, Duan F, Du M. Entropy-Engineered Middle-In Synthesis of Dual Single-Atom Compounds for Nitrate Reduction Reaction. ACS NANO 2024; 18:23168-23180. [PMID: 39045619 DOI: 10.1021/acsnano.4c05568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the immense potential of Dual Single-Atom Compounds (DSACs), the challenges in their synthesis process, including complexity, stability, purity, and scalability, remain primary concerns in current research. Here, we present a general strategy, termed "Entropy-Engineered Middle-In Synthesis of Dual Single-Atom Compounds" (EEMIS-DSAC), which is meticulously crafted to produce a diverse range of DSACs, effectively addressing the aforementioned issues. Our strategy integrates the advantages of both bottom-up and top-down paradigms, proposing an insight into optimizing the catalyst structure. The as-fabricated DSACs exhibited excellent activity and stability in the nitrate reduction reaction (NO3RR). In a significant advancement, our prototypical CuNi DSACs demonstrated outstanding performance under conditions reminiscent of industrial wastewater. Specifically, under a NO3- concentration of 2000 ppm, it yielded a Faradaic efficiency (FE) for NH3 of 96.97%, coupled with a mass productivity of 131.47 mg h-1 mg-1 and an area productivity of 10.06 mg h-1 cm-2. Impressively, even under a heightened NO3- concentration of 0.5 M, the FE for NH3 peaked at 90.61%, with a mass productivity reaching 1024.50 mg h-1 mg-1 and an area productivity of 78.41 mg h-1 cm-2. This work underpins the potential of the EEMIS-DSAC approach, signaling a frontier for high-performing DSACs.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junjun He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wenjing Fang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
37
|
Zhu A, Liu H, Bu S, Liu K, Luan C, Lin D, Gan G, Zhou Y, Zhang T, Liu K, Hong G, Li H, Zhang W. Facet-Dependent Evolution of Active Components on Spinel Co 3O 4 for Electrochemical Ammonia Synthesis. ACS NANO 2024; 18:22344-22355. [PMID: 39106490 DOI: 10.1021/acsnano.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Spinel cobalt oxides (Co3O4) have emerged as a promising class of catalysts for the electrochemical nitrate reduction reaction (eNO3RR) to ammonia, offering advantages such as low cost, high activity, and selectivity. However, the specific role of crystallographic facets in determining the catalysts' performance remains elusive, impeding the development of efficient catalysts. In this study, we have synthesized various Co3O4 nanostructures with exposed facets of {100}, {111}, {110}, and {112}, aiming to investigate the dependence of the eNO3RR activity on the crystallographic facets. Among the catalysts tested, Co3O4 {111} shows the best performance, achieving an ammonia Faradaic efficiency of 99.1 ± 1.8% with a yield rate of 35.2 ± 0.6 mg h-1 cm-2 at -0.6 V vs RHE. Experimental and theoretical results reveal a transformation process in which the active phases evolve from Co3O4 to Co3O4-x with oxygen vacancy (Ov), followed by a Co3O4-x-Ov/Co(OH)2 hybrid, and finally Co(OH)2. This process is observed for all facets, but the formation of Ov and Co(OH)2 is the most rapid on the (111) surface. The presence of Ov significantly reduces the free energy of the *NH2 intermediate formation from 1.81 to -0.53 eV, and plentiful active sites on the densely reconstructed Co(OH)2 make Co3O4 {111} an ideal catalyst for ammonia synthesis via eNO3RR. This work provides insights into the understanding of the realistic active components, offers a strategy for developing highly efficient Co-based spinel catalysts for ammonia synthesis through tuning the exposed facets, and helps further advance the design and optimization of catalysts in the field of eNO3RR.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shuyu Bu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kai Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuhao Luan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Dewu Lin
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guoqiang Gan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yin Zhou
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kunlun Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guo Hong
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
38
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Zhou J, Zhao J, Song D, Liu J, Xu W, Li J, Wang N. Cascade Electrocatalytic Reduction of Nitrate to Ammonia Using a Heterobimetallic Covalent Organic Framework Composed of Cu-Porphyrin and Co-Bipyridine. Inorg Chem 2024; 63:15177-15185. [PMID: 39088784 DOI: 10.1021/acs.inorgchem.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3) not only offers an effective solution to environmental problems caused by the accumulation of NO3- but also provides a sustainable alternative to the Haber-Bosch process. However, the conversion of NO3- to NH3 is a complicated process involving multiple steps, leading to a low Faradaic efficiency (FE) for NH3 production. The structural designability of covalent organic frameworks (COFs) renders feasible and precise modulation at the molecular level, facilitating the incorporation of multiple well-defined catalytic sites with different reactivities into a cohesive entity. This promotes the efficiency of the overall reaction through the coupling of multistep reactions. Herein, heterobimetallic CuP-CoBpy was prepared by postmodification, involving the anchoring of cobalt ions to the CuP-Bpy structure. As a result of the cascade effect of the bimetallic sites, CuP-CoBpy achieved an outstanding NH3 yield of 13.9 mg h-1 mgcat.-1 with a high FE of 96.7% at -0.70 V versus the reversible hydrogen electrode and exhibited excellent stability during catalysis. A series of experimental and theoretical studies revealed that the CuP unit facilitates the conversion of NO3- to NO2-, while the CoBpy moiety significantly prompts the reduction of NO2- to NH3. This study demonstrates that tailoring the structural units for the construction of COFs based on each step in the multistep reaction can enhance both the catalytic activity and product selectivity of the overall process.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiani Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Dengmeng Song
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
40
|
Wang R, Lu J, Li X, Song C. Accelerating the electron-transfer of nitrogen electro-fixation through assembling Fe nanoparticles into Fe nanochains. NANOSCALE ADVANCES 2024; 6:4071-4074. [PMID: 39114144 PMCID: PMC11302030 DOI: 10.1039/d4na00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Electrochemically synthesizing NH3 via N2 is a facile and sustainable approach that involves multistep electron and proton transfer processes. Thus, consecutive electron and proton transfer is necessary. Here, a universal method with the assistance of magnetic stirring that can assemble Fe, Co, and Ni nanoparticles into nanochains is developed. Notably, the Fe nanochain, composed of amorphous Fe nanoparticles, facilitates electron and proton transfer, resulting in an enhanced NH3 yield (92.42 μg h-1 mg-1) and faradaic efficiency (20.02%) at -0.4 V vs. RHE during the electrochemical reduction of N2. This work offers new insight into designing tandem electrocatalysts.
Collapse
Affiliation(s)
- Rongkang Wang
- Chongqing Chemical Industry Vocational College Chongqing 401228 China
| | - Jingyu Lu
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Li
- Southwest Technology and Engineering Research Institute Chongqing 401329 China
| | - Chunyu Song
- Chongqing Chemical Industry Vocational College Chongqing 401228 China
| |
Collapse
|
41
|
Zhu H, Wang JJ, Xu Z, Tan Y, Wang J. Pd Nanoparticle Size-Dependent H * Coverage for Cu-Catalyzed Nitrate Electro-Reduction to Ammonia in Neutral Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404919. [PMID: 39096112 DOI: 10.1002/smll.202404919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is an effective approach to reduce nitrate pollutants in the environment and also a promising low-temperature, low-pressure method for ammonia synthesis. However, adequate H* intermediates are highly expected for NO3 - hydrogenation, while suppressing competitive hydrogen evolution. Herein, the effect of H* coverage on the NO3RR for ammonia synthesis by Cu electrocatalysts is investigated. The H* coverage can be adjusted by changing Pd nanoparticle sizes. The optimized Pd@Cu with an average Pd size of 2.88 nm shows the best activity for NO3RR, achieving a maximum Faradaic efficiency of 97% (at -0.8 V vs RHE) and an NH3 yield of 21 mg h-1 cm- 2, from an industrial wastewater level of 500 ppm NO3 -. In situ electrochemical experiments indicate that Pd particles with 2.88 nm can promote NO3 - hydrogenation to NH3 via well-modulated coverage of adsorbed H* species. Coupling the anodic glycerol oxidation reaction, ammonium and formate are successfully obtained as value-added products in a membrane electrode assembly electrolyzer. This work provides a feasible strategy for obtaining size-dependent H* intermediates for hydrogenation.
Collapse
Affiliation(s)
- Hongbo Zhu
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiacheng Jayden Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zian Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
| |
Collapse
|
42
|
Xue Y, Yu Q, Fang J, Jia Y, Wang R, Fan J. A Wetting and Capture Strategy Overcoming Electrostatic Repulsion for Electroreduction of Nitrate to Ammonia from Low-Concentration Sewage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400505. [PMID: 38477685 DOI: 10.1002/smll.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Ammonia production by electrocatalytic nitrate reduction reaction (NO3RR) in water streams is anticipated as a zero-carbon route. Limited by dilute nitrate in natural sewage and the electrostatic repulsion between NO3 - and cathode, NO3RR can hardly be achieved energy-efficiently. The hydrophilic Cu@CuCoO2 nano-island dispersed on support can enrich NO3 - and produce a sensitive current response, followed by electrosynthesis of ammonia through atomic hydrogen (*H) is reported. The accumulated NO3 - can be partially converted to NO2 - without external electric field input, confirming that the Cu@CuCoO2 nano-island can strongly bind NO3 - and then trigger the reduction via dynamic evolution between Cu-Co redox sites. Through the identification of intermediates and theoretical computation. it is found that the N-side hydrogenation of *NO is the optimal reaction step, and the formation of N─N dimer may be prevented. An NH3 product selectivity of 93.5%, a nitrate conversion of 96.1%, and an energy consumption of 0.079 kWh gNH3 -1 is obtained in 48.9 mg-N L-1 naturally nitrate-polluted streams, which outperforms many works using such dilute nitrate influent. Conclusively, the electrocatalytic system provides a platform to guarantee the self-sufficiency of dispersed ammonia production in agricultural regions.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qihui Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Junhua Fang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Rongchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
43
|
Li J, Valenza R, Haussener S. In Situ Synthesis of Cu xO/N Doped Graphdiyne with Pyridine N Configuration for Ammonia Production via Nitrate Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310467. [PMID: 38552223 DOI: 10.1002/smll.202310467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Indexed: 08/17/2024]
Abstract
Electroreduction of nitrate to ammonia provides an interesting pathway for wastewater treatment and valorization. Cu-based catalysts are active for the conversion of NO3 - to NO2 - but suffer from an inefficient hydrogenation process of NO2 -. Herein, CuxO/N-doped graphdiyne (CuxO/N-GDY) with pyridine N configuration are in situ prepared in one pot. Benefiting from the synergistic effect of pyridinic N in GDY and CuxO, the prepared CuxO/N-GDY tested in a commercial H-cell achieved a faradaic efficiency of 85% toward NH3 at -0.5 V versus RHE with a production rate of 340 µmol h-1 mgcat -1 in 0.1 M KNO3. When integrating the CuxO/N-GDY in an anion exchange membrane flow electrolyzer, a maximum Faradaic efficiency of 89% is achieved at a voltage of 2.3 V and the production rate is 1680 µmol h-1 mgcat -1 at 3.3 V in 0.1 M KNO3 at room temperature. Operation at 40 °C further promoted the overall reaction kinetics of NO3 - to NH3, but penalized its selectivity with respect to hydrogen evolution reaction. The high selectivity and production rate in this device configuration demonstrate its potential for industrial application.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Renewable Energy Science and Engineering, Institute of Mechanical Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland
| | - Roberto Valenza
- Laboratory of Renewable Energy Science and Engineering, Institute of Mechanical Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland
| | - Sophia Haussener
- Laboratory of Renewable Energy Science and Engineering, Institute of Mechanical Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland
| |
Collapse
|
44
|
Zhang LH, Zhang B, Hong Y, You Y, Zhou Y, Zhan J, Alonzo Poole D, Yu F. Deep Electron Redistributions Induced by Dual Junctions Facilitating Electroreduction of Dilute Nitrate to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402430. [PMID: 38623987 DOI: 10.1002/smll.202402430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 04/17/2024]
Abstract
The electronic states of metal catalysts can be redistributed by the rectifying contact between metal and semiconductor e.g., N-doped carbon (NC), while the interfacial regulation degree is very limited. Herein, a deep electronic state regulation is achieved by constructing a novel double-heterojunctional Co/Co3O4@NC catalyst containing Co/Co3O4 and Co3O4/NC heterojunctions. When used for dilute electrochemical NO3 - reduction reaction (NO3RR), the as-prepared Co/Co3O4@NC exhibits an outstanding Faradaic efficiency for NH3 formation (FENH3) of 97.9%, -0.4 V versus RHE and significant NH3 yield of 303.5 mmol h-1 gcat -1 at -0.6 V at extremely low nitrate concentrations (100 ppm NO3 --N). Experimental and theoretical results reveal that the dual junctions of Co/Co3O4 and Co3O4/NC drive a unidirectional electron transfer from Co to NC (Co→Co3O4→NC), resulting in electron-deficient Co atoms. The electron-deficient Co promotes NO3 - adsorption, the rate-determining step (RDS) for NO3RR, facilitating the dilute NO3RR to NH3. The design strategy provides a novel reference for unidirectional multistage regulation of metal electronic states boosting electrochemical dilute NO3RR, which opens up an avenue for deep electronic state regulation of electrocatalyst breaking the limitation of the electronic regulation degree by rectifying contact.
Collapse
Affiliation(s)
- Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Bo Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yaohua Hong
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yang You
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuzhuo Zhou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiayu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - David Alonzo Poole
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Noord Holland, Amsterdam, 1081HV, The Netherlands
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
45
|
Wang RX, Yang L, Chen HY, Wang N, Zhang WJ, Li R, Chen YQ, You CY, Ramakrishna S, Long YZ. Rationally designing of Co-WS 2 catalysts with optimized electronic structure to enhance hydrogen evolution reaction. J Colloid Interface Sci 2024; 667:192-198. [PMID: 38636221 DOI: 10.1016/j.jcis.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.
Collapse
Affiliation(s)
- Rong-Xu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Han-Yang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Jie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - You-Qiang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chao-Yu You
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao, 266071, China.
| |
Collapse
|
46
|
Zhou B, Yu L, Zhang W, Liu X, Zhang H, Cheng J, Chen Z, Zhang H, Li M, Shi Y, Jia F, Huang Y, Zhang L, Ai Z. Cu 1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew Chem Int Ed Engl 2024; 63:e202406046. [PMID: 38771293 DOI: 10.1002/anie.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Collapse
Affiliation(s)
- Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
47
|
Huang W, Luo W, Liu J, Jia BE, Lee C, Dong J, Yang L, Liu B, Yan Q. Cascade Electrocatalytic Nitrate Reduction Reaching 100% Nitrate-N to Ammonia-N Conversion over Cu 2O@CoO Yolk-Shell Nanocubes. ACS NANO 2024. [PMID: 39069739 DOI: 10.1021/acsnano.4c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The electroreduction of nitrate to ammonia via a selective eight-electron transfer nitrate reduction reaction offers a promising, low energy consumption, pollution-free, green NH3 synthesis strategy alternative to the Haber-Bosch method. However, it remains a great challenge to achieve high NH4+ selectivity and complete conversion from NO3--N to NH4+-N. Herein, we report ingredients adjustable Cu2O@CoO yolk-shell nanocubes featured with tunable inner void spaces and diverse activity centers, favoring the rapid cascade conversion of NO3- into NO2- on Cu2O and NO2- into NH4+ on CoO. Cu2O@CoO yolk-shell nanocubes exhibit super NH4+ Faradaic efficiencies (>99%) over a wide potential window (-0.2 V to -0.9 V versus RHE) with a considerable NH4+ yield rate of 15.27 mg h-1 cm-2 and fantastic cycling stability and long-term chronoamperometric durability. Cu2O@CoO yolk-shell nanocubes exhibited glorious NO3--N to NH4+-N conversion efficiency in both dilute (500 ppm) and highly concentrated (0.1 and 1 M) NO3- electrolytes, respectively. The nitrate electrolysis membrane electrode assembly system equipped with Cu2O@CoO yolk-shell nanocubes delivers over 99.8% NH4+ Faradaic efficiency at cell voltages of 1.9-2.3 V.
Collapse
Affiliation(s)
- Wenjing Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bei-Er Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bin Liu
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
48
|
Chen X, Cheng Y, Zhang B, Zhou J, He S. Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia. Nat Commun 2024; 15:6278. [PMID: 39054325 PMCID: PMC11272931 DOI: 10.1038/s41467-024-50670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Electrocatalytic nitrate reduction to ammonia holds great promise for developing green technologies for electrochemical ammonia energy conversion and storage. Considering that real nitrate resources often exhibit low concentrations, it is challenging to achieve high activity in low-concentration nitrate solutions due to the competing reaction of the hydrogen evolution reaction, let alone considering the catalyst lifetime. Herein, we present a high nitrate reduction performance electrocatalyst based on a Co nanosheet structure with a gradient dispersion of Ru, which yields a high NH3 Faraday efficiency of over 93% at an industrially relevant NH3 current density of 1.0 A/cm2 in 2000 ppm NO3- electrolyte, while maintaining good stability for 720 h under -300 mA/cm2. The electrocatalyst maintains high activity even in 62 ppm NO3- electrolyte. Electrochemical studies, density functional theory, electrochemical in situ Raman, and Fourier-transformed infrared spectroscopy confirm that the gradient concentration design of the catalyst reduces the reaction energy barrier to improve its activity and suppresses the catalyst evolution caused by the expansion of the Co lattice to enhance its stability. The gradient-driven design in this work provides a direction for improving the performance of electrocatalytic nitrate reduction to ammonia.
Collapse
Affiliation(s)
- Xinhong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yumeng Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Jia Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Sisi He
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
49
|
Qi R, Zhang L, Ren S, Shi B, Zhong M, Chen ZJ, Lu X. Interface Engineering of the Cu 1.5Mn 1.5O 4/CeO 2 Heterostructure for Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia. NANO LETTERS 2024; 24:8964-8972. [PMID: 38985521 DOI: 10.1021/acs.nanolett.4c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is considered a sustainable technology to convert the nitrate pollutants to ammonia. However, developing highly efficient electrocatalysts is necessary and challenging given the slow kinetics of the NO3RR with an eight-electron transfer process. Here, a Cu1.5Mn1.5O4 (CMO)/CeO2 heterostructure with rich interfaces is designed and fabricated through an electrospinning and postprocessing technique. Benefiting from the strong coupling between CMO and CeO2, the optimized CMO/CeO2-2 catalyst presents excellent NO3RR performance, with NH3 Faraday efficiency (FE) up to 93.07 ± 1.45% at -0.481 V vs reversible hydrogen electrode (RHE) and NH3 yield rate up to 48.06 ± 1.32 mg cm-2 h-1 at -0.681 V vs RHE. Theoretical calculations demonstrate that the integration of CeO2 with CMO modulates the adsorption/desorption process of the reactants and intermediates, showing a reduced energy barrier in the rate determination step of NO* to N* and achieving an outstanding NO3RR performance.
Collapse
Affiliation(s)
- Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Linfeng Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bingyan Shi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zheng-Jie Chen
- Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
50
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|